(完整版)二次根式经典题型分类复习

合集下载

二次根式考试题型汇总

二次根式考试题型汇总

二次根式考试题型汇总二次根式题型一:二次根式的定义例1、(1)求自然数n的值,使得18-n是整数。

2)当x≥-1时,求式子√(x+1)+√(1-x)的值。

题型二:二次根式有意义的条件例2、当x>-1时,二次根式√(x+1)有意义。

例3、已知x、y为实数,y=√(y^2+8y+16-3xy),求y的值。

例4、已知y=√(x-3)+3-√(x+4),求x的值使得有意义。

题型三:二次根式的性质与化简例5、已知实数a,b在数轴上的位置如图所示:化简(1/(a+3))^2-(1/(b-23))^2.例6、计算(1/(x-1))-((1-x)/(x-1)(x+1))。

已知a、b、c为正数,d为负数,化简(ab-c^2d^2)/(ab+cd)^2.例7、化简求值:1)(a^2-a+b)/((c-a)^2+b+c);2) 11/[(2-1)/(2+1)+(2-1-√2)/(2-1+√2)];3)若x<y<z,则x^2-2xy+y^2+z^2-2yz+xz;4)[(x-1)^2+4-(x+1)^2]/(x^2-1);5)化简(a<0)得-1/(a)。

6)当a<0,b<0时,-a+2ab-b可变形为(a-b)^2.题型四:最简二次根式例8、下列式子中,属于最简二次根式的是9,而1/√3和√(9+x^2)都不是最简二次根式。

题型五:二次根式的乘除法例9、已知m=(3/3-2)(3/3+2-1),则有-5<m<-4.例10、计算:1)(5-3+2)(5-3-2);2) (a+3b)/(a+b)-(a-b)/(a+2b);3)(a^2/n-m^2/mn+n)/(a^2b^2);4)(a+b)/(ab+b-a)/(ab-a).a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013答案解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)2013解析:a≠b).(5) a5+2a3b2+ab4 (6) 3/2 4/53/2 a/b (7) a/b ab (a,b>2012) (8) (23-3)/(23+3)20131.求解x的值:$$\frac{x+a}{x^2+a^2}+\frac{2x-x^2+a^2}{x^2-a^2}+\frac{1}{x^2+a^2/2}$$2.若x,y为实数,且$y=1-4x+4x^{-1}+x^{-2}$,求$\frac{x+y}{y+x^2}-2\frac{y}{yx^2}$的值。

二次根式常见题型总结

二次根式常见题型总结

va +2 题型2最简二次根式、同类二次根式考查形式选择题或填空题4. 下列根式中是最简二次根式的是l2L(A )J 2(B )朽 35. 下列根式中,不能与合并的是ij1 二次根式常见题型总结题型1二次根式的概念(后面附答案)考查形式选择题或填空题1. 如果:二1是二次根式,那么x,y 应满足的条件是【】y(A )x ±l,y ±0(B )y (x -1,三0x €1(C )——±0(D )x ±1,y >0y2. 若代数式丄+<!有意义,则实数x 的取值范围是【】x -1(A )x …1(B )x ±0(C )x ...0(D )x ±0且x (1)3. 要使式子「「有意义,则a 的取值范围为. 【】 (C )3(D )<12【】(C )(D )<123 6.若最简二次根式3b -a +2与J 4b -a 是同类二次根式,则a =,b =.题型3二次根式的化简求值考查形式选择题、填空题、解答题i1n7.若y=r-2+Y2-x-6,则xy=8.'若y=Qx—3+&3—x+2,贝Ux y=.9.若彳x2+x€0侧x的取值范围是.10.若、:m一3+(n+1)2€0,求(m+2n)2020的值.11.先化简,再求值:仝二-_^,其中x€1+2勇,y€1…2訂・x-yx-y12.已知函数y=(m-3)x+n-2(m,n为常数)的图象如图所示,化简: |m-3一、:n2-4n+4.题型4二次根式的计算考查形式选择题、填空题、计算题13.下列等式不成立的是(A)3、辽…2运€6、.:6(B)J8一迈€4 (C)v8-迈€迈2_(2A&-1V3+1_\3 14.计算:15.计算:+2-J 5+(-1)2019-J_x V45;3(2)、18+ (.2-1)-、9+题型5探究活动考查形式解答题3|_T2 16.在进行二次根式的化简时,我们有时会遇到形如丄,厶的式子,其实J5\3<3+1我们还可以将其进一步化简:33x 叮53>/5二二;(口)■v'5v'5x -55vl 仝心)€2;3;(—,T⑴…近-2右+ 1) 込』=v3-1・(□)22…3-1 <3€1…<3+1①参照(III)式化简②参照(W)式化简以上这种化简的步骤叫做分母有理化.芋1还可以用以下方法化简:1)请用不同的方法化简(2)化简:丿€1..€.1€•••+・3+1v5€\:3V7€x5\:2n+1€\2n—1题型6定义新运算17.对于任意的正数m,n定义运算※为:观※n…]丫"-",计算(3探2)<[xl m€Jn,m<n竹※12)的结果为.<3+1…m—3-\;(n-2)2二次根式常见题型总结答案1.C2.D3.a>—24.B5.C6.1,17.—38.99.x<010.解:°・°Y m一3+(n+1)2 0<m一3±0,(n+1)2±0m—3...0,n+1 0m…3,n…—1・:(m+2n)2020…(3—2)2020…1.11.解:旦—旦……,x…y)(x-y)…x+yx—yx—yx—y当x…1+2打,y…1—2<3时原式…1+2^3+1—2心3…2.12.解:由函数的图象可知:m—3>0,n—2<0m>3,n<2…m—3—|n—2…m—3—(2—n)…m+n—5. 13.BI1114.解:(1)3J12—2」—+6語—型+4石L2爲…I3丿解:(2)I、运—1+1)—(—2爲)…12—1—(—413+12)…11—13+4打…—2+4、.3.+12-+(—1)2019—1x<45一2•=1+v5—2—1€解:(2)<18+v9+<1)-1 <2丿=3<2+3—2•、辽—3+2=、辽+2.2=J5—^3亠上+覇)G-訂)=込—再<5+v'3 <5+<3(2)十.(过程略)。

清单05 二次根式 全章复习(3个考点梳理+11种题型+10类型)(解析版)

清单05 二次根式 全章复习(3个考点梳理+11种题型+10类型)(解析版)

