最新屈婉玲离散数学第三章教程文件

合集下载

离散数学答案-屈婉玲版-第二版-高等教育出版社课后答案

离散数学答案-屈婉玲版-第二版-高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⌝p∨(q∧r))p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)1∧(p∨q)∧⌝(p∧q)∧1(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⌝(p ∨q)∨(⌝q ∨p)(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⌝(p ∨q)∨(⌝q ∨p)(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⌝(p ∨(q ∧r))→(p ∨q ∨r)(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。

离散数学-03-一阶逻辑

离散数学-03-一阶逻辑
20
3.1.4 一阶逻辑公式与分类
解释和赋值的直观涵义
例 公式x(F(x)G(x)) 指定1 个体域:全总个体域, F(x): x是人, G(x): x是黄种人 真/假命题? 假命题 指定2 个体域:实数集, F(x): x>10, G(x): x>0 真/假命题? 真命题
21
3.1.4 一阶逻辑公式与分类
离散数学(第3版) 屈婉玲 耿素云 张立昂 编著 清华大学出版社出版
第3章 一阶逻辑
上海大学 谢江
1
第3章 一阶逻辑
• 3.1 一阶逻辑基本概念 • 3.2 一阶逻辑等值演算
2
3.1 一阶逻辑基本概念
• 3.1.1 命题逻辑的局限性 • 3.1.2 个体词、谓词与量词
– 个体常项、个体变项、个体域、全总个体域 – 谓词常项、谓词变项 – 全称量词、存在量词
n元谓词P(x1, x2,…, xn): 含n个个体变项的谓词, 是定义在 个体域上, 值域为{0,1}的n元函数 一元谓词: 表示事物的性质 多元谓词(n2): 表示事物之间的关系 0元谓词: 不含个体变项的谓词,即命题常项或命题变项 0元谓词是命题? 命题均可表示成0元谓词?
8
3.1.2 个体词、谓词与量词
• 3.1.3 一阶逻辑命题符号化
3
3.1 一阶逻辑基本概念(续)
• 3.1.4 一阶逻辑公式与分类
– 一阶语言L (字母表、项、原子公式、合式 公式) – 辖域和指导变元、约束出现和自由出现 – 闭式 – 一阶语言L 的解释 – 永真式、矛盾式、可满足式 – 代换实例
4
3.1.1 命题逻辑的局限性
11
3.1.3 一阶逻辑命题符号化
一阶逻辑命题符号化

高教离散数学修订版耿素云屈婉玲Part数理逻辑部分

高教离散数学修订版耿素云屈婉玲Part数理逻辑部分
高教离散数学修订版耿素云屈婉玲 part数理逻辑部分
目录
• 数理逻辑基本概念 • 谓词逻辑基础 • 形式系统基本概念 • 命题演算系统PCN • 谓词演算系统QCN • 数理逻辑在离散数学中应用
01 数理逻辑基本概念
命题与逻辑联结词
命题
01
一个可以判断真假的陈述句称为命题。
逻辑联结词
02
用来连接命题,形成复合命题的词语,如“且”、“或”、“
其他领域数理逻辑应用
计算机科学中的数理逻辑
数理逻辑在计算机科学中具有广泛的应用,如命题逻辑和谓词逻辑在程序设计和软件测试中的应用,以及数 理逻辑在人工智能和数据库等领域的应用。
物理学中的数理逻辑
数理逻辑在物理学中也有一定的应用,如量子力学中的逻辑结构和推理规则,以及数理逻辑在相对论和统计 力学等领域的应用。
推理规则
在谓词逻辑中,常用的推理规则 有假言推理、拒取式、析取三段 论、双条件推理等。这些规则可 以用于推导新的命题或证明某个 命题的正确性。
量词消去规则
在推理过程中,有时需要消去量 词,以便更方便地处理命题。全 称量词消去规则是将∀xP(x)转化 为P(a),其中a是个体域中的任意 个体;存在量词消去规则是将 ∃xP(x)转化为P(c),其中c是个体 域中满足P的某个个体。
PCN中重言式和矛盾式判定方法
01
重言式(Tautology)是指在所 有赋值下都为真的命题公式,如 P∨¬P。
02
矛盾式(Contradiction)是指 在所有赋值下都为假的命题公式, 如P∧¬P。
03
判定重言式和矛盾式的方法包 括真值表法、等价变换法和主 析取范式法等。
PCN中推理规则和证明方法
社会科学中的数理逻辑