清单05二次根式全章复习(3个考点梳理+10种题型+10类型)考点一二次根式的相关概念二次根式的概念:一般地,我们把形如(≥0)的式子叫做二次根式,“”称为二次根号,二次根号下的数叫做被开方数.二次根式有意义的条件:当a≧0时,即被开方数大于或等于0,二次根式有意义.最简二次根式:开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.最简二次根式必须同时满足以下两个条件:①开方数所含因数是整数,因式是整式(分母中不应含有根号);②不含能开得尽方的因数或因式的二次根式,即被开方数的因数或因式的指数都为1.同类二次根式的概念:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式.【考试题型1】二次根式有意义的条件1.(20-21九年级上·吉林长春·在实数范围内有意义的条件是.x的值.2.(2023·浙江杭州·1.(22-23七年级下·广东汕头·m的最小值是()A.2B.3C.8D.11∴12m -是完全平方数,当120m -=时,即12m =,当121m -=时,即11m =,当124m -=时,即8m =,当129m -=时,即3m =,综上所述,自然数m 的值可以是3、8、11、12,所以m 的最小值是3,故答案选:B .【点睛】本题考查了二次根式的化简及自然数的定义,掌握二次根式的化简法则及自然数是指大于等于0的整数是解答本题的关键.2.(22-23八年级下·福建莆田·开学考试)若实数a ,b 4b +,则a b -=.3.(20-21七年级下·广东广州·期中)若()230a -+=,则a b -的立方根是.【点睛】本题考查平方、二次根式的非负性以及求立方根,得到30a -=,50b +=是解题的关键.4.(20-21八年级上·四川达州·期中)已知a ,b 0b =(1)a=_______,b=______(2)把a ,b 的值代下以下方程并求解关于x 的方程()221a xb a ++=-1.(23-24八年级上·上海青浦·)ABC D2.(23-24八年级上·山东滨州·期末)下列各式化成最简二次根式正确的是()A=B =C =D 10=()A .2个B .3个C .4个D .5个4.(22-23八年级下·海南省直辖县级单位·是同类二次根式,则=a .【答案】5-【分析】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键,化成最简二1.(23-24九年级上·四川宜宾·a 的值可能是()A .16B .0C .2D .任意实数2.(22-23九年级上·四川遂宁·是同类二次根式,则m 的值为()A .4m =B .3m =C .5m =D .6m =3.(22-23八年级下·山东泰安·是最简二次根式,则m,n的值为()A.0,1-B.1-,0C.1,1-D.0,04.(21-22八年级下·江西赣州·期中)若考点二二次根式的性质与化简二次根式的化简方法:1)利用二次根式的基本性质进行化简;2)利用积的算术平方根的性质和商的算术平方根的性质进行化简.a =•(≥0,≥0)(≥0,>0)化简二次根式的步骤:1)把被开方数分解因式;2)利用积的算术平方根的性质,把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【考试题型5】利用二次根式的性质化简【类型一】数形结合法1.(22-23八年级下·四川绵阳·阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简2a b b c --+.【答案】a-【分析】本题考查了数轴的定义、二次根式的运算、绝对值运算.观察数轴可得0c b a <<<,从而得到0,0,0a b c a b c ->-<+<,再根据二次根式的运算、绝对值运算计算即可.【详解】解:观察数轴得:0c b a <<<,2.(23-24八年级上·重庆万州·阶段练习)已知实数x 、y 、z 在数轴上的对应点如图所示:(1)若5x =-,y =x 对应的点与z 对应的点恰好关于y 对应的点对称,求z 的值.(2)2+3.(23-24八年级上·湖北襄阳·开学考试)已知实数x ,y ,z 在数轴上的对应点如图所示,试化简:.【类型二】估值法方法简介:先运用二次根式的运算法则化简,再将最后的化简结果化成根式再确定取值范围.1.(2023·重庆·(最接近的整数是()A .7B .8C .9D .10A .5m <-B .54m -<<-C .43m -<<-D .3m >-3.(23-24九年级上·四川宜宾·阶段练习)若a ,则a 的值所在的范围为()A .2a ≥B .2a >C .12a <<D .01a <<【类型三】公式法方法简介:根据题目已知条件,通过变形、凑元等方法,凑成可用乘法公式,快速求解.1.(23-24九年级上·河南周口·阶段练习)已知2M=,2N,则M与N的关系为()A.相等B.绝对值相等C.互为相反数D.互为倒数2.(23-24八年级上·云南文山·阶段练习)计算题:;(2)【类型四】换元法方法简介:根据已知条件,利用未知变量替换有规律表达式,寻找规律,快速求解.1.(19-20八年级上·福建泉州·期中)若ab=1,我们称a与b1与1互为倒数:方法一:∵)22111211+-=-=-=1+1互为倒数.()2211111211⋅--====--111互为倒数.(1)互为倒数;(2)若()21x x -=,求21x x ⎛⎫- ⎪⎝⎭的值;(3)利用“换元法”求((101022⨯的值.=1.【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质是,选择合适的解题途径,往往能事半功倍.【类型五】拆项法【类型六】整体代入法方法简介:由已知条件,通过加减乘除运算,得到与求解表达式相关的表达数值,整体代入.1.(23-24八年级下·云南昭通·期中)已知x =2(8x x -+的值.2.(23-24八年级下·海南省直辖县级单位·期中)已知33a b ==-求下列各式的值:(1)a b +和ab ;(2)22a ab b ++.22(1)223x xy y ++(2)x y y x +【类型七】因式分解法【类型八】配方法1.(23-24八年级下·北京·期中)阅读材料:材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)1===-.材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.如:(2222311x x x++=+++=+,(20x+≥,(211x∴+≥,即231x++≥.23x∴++的最小值为1.阅读上述材料解决下面问题:_______=______;(2)求211x++的最值;(3)2-2.阅读材料:材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)根号,1材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.如:2222321(x 1x x x ++=+++=+∵2(0x ≥,∴2(11x ++≥,即231x ++≥∴23x ++的最小值为1阅读上述材料解决下面问题:(1=,=;(2)求211x ++的最值;(3)已知x =221(41)54x y xy -++-的最值.【类型九】辅元法【类型十】先判断后化解解题的关键.【考试题型6】分母有理化1.(新疆维吾尔自治区克孜勒苏柯尔克孜自治州2023-2024学年八年级下学期4月期中考试数学试题)在进样的式子,这样的式子我们可以将其进一步化简:行二次根式化简时,我们有时会碰上如1==;====.以上这种化简的方法叫做分母有理化,通过观察请利用分母有理化解答下列问题:(1)利用你观察到的规律,化简L(2)2.(23-24八年级下·山东济宁·期中)【阅读材料】(材料一)细心观察图形,认真分析各式,总结其中蕴含的规律.22212OA =+=,112S =(1S 是12RtA A O △的面积);22313OA =+=,22S =(2S 是23Rt A A O △的面积);22414OA =+=,32S =(3S 是34Rt A A O △的面积);.==【问题解决】利用你总结的规律,解答下面的问题:(1)填空:100S =_________,11OA =_________;(2)求11111S S S S S S S S S S +++++++++的值.3.(23-24七年级下·上海嘉定·期中)阅读下列解题过程:1⨯-()()221⨯===-请回答下列问题:(1)=______()2n≥.(2)利用上面所提供的解法,请化简:+(3)模仿上面所提供的解法,试一试化简:+考点三二次根式的运算乘法法则:两个二次根式相乘,把被开方数相乘,根指数不变.即:a =•(≥0,≥0).除法法则:=加减法法则:先把各个二次根式化为最简二次根式后,再将被开方数相同的二次根式合并.【口诀】一化、二找、三合并.分母有理化:通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程.【分母有理化方法】==2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分.==混合运算顺序:先乘方、再乘除,最后加减,有括号的先算括号里的(或先去掉括号).【考试题型7】二次根式的乘除运算1.(2024·陕西西安·三模)计算:)()02252π---2.(23-24八年级下·安徽铜陵·00)b ⎛÷⨯>> ,3.(23-24八年级下·全国·课后作业)计算:(1)÷;()0,0x y ⎫÷>>⎪⎪⎭.1.(23-24八年级下·吉林松原·期中)计算:((-.2.(23-24八年级下·广东阳江·期中)已知b=-,求22a=+,11a b+的值.3.(23-24八年级下·北京海淀·这个数叫做黄金分割数,著名数学家华罗庚优选法中就应用了黄金分割数.设a=b=(1)直接写出a b+和ab的值:a b+=______,ab=______;(2)求1111sa b=+的值.2.(23-24九年级下·山东烟台·期中)计算:(2)3.(23-24八年级下·辽宁营口·期中)(1)先化简,再求值:111a a -⎛⎫-÷⎪--⎝⎭,其中,2a =.1.(23-24八年级下·浙江金华·的计算,将分母转化为有理数,这就是“分母有理化()22==;()()2232++====+--.类似地,将分子转化为有理数,就称为“分子有理化21===()222111+-==.根据上述知识,请你解答下列问题:(1)(2)的大小,并说明理由.2.(23-24八年级下·福建福州·期中)如图,正方形A,B的面积分别为25cm和27cm,现将正方形A的边长分别增加2cm和3cm得到矩形甲;将正方形B的边长都增加2cm得到一个新的正方形乙,请通过计算比较甲、乙两个图形的面积的大小.【答案】矩形甲的面积小于矩形乙的面积.【分析】此题考查了二次根式混合运算的应用,根据题意表示出矩形甲和乙的面积,然后相减得到3.(23-24八年级下·江苏扬州·阶段练习)观察下列等式:1==-;==;==;……像)221-=()0a a =≥,)()1110b b -=-≥,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.11,与-答下列问题:(1)化简:(2)=___________(n为正整数).(3)计算:)1+ =___________;(4)已知a==b试比较a、b的大小,则a___________b.(填“<”“>”或“=”)1.(23-24八年级下·甘肃庆阳·期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛出的物体下落的时间t(单位:s)和高度h(单位:m)近似满足t=(不考虑风速的影响).(1)从30m高处抛下的物体落地所需的时间1t=s;从60m高处抛下的物体落地所需的时间2t=s(2)2t是1t的多少倍?(3)若从高空抛下的物体经过4s落地,则该物体下落的高度是多少?2.(23-24八年级下·江西宜春·阶段练习)有一块长方形木板,木工师傅采用如图所示的方式,在木板上截出面积分别为218dm 和232dm 的两块正方形木板.(1)截出的两块正方形木板的边长分别为______dm ,______dm ;(2)求剩余木板的面积;(3)如果木工师傅想从剩余的木板中截出长为1.5dm 、宽为1.2dm 的长方形木条,最多能截出______个这样的木条. 1.414≈)3.(23-24八年级下·广东东莞·期中)小乐是一个善于思考的学生,学习完“二次根式”和“勾股定理”后,他发现可以有多种方法求三角形的面积,以下是他的数学笔记,请认真阅读并完成任务,的面积;(1)请根据思路1的公式,求ABC(2)请你结合思路2,在如图所示的网格中(正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点),完成下列任务,,要求三个顶点都在格点上;①画出ABC面积的计算过程.②结合图形,写出ABC②过点A 作AD CB ⊥∴4.(23-24八年级下·广西南宁·期中)安全问题,时刻警醒.高空坠物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.经过查阅相关资料,小南同学得到高空坠物下落的时间t (单位:s )和高度h (单位:m )近似满足公式t 10N /kg g ≈)(1)求从45m 高空抛物到落地的时间;(2)已知高空拋物动能(单位:J )10=(单位:N /kg )⨯物体质量(单位:kg )⨯高度(单位:m ),某质量为0.2kg 的玩具在高空被抛出后经过4s 后落在地上,根据以上信息,小南判断这个玩具产生的动能会伤害到楼下的行人,请通过计算说明小南的判断是否正确.(注:伤害无防护人体只需要65J 的动能)5.(23-24八年级下·安徽铜陵·期中)铜陵市各小区都有“禁止高空抛物”的宣传标语,高空抛物极其危险,是我们必须杜绝的行为.据研究,从高度为h(单位:m)的高空抛出的物体下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响).(1)从50m高空抛出的物体从抛出到落地所需时间1t,从100m高空抛出的物体从抛出到落地所需时间2t,那么2t是1t的多少倍?(2)从足够高的高空抛出物体,经过1.5s,所抛物体下落的高度是多少?6.(23-24八年级下·湖北孝感·期中)学习完《二次根式》后,聪聪发现了下面这类有趣味的试题,请你根据他的探索过程,解答下列问题:(1)具体运算,发现规律:131711122236=+==+=⨯⨯11313412=+=⨯,…计算:=(2)观察归纳,写出结论=(1n ≥且n 为正整数)(3)灵活运用,提升能力请利用你所发现的规律,。

(完整word版)二次根式知识点复习,文档

(完整word版)二次根式知识点复习,文档

二次根式复习【知识回忆】1. 二次根式: 式子 a 〔 a ≥ 0〕叫做二次根式。

2. 最简二次根式: 必定同时满足以下条件:⑴被开方数中 不含开方开的尽的因数或因式 ; ⑵被开方数中 不含分母 ; ⑶分母中 不含根式 。

3. 同类二次根式:二次根式化成最简二次根式后,假设被开方数相同,那么这几个二次根式就是同类二次根式。

4. 二次根式的性质:〔1〕〔2〔 a ≥ 0〕;〔2〕a 〕 = a 2aa 5. 二次根式的运算: ⑴二次根式的加减运算:先把二次根式化成最简二次根式,尔后合并同类二次根式即可。

⑵二次根式的乘除运算:a 〔 a >0〕0 〔 a =0〕;a 〔 a < 0〕① ab =a ?b 〔 a ≥ 0,b ≥ 0〕;②aaba 0,b 0b【例题讲解】例 1 计算:〔1〕 (3)2 ;〔2〕 (2 ) 2 ; 〔3〕 ( a b )2〔a+b ≥ 0〕3解析:依照二次根式的性质可直接获取结论。

例 2 计算:⑴6·15⑵ 1 ·24⑶ a 3 · ab 〔 a ≥ 0,b ≥ 0〕2解析:本例先利用二次根式的乘法法那么计算, 再利用积的算术平方根的意义进行化简得出计算结果。