离散数学讲义

离散数学讲义
历史上著名的悖论
NO.1 说谎者悖论(1iar paradox or Epimenides’ paradox) 最古老的语义悖论。公元前6世纪古希腊哲学家伊壁孟德 所创的四个悖论之一。是关于“我正在撒谎”的悖论。具 体为:如果他的确正在撒谎,那么这句话是真的,所以伊 壁孟德不在撤谎,如果他不在撒谎,那么这句话是假的, 因而伊壁孟德正在撒谎。
其内容较广,主要包括数理逻辑、 集合 论、图论、代数结构等四个基本部分。
7
什么是离散数学?
离散数学将日常的概念、判断、 推理用数学符号来表示,用数学方法 进行思维。其目标是掌握严密的思维 方法、严格证明的推理能力和演算能 力,掌握处理各种具有离散结构的事 物的描述工具与方法,适应学习其他 专业课程的各种需要,为学习其它计 算机课程提供必要的数学工具。
12
1-1 命题及其表示法
命题:能够判断真假的陈述语句。
例:‘中国是一个国家’, ‘9为素数’。
原子命题:不能分解成更简单的陈述语 句的命题。
复合命题:由连结词、标点符号和原子 命题复合构成的命题。
一般用字母“T”表示“真”,“F”表示 “假”。也经常用“1”表示“真”, “0”表示“假”。
2
课程概况
选修课/必修课:选修 周学时:3(学时) 上课周:1-16周 总学时 数理逻辑(14学时)
第一章 命题逻辑(8) 第二章 谓词逻辑(6)
第二篇 集合论(12学时)
第三章 集合(4) 第四章 二元关系与函数(8)
第四篇 图论(14学时)
第七章 图论(8) 第八章 一些特殊图(4) 第九章 树 (2)
19
NO.2 伊勒克特拉悖论(Eletra paradox) 逻辑史上最早的内涵悖 论。由古希腊斯多亚学派提出。它的基本内容是:伊勒克 特拉有位哥哥奥列斯特回家了.尽管伊勒支持拉知道奥列 斯特是她的哥哥.但她并不认识站在她面前的这个男人。 写成一个推理.即: 伊勒克持拉不知道站在她面前的这个人是她的哥哥。 伊勒克持拉知道奥列期特是她的哥哥。 站在她面前的人是奥列期特。

离散数学(屈婉玲)答案_1-5章

离散数学(屈婉玲)答案_1-5章

离散数学(屈婉玲)答案_1-5章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式 //最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1 所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q) ⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命xF(x题。

高等教育出版社《离散数学》屈婉玲_耿素云_张立昂版最全答案

高等教育出版社《离散数学》屈婉玲_耿素云_张立昂版最全答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s) 结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p?r)∧(﹁q∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)?(p∧q∧﹁r) ⇔(1∧1∧1)? (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)? ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x ).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解: F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。