例 3计算:〔1〕32+23-22+3〔 2〕12 +18 - 8 -32〔 3〕40 -1 +10510【基础训练】1.化简:〔 1〕72____ ;〔2〕252242___ __;〔3〕612 18 ____;〔4〕75x3 y2 (x0, y0) ____;〔5〕204_______ 。

2.(08 ,安徽 ) 化简42=_________。

3. 〔 08,武汉〕计算 4 的结果是A .2B.± 2C. -2D. 44. 化简:〔1〕〔 08,泰安〕9 的结果是;〔 2〕〔 08,南京〕12 3 的结果是;〔3〕(08 ,宁夏 ) 528 =;〔 4〕〔 08,黄冈〕 5 x -2x =_____ _;5.〔 08,重庆〕计算82的结果是A、 6B、 6C、 2D、 26.〔 08,广州〕 3 的倒数是。

(完整版)二次根式知识点归纳及题型总结精华版

(完整版)二次根式知识点归纳及题型总结精华版

二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.;2.;3.;4.积的算术平方根的性质:;5. 商的算术平方根的性质:.6.假设,那么.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混杂运算(1) 明确运算的序次,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2) 整式、分式中的运算律、运算法那么及乘法公式在二次根式的混杂运算中也同样适用.一. 利用二次根式的双重非负性来解题〔a0 〔a≥0〕,即一个非负数的算术平方根是一个非负数。

〕1.〕。

A、3;B、x ;C、x21;D、x1以下各式中必然是二次根式的是〔2.等式(x 1)2=1- x 成立的条件是 _____________ .3.当 x____________ 时,二次根式2x 3 有意义.4.x 取何值时,以下各式在实数范围内有意义。

〔 1〕〔 2〕1〔3〕5x 2 x1x4〔 4〕假设x( x1)x x1,那么 x 的取值范围是〔 5〕假设x3x3,那么 x 的取值范围是。

x1x16.假设3m 1 有意义,那么m能取的最小整数值是;假设 20m 是一个正整数,那么正整数m的最小值是________.7.当 x 为何整数时,10x11有最小整数值,这个最小整数值为。

8. 假设2004 a a2005a ,那么a2004 2=_____________;假设y x33x 4 ,那么x y9.设 m、n 满足n m299m22mn =。

m 3,那么10. 假设三角形的三边a、 b、 c 满足a24a 4 b 3 =0,那么第三边c的取值范围是11. 假设|4x8 |x y m0 ,且 y 0 时,那么〔〕 A 、0m1 B 、m2C、m 2 D、 m 2利用二次根式的性质2a(a b)(即一个数的平方的算术平方根等于这个数的绝对值)来解题二. a =|a|=0(a0)a(a0)1.x33x2=-x x 3 ,那么〔〕 A.x≤0 B. x≤- 3C. x≥- 3 D.- 3≤x≤ 02.. a<b,化简二次根式 a 3b 的正确结果是〔〕A.a ab B .a ab C. a ab D .a ab3.假设化简 | 1-x |-28x16 的结果为2x-5 那么〔〕 A 、 x 为任意实数B、1≤ x≤ 4C、 x≥1 D 、x≤ 4 x4. a, b, c 为三角形的三边,那么(a b c)2(b c a) 2(b c a) 2=5.当 -3<x<5 时,化简26921025 =。

专题02 二次根式综合(压轴33题10个考点)(解析版)

专题02 二次根式综合(压轴33题10个考点)(解析版)