离散数学屈婉玲版课后习题

离散数学屈婉玲版课后习题

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1 所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p →q)∧(p →r)⇔(p →(q ∧r))(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨q) ∧⌝(p ∧q) 证明(2)(p →q)∧(p →r)⇔ (⌝p ∨q)∧(⌝p ∨r) ⇔⌝p ∨(q ∧r))⇔p →(q ∧r)(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨(⌝p ∧q)) ∧(⌝q ∨(⌝p ∧q)⇔(p ∨⌝p)∧(p ∨q)∧(⌝q ∨⌝p) ∧(⌝q ∨q) ⇔1∧(p ∨q)∧⌝(p ∧q)∧1 ⇔(p ∨q)∧⌝(p ∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p →q)→(⌝q ∨p)(2)⌝(p →q)∧q ∧r (3)(p ∨(q ∧r))→(p ∨q ∨r) 解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q) ⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p) ⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p∨(⌝q∨p))∧(⌝q∨(⌝q∨p))⇔1∧(p∨⌝q)⇔(p∨⌝q) ⇔ M1⇔∏(1)(2) 主合取范式为:⌝(p→q)∧q∧r⇔⌝(⌝p∨q)∧q∧r⇔(p∧⌝q)∧q∧r⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p∨(q∧r))→(p∨q∨r)⇔⌝(p∨(q∧r))→(p∨q∨r)⇔(⌝p∧(⌝q∨⌝r))∨(p∨q∨r)⇔(⌝p∨(p∨q∨r))∧((⌝q∨⌝r))∨(p∨q∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p →(q →r) 前提引入 ⑤q →r ③④假言推理 ⑥q 前提引入 ⑦r ⑤⑥假言推理16在自然推理系统P 中用归谬法证明下面各推理:(1)前提:p →⌝q,⌝r ∨q,r ∧⌝s 结论:⌝p 证明:①p 结论的否定引入 ②p →﹁q 前提引入 ③﹁q ①②假言推理 ④¬r ∨q 前提引入 ⑤¬r ④化简律 ⑥r ∧¬s 前提引入 ⑦r ⑥化简律 ⑧r ∧﹁r ⑤⑦ 合取由于最后一步r ∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(AB)(AB) B
构造性二难(特殊形式)
9. (AB)(CD)( BD) (AC) 破坏性二难
每个等值式可产生两个推理定律 如, 由AA可产生 AA 和 AA
6
3.2 自然推理系统P
本节对由{A1, A2, …, Ak}推B的正确推理的证明给出严格的形 式描述 定义3.2 一个形式系统 I 由下面四个部分组成: (1) 非空的字母表,记作 A(I). (2) A(I) 中符号构造的合式公式集,记作 E(I). (3) E(I) 中一些特殊的公式组成的公理集,记作 AX(I). (4) 推理规则集,记作 R(I). 记I=<A(I),E(I),AX(I),R(I)>, 其中<A(I),E(I)>是 I 的 形式语言系统, <AX(I),R(I)> 是 I 的形式演算系统.
屈婉玲离散数学第三章
3.1 推理的形式结构
所谓推理是指从前提出发推出结论的思维过程。
定义3.1 设A1, A2, …, Ak, B为命题公式. 若对于每组赋值, A1A2… Ak 为假,或当A1A2…Ak为真时,B也为真, 则称由前提A1, A2, …, Ak推出结论B的推理是有效的或正确 的, 并称B是有效结论.
2. 合式公式(同定义1.6)
3. 推理规则
(1) 前提引入规则:在证明的任何步骤都可引入前提
(2) 结论引入规则:在证明的任何步骤得到的结论都可以做
为后续证明的前提
(3) 置换规则:在证明的任何步骤,命题公式中的子公式都
可用等值的公式置换,得到公式序列中又
一个公式
8
推理规则
(4) 假言推理规则 AB A ∴B