专题02二次根式综合(压轴33题10个考点)一.二次根式的定义(共1小题)1.若是整数,则正整数n的最小值是51.【答案】51.【解答】解:∵204=4×51,∴,∴,∵是整数,且n是整数,∴n的最小值为:51.故答案为:51.二.二次根式有意义的条件(共3小题)2.使式子有意义的x的取值范围是()A.x≥﹣1B.﹣1≤x≤2C.x≤2D.﹣1<x<2【答案】B【解答】解:根据题意,得,解得,﹣1≤x≤2;故选:B.3.已知|2004﹣a|+=a,则a﹣20042=2005.【答案】2005.【解答】解:∵有意义,∴a﹣2005≥0,解得:a≥2005,∴|2004﹣a|+=a﹣2004+=a,故=2004,∴a﹣2005=20042,∴a﹣20042=a﹣(a﹣2005)=a﹣a+2005=2005.故答案为:2005.4.已知,则x2022y2023=﹣.【答案】.【解答】解:∵,即,解得:,∴x=2,∴,∵x2022y2023=(xy)2022•y,将x=2,代入,∴x2022y2023=(xy)2022•y=[2×(﹣)]2022×(﹣)=(﹣1)2022×(﹣)=﹣.故答案为:.三.二次根式的性质与化简(共8小题)5.已知x<1,则化简的结果是()A.x﹣1B.x+1C.﹣x﹣1D.1﹣x【答案】D【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选:D.6.实数a,b表示的点在数轴上的位置如图,则将化简的结果是()A.4B.2a C.2b D.2a﹣2b【答案】A【解答】解:由数轴知:﹣2<a<﹣1,1<b<2,a<b,∴a+2>0,b﹣2<0,a﹣b<0.∴=|a+2|+|b﹣2|+|a﹣b|=a+2+2﹣b+b﹣a=4.故选:A.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.【答案】C【解答】解:由图中规律知,前(n﹣1)行的数据个数为2+4+6+…+2(n﹣1)=n(n ﹣1),所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数的被开方数是n(n﹣1)+n﹣3=n2﹣3,所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是.故选:C.8.已知T1===,T2===,T3===,…T n=,其中n为正整数.设S n=T1+T2+T3+…+T n,则S2021值是()A.2021B.2022C.2021D.2022【答案】A【解答】解:由T1、T2、T3…的规律可得,T1==1+(1﹣),T2==1+(﹣),T3==1+(﹣),……T2021==1+(﹣),所以S2021=T1+T2+T3+…+T2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+=2021,故选:A.9.已知a≠0,b≠0且a<b,化简的结果是﹣a.【答案】﹣a.【解答】解:由题意:﹣a3b≥0,即ab≤0,∵a<b,∴a<0<b,所以原式=|a|=﹣a,故答案为:﹣a.10.已知|x+2|+|1﹣x|=9﹣﹣,则x+y的最小值为﹣3.【答案】﹣3.【解答】解:∵|x+2|+|1﹣x|=9﹣﹣,∴|x+2|+|x﹣1|+|y+1|+|y﹣5|=9,∵|x+2|+|x﹣1|可理解为在数轴上,数x的对应的点到﹣2和1两点的距离之和;|y+1|+|y ﹣5|可理解为在数轴上,数y的对应的点到﹣1和5两点的距离之和,∴当﹣2≤x≤1,|x+2|+|x﹣1|的最小值为3;当﹣1≤y≤5时,|y+1|+|y﹣5|的最小值为6,∴x的范围为﹣2≤x≤1,y的范围为﹣1≤y≤5,当x=﹣2,y=﹣1时,x+y的值最小,最小值为﹣3.故答案为﹣3.11.若,则m的取值范围是m≤4.【答案】见试题解答内容【解答】解:,得4﹣m≥0,解得m≤4,故答案为:m≤4.12.若x<2,化简|﹣x|的正确结果是2x+2或﹣4x+2.【答案】2x+2或﹣4x+2.【解答】解:当0≤x<2时,原式=|x﹣2|+3x=2﹣x+3x=2x+2;当x<0时,原式=|x﹣2|﹣3x=2﹣x﹣3x=﹣4x+2.故答案为:2x+2或﹣4x+2.四.二次根式的乘除法(共4小题)13.使式子成立的条件是()A.a≥5B.a>5C.0≤a≤5D.0≤a<5【答案】B【解答】解:由题意得:,解得:a>5.故选:B.14.“分母有理化”是我们常用的一种化简的方法,如:==7+ 4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3【答案】D【解答】解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.15.若a,b为有理数且满足,则a+b=4.【答案】1.【解答】解:∵,∴=.∴a=3,b=1.∴a+b=3+1=4.故答案为:4.16.阅读下面的解题过程体会如何发现隐含条件并回答下面的问题化简:.解:隐含条件1﹣3x≥0,解得:.∴1﹣x>0.∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x.【启发应用】(1)按照上面的解法,试化简.【类比迁移】(2)实数a,b在数轴上的位置如图所示,化简:.(3)已知a,b,c为A B C的三边长.化简:.【答案】(1)1;(2)﹣a﹣2b;(3)2a+2b+2c.【解答】解:(1)隐含条件2﹣x≥0,解得:x≤2,∴x﹣3<0,∴原式=(3﹣x)﹣(2﹣x)=3﹣x﹣2+x=1;(2)观察数轴得隐含条件:a<0,b>0,|a|>|b|,∴a+b<0,b﹣a>0,∴原式=﹣a﹣a﹣b﹣b+a=﹣a﹣2b;(3)由三角形的三边关系可得隐含条件:a+b+c>0,a﹣b<c,b﹣a<c,c﹣b<a,∴a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,∴原式=(a+b+c)+(﹣a+b+c)+(﹣b+a+c)+(﹣c+b+a)=a+b+c﹣a+b+c﹣b+a+c﹣c+b+a=2a+2b+2c.五.分母有理化(共1小题)17.阅读材料:我们已经知道,形如的无理数的化简要借助平方差公式:例如:.下面我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样=m,,那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即=7,∴.模型应用1:利用上述解决问题的方法化简下列各式:(1);(2);模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(结果化成最简).【答案】(1)1+;(2)2﹣;(3)2﹣2.【解答】解:(1)这里m=6,n=5,由于1+5=6,1×5=5,即12+()2=6,1×=,所以:===1+;(2)首先把化为,这里m=13,n=40,由于5+8=13,5×8=40,即()2+()2=13,×=,所以====﹣=2﹣;(3)在Rt△ABC中,由勾股定理得,AC2+BC2=AB2,所以,所以,.六.同类二次根式(共1小题)18.已知最简二次根式与是同类二次根式,则a的值为()A.16B.0C.2D.不确定【答案】B【解答】解:∵=3,而最简二次根式与是同类二次根式,∴a+2=2,解得a=0.故选:B.七.二次根式的加减法(共1小题)19.若,则x﹣x2的值为﹣6.【答案】﹣6.【解答】解:由题意得,x﹣2≥0.∴x≥2.∴1﹣x<0.∴.∴x﹣1+=x.∴.∴x=3.∴x﹣x2=3﹣9=﹣6.故答案为:﹣6.八.二次根式的混合运算(共4小题)20.已知,,则2y﹣3x的平方根为±4.【答案】±4.【解答】解:∵,∴96﹣x≥0,∴x≤96,∴100﹣x+96﹣x=200,解得x=﹣2,∵,∴m+23≥0,m﹣2≥0,2﹣m≥0,解得m=2,∴y=5,∴±=±=±4,故答案为:±4.21.计算的结果是+.【答案】+.【解答】解:原式=[(﹣)(+)]2022×(+)=(2﹣3)2022×(+)=+.故答案为:+.22.已知a=,b=.(1)求a+b的值;(2)设m是a小数部分,n是b整数部分,求代数式4m2+4mn+n2的值.【答案】(1)2;(2)20.【解答】解:(1)a===﹣2,b===+2.a+b=﹣2++2=2,(2)∵2<<3,∴0<﹣2<1,4<+2<5,∴m=﹣2,n=4,∴4m2+4mn+n2=(2m+n)2=(2﹣4+4)2=20.23.先阅读下面的材料,再解答下列问题.∵,∴.特别地,,∴.这种变形叫做将分母有理化.利用上述思路方法计算下列各式:(1);(2).【答案】(1)2020;(2)1.【解答】解:(1)===2021﹣1=2020;(2)====1.九.二次根式的化简求值(共8小题)24.已知,则代数式x2﹣2x﹣6的值是()A.B.﹣10C.﹣2D.【答案】C【解答】解:∵,∴x﹣1=,∴x2﹣2x﹣6=(x﹣1)2﹣7=()2﹣7=5﹣7=﹣2,故选:C.25.已知,,则a与b的关系是()A.a=b B.ab=1C.ab=﹣1D.a+b=0【答案】D【解答】解:a===3﹣=﹣(﹣3),A.a=﹣b,故本选项不符合题意;B.ab=(3﹣)×(﹣3)=﹣(﹣3)2=﹣(5﹣6+3)=﹣5+6﹣3=﹣8+6,故本选项不符合题意;C.ab=﹣8+6,故本选项不符合题意;D.a+b=3﹣+﹣3=0,故本选项符合题意.故选:D.26.若x2+y2=1,则++的值为()A.0B.1C.2D.3【答案】D【解答】解:∵x2+y2=1,∴﹣1≤x≤1,﹣1≤y≤1,∵==,x+1≥0,y﹣2<0,(x+1)(y﹣2)≥0,∴x+1=0,∴x=﹣1,∴y=0,∴++=2+1+0=3.故选:D.27.若a=2+,b=2﹣,则=8.【答案】8.【解答】解:∵a=2+,b=2﹣,∴a2=(2+√5)2=4+4+5=9+4,b2=(2﹣)2=4﹣4+5=9﹣4,ab=(2+)(2﹣)=4﹣5=﹣1.﹣===8.故答案为:8.28.若m=,则m3﹣m2﹣2017m+2015=4030.【答案】见试题解答内容【解答】解:∵m====,∴原式=m2(m﹣1)﹣2017m+2015=(+1)2×﹣2017(+1)+2015=(2017+2)﹣2017﹣2017+2015=2017+2×2016﹣2017﹣2017+2015=4032﹣2=403029.已知a=2+,b=,则a2﹣3ab+b2的值为11.【答案】11.【解答】解:当a=2+,b=时,a2﹣3ab+b2,=﹣+,=,=,=11.30.某同学在解决问题:已知,求2a2﹣8a+1的值.他是这样分析与求解的:先将a进行分母有理化,过程如下,,∴,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据上述分析过程,解决如下问题:(1)若,请将a进行分母有理化;(2)在(1)的条件下,求a2﹣2a的值;(3)在(1)的条件下,求2a3﹣4a2﹣1的值.【答案】(1);(2)1;(3).【解答】解:(1)a===;(2)∵,∴(a﹣1)2=2,(a﹣1)2=a2﹣2a+1,∴a2﹣2a+1=2,∴a2﹣2a=1;(3)根据(2)可知,a2﹣2a=1,∴2a3﹣4a2﹣1=2a(a2﹣2a)﹣1=2a﹣1,当a=时,原式=2()﹣1=2.31.小芳在解决问题:已知a=,求2a2﹣8a+1的值.他是这样分析与解的:a==2﹣,∴a=2﹣,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小芳的分析过程,解决如下问题:(1)计算:.(2)若a=.①化简a,求4a2﹣8a﹣1的值;②求a3﹣3a2+a+1的值.【答案】(1)9;(2)①a=+1,4a2﹣8a﹣1的值是3;②0.【解答】解:(1)=﹣1+++…+=﹣1+=﹣1+10=9;(2)①a====+1,∴a=+1,∴(a﹣1)2=()2=2,∴a2﹣2a+1=2,∴a2﹣2a=1,∴4a2﹣8a﹣1=4(a2﹣2a)﹣1=4×1﹣1=4﹣1=3;②由①知a2﹣2a=1,∴a3﹣3a2+a+1=a(a2﹣2a)﹣(a2﹣2a)﹣a+1=a×1﹣1﹣a+1=a﹣1﹣a+1=0.十.二次根式的应用(共2小题)32.俊俊和霞霞共同合作将一张长为,宽为1的矩形纸片进行裁剪(共裁剪三次),裁剪出来的图形刚好是4个等腰三角形(无纸张剩余).霞霞说:“有一个等腰三角形的腰长是1”;俊俊说:“有一个等腰三角形的腰长是﹣1”;那么另外两个等腰三角形的腰长可能是1或或2﹣.【答案】1或或2﹣.【解答】解:如图1方式裁剪,另两个等腰三角形腰长是或;如图2方式裁剪,另两个等腰三角形腰长都是1.故答案为:1或或2﹣.33.古希腊几何学家海伦通过证明发现:如果一个三角形的三边长分别为a,b,c.记,那么三角形的面积为,俗称海伦公式,若在△ABC中,AB=3,BC=6,AC=7,则用海伦公式求得△ABC的面积为.【答案】【解答】解:由题意可得:a=6,b=7,c=3,∴,∴===,故答案为:.。

16章.二次根式.题型分类集.(含答案)

16章.二次根式.题型分类集.(含答案)

第十六章二次根式(一)【二次根式的性质】1.若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥3 B.x>3 C.x<3 D.x≤32.若代数式有意义,则x的取值范围是()A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠2 3.如果代数式有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣24.对于二次根式的性质=中,关于a、b的取值正确的说法是()A.a≥0,b≥0B.a≥0,b>0C.a≤0,b≤0D.a≤0,b<0 5.若式子在实数范围内有意义,则x的取值范围是()A.x>﹣1B.x≥﹣1且x≠0C.x>﹣1且x≠0D.x≠0y==_______.6.已知37.已知=0,那么(a+b)2015的值为()A.1 B.﹣1 C.0 D.8.已知+=0,则x的取值范围为()A.x≤2 B.x<2 C.x≥2 D.x>29.已知=5﹣x,则x的取值范围是.10.下列各式中,正确的是()B.C.D.A.(二)【最简二次根式】1. 下列根式为最简二次根式的是( ) A .2B .C .D .2. 下列根式中,是最简二次根式的是( ) A .B .C .D .3. 下列根式中,最简二次根式为( )A.x 4B.42-xC.4xD.()24+x4. 在式子、、、中,是最简二次根式的有( )A .1个B .2个C .3个D .4个(三)【二次根式的化简】 1. 将化为最简二次根式,其结果是( ) A .B .C .D .2. 当x ≤0时,化简|1﹣x |﹣的结果是 .3. 已知a 、b 、c 是△ABC 三边的长,则化简﹣|a +b ﹣c |的结果为 .4. 当x <0时,化简的结果是( )A .x ﹣1B .1﹣xC .(x ﹣1)2D .x +15. 当m <0时,化简的结果是 .6. 当a >0时,化简的结果是 .7. 当ab <0时,化简的结果是( ) A .﹣aB .aC .﹣aD .a8. 若ab <0,化简二次根式的结果是( )A .B .C .D .9. 把中根号外的(a ﹣1)移入根号内得 .10. 已知n 是正整数,是整数,则n 的最小值为 .(四)【同类二次根式】1.以下二次根式:;是同类二次根式的是()A. ①②B. ②③C. ①④D. ③④2.是同类二次根式,则a的值为_______.3.下列各式中,能与合并的是()A.B.C.D.4.最简二次根式与是同类二次根式,求3a﹣b的值.(五)【二次根式的运算】1.与结果相同的是()A.3﹣2+1B.3+2﹣1C.3+2+1D.3﹣2﹣12.下列计算正确的是()A.=﹣2B.+=C.D.=±33.下列计算正确的是()A.3+4=7B.×=C.=3D.4.下列运算错误的是()A.B.C.D.5.下列运算错误的是()A.=3B.3×2=6C.(+1)2=6 D.(+2)(﹣2)=36.计算的值是.7.估计的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间8. 计算﹣2的结果是 .9. 计算:= .10. 计算(+)(﹣)= . 11. 计算:(﹣1)•=12. 计算=13. 计算 (1); (2);(3). (4)2(23)6-+(5)(1+)(﹣)﹣(2﹣1)2. (6)(2+)2﹣(+)(﹣);(7)011238(1)3π-⨯+++(8).(9)(5+2)2 015(5-2)2 016. (10)解方程:(3+1)(3-1)x =72-18.1. 若x =+1,则代数式x 2﹣2x +2的值为( )A .7B .4C .3D .3﹣22. 若x +y =3+2,x ﹣y =3﹣2,则的值为( ) A .4B .1C .6D .3﹣23. 已知1x =+1x =-22x y xy +的值为______.4. 已知x 1=3+2,x 2=3-2,则x 21+x 22等于5. 已知:a =()﹣1+(﹣)0,b =(+)(﹣),则= .6. 已知x =(+),y =(﹣),求下列各式的值:(1)x 2﹣xy +y 2; (2)+.7. 已知1a =,化简求值22112a a a a a -+-+-8. (1)已知:x =,求x 2﹣x +1的值.(2)已知:y =,求代数式的值.①与数轴综合1.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.2a﹣b B.﹣2a+b C.﹣b D.b2.如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B的对称点为点C,则点C所对应的实数为()A.B.1+C.2+D.+13.如图,数轴上表示1、的对应点分别为A、B,点C为点B关于点A的对称点,设点C所表示的数为x.(1)写出实数x的值;(2)求(x+)2的值.②解答题1.定义:若两个二次根式a、b满足a•b=c,且c是有理数,则称a与b是关于c的共轭二次根式.(1)若a与是关于4的共轭二次根式,则a=.(2)若2+与4+m是关于2的共轭二次根式,求m的值.2.已知m,n是两个连续的正整数,m<n,a=mn,求证:是定值且为奇数.1. 观察下列一组等式,然后解答后面的问题 (+1)(﹣1)=1, (+)(﹣)=1, (+)(﹣)=1, (+)(﹣)=1……(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2)利用上面的规律,计算:+++…+(3)请利用上面的规律,比较﹣与﹣的大小.2. 观察下列分母有理化的计算1===-(1) 请用n 表示你所发现的规律____________________.(2) )...1+1.如图,从一个大正方形中裁去面积为18cm2和32cm2的两个小正方形,则剩余部分(阴影部分)的面积等于()A.98cm2B.60cm2C.48cm2D.38cm22.某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为8米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为+1米,宽为﹣1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)3.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响).(1)求从40m高空抛物到落地时间;(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?你能得到什么启示?(注:杀伤无防护人体只需要65J的动能)1.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:若设a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均为整数),则有a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)若a+b=(m+n)2,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a=,b=;(2)若a+6=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:+.第十六章二次根式(答案)(一)【二次根式的性质】1.若使二次根式在实数范围内有意义,则x的取值范围是(A)A.x≥3 B.x>3 C.x<3 D.x≤32.若代数式有意义,则x的取值范围是(D)A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠2 3.如果代数式有意义,则x的取值范围是(B)A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣24.对于二次根式的性质=中,关于a、b的取值正确的说法是(B)A.a≥0,b≥0B.a≥0,b>0C.a≤0,b≤0D.a≤0,b<0 5.若式子在实数范围内有意义,则x的取值范围是(C)A.x>﹣1B.x≥﹣1且x≠0C.x>﹣1且x≠0D.x≠0y==____2√3___.6.已知37.已知=0,那么(a+b)2015的值为(B)A.1 B.﹣1 C.0 D.8.已知+=0,则x的取值范围为(A)A.x≤2 B.x<2 C.x≥2 D.x>29.已知=5﹣x,则x的取值范围是x≤5 .10.下列各式中,正确的是(B)B.C.D.B.(二)【最简二次根式】1. 下列根式为最简二次根式的是( A ) A .2B .C .D .2. 下列根式中,是最简二次根式的是( D ) A .B .C .D .3. 下列根式中,最简二次根式为( B )A.x 4B.42-xC.4xD.()24+x4. 