定理3.1 由命题公式A1, A2, …, Ak 推B的推理正确当且仅当 A1A2…AkB为重言式
注意: 推理正确不能保证结论一定正确
2
推理的形式结构
由{A1, A2, …, Ak}推B的推理有以下的形式结构: 1. {A1, A2, …, Ak} B
若推理正确, 记为{A1,A2,,An} B 2. A1A2…AkB
解 设 p:今天是1号,q:明天是5号. (1) 推理的形式结构: (pq)pq
用等值演算法 (pq)pq
((pq)p)q pqq 1 由定理3.1可知推理正确
4
推理实例
(2) 推理的形式结构: (pq)qp 用主析取范式法 (pq)qp (pq)qp ((pq)q)p qp (pq)(pq) (pq)(pq) m0m2m3 结果不含m1, 故01是成假赋值,所以推理不正确
前提:A1, A2, … , Ak 结论:B 做法 在前提中加入B,推出矛盾. 理由
若明天是星期一或星期三,我明天就有课. 若我明天有 课,今天必备课. 我今天没备课. 所以,明天不是星期一、 也不是星期三.
解 (1) 设命题并符号化
设 p:明天是星期一,q:明天是星期三,
r:我明天有课,s:我今天备课
11
直接证明法
(2) 写出证明的形式结构
前提:(pq)r, rs, s
结论:pq
5
推理定律——重言蕴涵式
1. A (AB)
附加律
2. (AB) A
化简律
3. (AB)A B
假言推理
4. (AB)B A
拒取式
5. (AB)B A
析取三段论
6. (AB)(BC) (AC)
假言三段论
7. (AB)(BC) (AC)
等价三段论
8. (AB)(CD)(AC) (BD)
构造性二难
r: 2 是无理数,s:4是素数
(2) 推理的形式结构 前提:pq, pr, rs 结论:sq
14
附加前提证明法实例
(3) 证明 ①s ② pr ③ rs ④ ps ⑤ p ⑥ pq ⑦q
附加前提引入 前提引入 前提引入 ②③假言三段论 ①④拒取式 前提引入 ⑤⑥析取三段论
15
归谬法(反证法)
归谬法 (反证法) 欲证
(6) 化简规则
AB ∴A
(8) 假言三段论规则 AB BC
∴AC
(5) 附加规则
A ∴AB
(7) 拒取式规则 AB B ∴A
(9) 析取三段论规则 AB B ∴A
9
推理规则
(10) 构造性二难推理规则 AB CD AC
∴BD (12) 合取引入规则
A B ∴AC
(11) 破坏性二难推理规则 AB CD
BD ∴AC
10
在自然推理系统P中构造证明
设前提A1, A2,, Ak,结论B及公式序列C1, C2,, Cl. 如果每 一个Ci(1il)是某个Aj, 或者可由序列中前面的公式应用推理 规则得到, 并且Cl =B, 则称这个公式序列是由A1, A2,, Ak推 出B的证明 见例子3.3/3.4 例2 构造下面推理的证明:
(3) 证明
① rs
前提引入
② s
前提引入
③ r
①②拒取式
④ (pq)r 前提引入
⑤ (pq)
③④拒取式
⑥ pq
⑤置换
12
附加前提证明法
附加前提证明法 适用于结论为蕴涵式
欲证
前提:A1, A2, …, Ak 结论:CB
等价地证明
前提:A1, A2, …, Ak, C 结论:B
理由:
(A1A2…Ak)(CB)
( A1A2…Ak)(CB)
( A1A2…AkC)B
(A1A2…AkC)B
13
附加前提证明法实例
例3 构下面推理的证明
2是素数或合数. 若2是素数,则 2 是无理数. 若 2 是无理
数,则4不是素数. 所以,如果4是素数,则2是合数. 解 用附加前提证明法构造证明
(1) 设 p:2是素数,q:2是合数,
若推理正确, 记为A1 A2 … Ak B 3. 前提: A1, A2, … , Ak
结论: B
判断推理是否正确的方法: 真值表法(见例子3.1) 等值演算法(见例子3.2) 主析取范式法(见例子3.2)
3
推理实例
例1 判断下面推理是否正确 (1) 若今天是1号,则明天是5号. 今天是1号. 所以, 明天是5号. (2) 若今天是1号,则明天是5号. 明天是5号. 所以, 今天是1号.
自然推理系统: 无公理, 即AX(I)= 公理推理系统 推出的结论是系统中的重言式, 称作定理
7
自然推理系统P
定义3.3 自然推理系统 P 定义如下:
1. 字母表
(1) 命题变项符号:p, q, r, …, pi, qi, ri, … (2) 联结词符号:, , , ,
(3) 括号与逗号:(, ), ,
相关文档
最新文档