在式子、、、中,是最简二次根式的有( B )A .1个B .2个C .3个D .4个(三)【二次根式的化简】 1. 将化为最简二次根式,其结果是( D ) A .B .C .D .2. 当x ≤0时,化简|1﹣x |﹣的结果是 1 .3. 已知a 、b 、c 是△ABC 三边的长,则化简﹣|a +b ﹣c |的结果为 2c ﹣2a .4. 当x <0时,化简的结果是( B )A .x ﹣1B .1﹣xC .(x ﹣1)2D .x +15. 当m <0时,化简的结果是 1 .6. 当a >0时,化简的结果是 ﹣ab .7. 当ab <0时,化简的结果是( A ) A .﹣aB .aC .﹣aD .a8. 若ab <0,化简二次根式的结果是( D )A .B .C .D .9. 把中根号外的(a ﹣1)移入根号内得.10. 已知n 是正整数,是整数,则n 的最小值为 14 .(四)【同类二次根式】1.以下二次根式:;是同类二次根式的是( C )A. ①②B. ②③C. ①④D. ③④2.是同类二次根式,则a的值为____3___.3.下列各式中,能与合并的是(D)A.B.C.D.4.最简二次根式与是同类二次根式,求3a﹣b的值.【解答】解:由最简二次根式与是同类二次根式,得,解得,则3a﹣b=2.(五)【二次根式的运算】1.与结果相同的是(A)A.3﹣2+1B.3+2﹣1C.3+2+1D.3﹣2﹣12.下列计算正确的是(C)A.=﹣2B.+=C.D.=±33.下列计算正确的是(C)A.3+4=7B.×=C.=3D.4.下列运算错误的是(A)A.B.C.D.5.下列运算错误的是(C)A.=3B.3×2=6C.(+1)2=6 D.(+2)(﹣2)=36.计算的值是 1 .7.估计的运算结果应在(C)A.1到2之间B.2到3之间C.3到4之间D.4到5之间8. 计算﹣2的结果是 2 .9. 计算:= 4 .10. 计算(+)(﹣)= 3 . 11. 计算:(﹣1)•= 112. 计算=13. 计算 (1); (2); (1)原式=2+﹣=; (2)原式=×÷=;(3). (4)2(23)6-+(3)原式=(8﹣9)÷(4)2=﹣1; (5)(1+)(﹣)﹣(2﹣1)2. (6)(2+)2﹣(+)(﹣);(5)原式=﹣+﹣3﹣13+4(6)原式 =20+4+3﹣(5﹣2) =4﹣2﹣13. =23+4﹣3 =20+4.(7)011238(1)3π-⨯+++(8).(7)1223++ (8)原式=1+++2﹣=3+.(9)(5+2)2 015(5-2)2 016. (10)解方程:(3+1)(3-1)x =72-18. (9)5-2 2x =62-32x =3 2. x =322.1. 若x =+1,则代数式x 2﹣2x +2的值为( C )A .7B .4C .3D .3﹣22. 若x +y =3+2,x ﹣y =3﹣2,则的值为( B ) A .4B .1C .6D .3﹣23. 已知1x =+1x =-22x y xy +的值为__34____.4. 已知x 1=3+2,x 2=3-2,则x 21+x 22等于 105. 已知:a =()﹣1+(﹣)0,b =(+)(﹣),则= 2 .6. 已知x =(+),y =(﹣),求下列各式的值:(1)x 2﹣xy +y 2; (2)+. 解:x =(+),y =(﹣), x +y =(+)+(﹣)=,xy =(+)×(﹣)=,(1)x 2﹣xy +y 2;=(x +y )2﹣3xy =()2﹣3×=;(2)+====12.7. 已知1a =,化简求值22112a a a a a -+-+- 11-a 338. (1)已知:x =,求x 2﹣x +1的值.(2)已知:y =,求代数式的值.【解答】解:(1)∵x ==+1, ∴x 2﹣x +1=(+1)2﹣(+1)+1=4+2﹣﹣1+1=4+; (2)∵1﹣8x ≥0,8x ﹣1≥0,∴x =,则y =, ∴=﹣==1.①与数轴综合1.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是( A )A.2a﹣b B.﹣2a+b C.﹣b D.b2.如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B的对称点为点C,则点C所对应的实数为(A)B.B.1+C.2+D.+13.如图,数轴上表示1、的对应点分别为A、B,点C为点B关于点A的对称点,设点C所表示的数为x.(1)写出实数x的值;(2)求(x+)2的值.解:(1)由数轴上表示1、的对应点分别为A、B,点C为点B关于点A的对称点,得=1,解得,(1)当x=2﹣时,(x+)2=4.②解答题1.定义:若两个二次根式a、b满足a•b=c,且c是有理数,则称a与b是关于c的共轭二次根式.(1)若a与是关于4的共轭二次根式,则a=2.(2)若2+与4+m是关于2的共轭二次根式,求m的值.【解答】解:(1)∵a与是关于4的共轭二次根式,∴a=4,∴a==2,故答案为:2;(2)∵2+与4+m是关于2的共轭二次根式,∴(2+)(4+m)=2,∴4+m===4﹣2,∴m=﹣2.2.已知m,n是两个连续的正整数,m<n,a=mn,求证:是定值且为奇数.【解答】证明:∵m和n是两个连续的正整数,m<n,∴n=m+1,∴a=mn=m(m+1),∴===(m+1)﹣m =1,∴是定值且为奇数1.1. 观察下列一组等式,然后解答后面的问题 (+1)(﹣1)=1, (+)(﹣)=1, (+)(﹣)=1, (+)(﹣)=1……(1)观察以上规律,请写出第n 个等式: (+)(﹣)=1 (n 为正整数).(2)利用上面的规律,计算:+++…+(3)请利用上面的规律,比较﹣与﹣的大小. 【解答】解:(1)根据题意得:第n 个等式为(+)(﹣)=1;故答案为:(+)(﹣)=1;(2)原式=﹣1+﹣+…+﹣=﹣1=10﹣1=9;(3)﹣=,﹣=, ∵<,∴﹣>﹣.2. 观察下列分母有理化的计算1===-(3) 请用n 表示你所发现的规律____________________.(4) )...1+(1)n n nn -+=++111(2)20151.如图,从一个大正方形中裁去面积为18cm2和32cm2的两个小正方形,则剩余部分(阴影部分)的面积等于(C)A.98cm2B.60cm2C.48cm2D.38cm22.某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为8米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为+1米,宽为﹣1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)【解答】解:(1)长方形ABCD的周长=2×()=2(8+7)=16+14(米),答:长方形ABCD的周长是16+14(米),(2)通道的面积==56﹣(13﹣1)=56(平方米),购买地砖需要花费=6×(56)=336﹣72(元).答:购买地砖需要花费336﹣72元;3.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响).(1)求从40m高空抛物到落地时间;(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?你能得到什么启示?(注:杀伤无防护人体只需要65J的动能)【解答】解:(1)由题意知h=40m,t====2(s),(2)不正确,理由如下:当h2=80m时,t2===4(s),∵4≠2×2,∴不正确,(3)当t=6s时,6=,h=180m,鸡蛋产生的动能=10×0.05×180=90(J),启示:严禁高空抛物.1.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:若设a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均为整数),则有a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)若a+b=(m+n)2,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a=m2+7n2,b=2mn;(2)若a+6=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:+.【解答】解:(1)设a+b=(m+n)2=m2+7n2+2mn(其中a、b、m、n均为整数),则有a=m2+7n2,b=2mn;故答案为m2+7n2,2mn;(2)∵6=2mn,∴mn=3,∵a、m、n均为正整数,∴m=1,n=3或m=3,n=1,当m=1,n=3时,a=m2+3n2=1+3×9=28;当m=3,n=1时,a=m2+3n2=9+3×1=12;即a的值为为12或28;(3)设+=t,则t2=4﹣+4++2=8+2=8+2=8+2(﹣1)=6+2=(+1)2,∴t=+1.。

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。

2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。

3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。

4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。

5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。

6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。

知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

2) 注意每一步运算的算理。

3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。

2.二次根式的加减运算:先化简,再运算。

3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。

2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例题:1.下列各式中一定是二次根式的是()。

A。

$-3$;B。

$x$;C。

$x^2+1$;D。

$x-1$2.$x$取何值时,下列各式在实数范围内有意义。

1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式复习 一、基本知识点 1.二次根式的有关概念:
(1)形如 的 式子叫做二次根式. (即一个 的算术平方根叫做二次根式 二次根式有意义的条件:被开方数大于或等于零
(2)满足下列两个条件的二次根式,叫做最简二次根式:
①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式;
(3)几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。

2.二次根式的性质:
(1) 非负性
3.二次根式的运算: 二次根式乘法法则
二次根式除法法则
二次根式的加减: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (
3)合并同类二次根式。

Ps:类似于合并同类项,关键是把同类二次根式合并。

二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律)仍然适用
0()a ≥0 2(2)(0
)a = ≥ =
(0,0)a b = ≥ ≥
(0
0)
a b = ≥> (0,0)
a b = ≥≥ (0,0)a b = ≥>
常考题型:
题型一、形如: 若见到“a 为二次根式”或“a 有意义”,则马上可以得到 a≥0 例1、式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x <1 B .x ≥1 C .x ≤-1 D .x <-1 变式1、要使式子
有意义,则x 的取值范围是( ) A .x >0
B .x≥﹣2
C .x≥2
D .x≤2
变式2、若代数式
1
x
x -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且
变式3、式子
有意义的x 的取值范围是( )
A . x≥﹣且x≠1
B . x≠1
C .
D .
题型二、二次根式的运算(加减乘除)b a ab •=(a≥0,b≥0)b
a
b a =
(a≥0,b>0) 基础练习1、实数0.5的算术平方根等于( ).
A.2
B.2
C.
22 D.2
1
基础练习2、16的算术平方根是( ) A. 4±
B. 4
C. 2±
D. 2
例1、下列运算正确的是( )
A . x 6+x 2=x 3
B .
C .
(x+2y )2=x 2+2xy+4y 2
D .
例2、计算1
489
3
-的结果是( ) (A)3-. (B)3. (C)11
33
-
. (D)
11
33
. 例3、下列计算正确的是( )

4 B .
C . 2
=
D . 3
例4、下列各式计算正确的是( )
A . 3a 3+2a 2=5a 6
B .
C . a 4•a 2=a 8
D . (ab 2)3=ab 6
例5、化简)12(2-÷的结果是( )
A .122-
B .22-
C .21-
D .22+
例6、计算:(1)= .(23
272
= . 例7、已知:
420x x y -+
+=,求x-y=______
例8、2231210a a b b -+-+=,则221
||a b a
+
-=_____ 例9、若实数a 、b 满足042=-++b a ,则=b a 2
________.。

相关文档
最新文档