“含有一个量词的命题的否定”教案
命题的否定教案

命题的否定教案第一篇:命题的否定教案高一数学(上)拓展课课题命题的否定【教学目标】1.理解“命题的否定”的内涵,会写出给定命题的否定形式;2.经历命题的否定与否命题的辨析过程,建立命题的否定和补集之间联系;3.通过命题的否定的学习,运用联系的观点,逐步建立命题和集合之间的联系,学会运用辩证的观点分析问题、解决问题.【教学重点】掌握“命题的否定”的基本数学内涵【教学难点】辨析“命题的否定”和“否命题.【教学过程】:教学程序教学过程课前30个学生已阅读材料《命题的“否定”与“否命题”》(见附页),预习后的反馈练习情况如下:一、写出下列命题的否定形式,则x-2x+1≤01、若x≠1,则x-2x+1≤0.若x≠1正确答案:若x≠1,则x-2x+1>0.任意x∈R,x-x+预习情况反馈22221≥0成立.42正确答案:存在x∈R,使x-x+或者是:存在x∈R,x-x+21≥0不成立.41<0成立.43、5是10的约数且是15的约数.正确答案:5不是10的约数或不是15的约数.4、2+2=5或3<2.正确答案:2+2≠5且3≥2.二、写出命题“菱形的对角线互相垂直”的否命题与命题的否定,并判断真假.否命题:不是菱形的四边形对角线不互相垂直.假命题命题的否定:菱形的对角线不互相垂直.假命题通过学生反馈练习的正确率可以看出,大部分学生已基本掌握了一些简单命题的否定,说明学生的课前预习是较有效的.但同时学生们也提出了各种疑高一数学(上)拓展课惑,接下来,我们就学生提出的困惑一起来讨论,并完成例题.一、辨析:否命题与命题的否定1、否命题:一个命题的条件与结论分别是另一个命题的条件的否定与结论的否定,我们把这样两个命题叫做互否命题.其中一个叫原命题,另一个叫否命题.教材中否命题是针对“若p,则q”提出来的,所以否命题的形式是“若p,则q”.2、命题的否定:一个命题p经过使用逻辑联结词“非”,构成了一个命题“非p”称为命题的否定.简单地说,命题的否定就是对这个命题的结论进行否认.我们可联想到集合中的补集,若将命题P对应集合P,则命题“非P”为P对应的集合在全集U中的补集.因此我们可以用“补集”的观点理解、解决“命题的否定”.3、既然两个都是否定,区别在哪里?答:①否命题是将原命题的条件和结论都否定,而“命题的否定”是将结论做否定.②任何命题均有否定;而否命题仅针对命题“若P则q”提出来的.例1、写出下列命题的否定形式和否命题,并判定真假.(1)若x>y,则5x>5y(真命题)否定形式:若x>y,则5x≤5y.(假命题)否命题:若x≤y,则5x≤5y.(真命题)概念疑难辨析(2)15能被5整除.(真命题)否定形式:15不能被5整除.(假命题)否命题:不是15的数不能被5整除.(假命题)从中我们可以看出一个命题与它的否定形式是完全对立的.两者之间有且只有一个成立,即一真一假.而对于否命题,它是否成立和原命题是否成立没有直接关系,可以同真同假,亦可以一真一假.二、简单命题的否定总结1、常见的关键词的否定:词语是一定是全部都是大于词语的不大于(小于不是一定不是不全,不都不都是否定等于)词语且或至少有一个至少有n个至多有一个词语的或且一个也没有至多有n-1个至少有两个否定例2、写出下列语句的否定形式(1)a,b都是负数;(2)a、b、c中至多有一个是正数;(3)三角形两边之差小于第三边.(4)AB平行且等于CD(5)a=±2总结2、全称命题和特称命题的否定:高一数学(上)拓展课含有“一切”、“任意”、“所有”、“全部”、“都”、“任何”、“每一”等全称量词的命题称为全称命题.含有“存在”、“某个”、“一些”、“有些”、“有的”、“至少有一个”等特称量词的命题称为特称命题.例如:全称命题“任意x∈A,P(x)成立”,它的否定为:存在x∈A,P(x)不成立.特称命题“存在x∈A,P(x)成立”,它的否定为:任意x∈A,P(x)不成立.例3、写出下列命题的否定,并判断真假.(1)任意x∈R,x不是5x-12=0的根;假命题否定:存在x∈R,x是5x-12=0的根.真命题(2)存在x∈R,x>0;真命题否定:任意x∈R,x≤0.假命题(3)有些三角形是直角三角形.真命题否定:所有三角形都不是直角三角形.假命题例4、判断下列命题的否定是否正确,若不正确请改正.(1)不等式x-2<0的解是x<2 否定:不等式x-2≥0的解是x≥2(2)24既是3的倍数,也是8的倍数.否定:24既不是3的倍数,也不是8的倍数.(3)面积相等的三角形是全等三角形.否定:面积相等的三角形不是全等三角形.(4)所有能被2整除的整数都是偶数.否定:存在一个不能被2整除的整数是偶数.1、这节课你学到了一些什么?2、在写命题的否定时,你会注意些什么?例题分析讲解课堂小结布置作业完成跟进式练习:《命题的否定》第二篇:《含有一个量词的命题的否定》参考教案21.4.3 含有一个量词的命题的否定(一)教学目标 1.知识与技能目标(1)通过探究数学中一些实例,使学生归纳总结出含有一个量词的命题与它们的否定在形式上的变化规律.(2)通过例题和习题的教学,使学生能够根据含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定.2.过程与方法目标:使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力. 3.情感态度价值观通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.(二)教学重点与难点教学重点:通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律,会正确地对含有一个量词的命题进行否定.教学难点:正确地对含有一个量词的命题进行否定.教具准备:与教材内容相关的资料。
逻辑关系与集合:第9讲含有一个量词的命题的否定

含有一个量词的命题的否定[学习目标]1.通过探究数学中一些实例,使学生归纳总结出含有一个量词的命题与它们的否定在形式上的变化规律.2.通过例题和习题的教学,使学生能够根据含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定.[知识链接]你能尝试写出下面含有一个量词的命题的否定吗?(1)所有矩形都是平行四边形;(2)每一个素数都是奇数;(3)∀x∈R,x2-2x+1≥0.答:(1)存在一个矩形不是平行四边形;(2)存在一个素数不是奇数;(3)∃x0∈R,x20-2x0+1<0.[预习导引]1.全称命题的否定:全称命题p:∀x∈M,p(x),它的否定p:∃x0∈M,p(x0).2.特称命题的否定:特称命题p:∃x0∈M,p(x0),它的否定p:∀x∈M,p(x).3.全称命题的否定是特称命题.特称命题的否定是全称命题.要点一全称命题的否定例1写出下列命题的否定:(1)任何一个平行四边形的对边都平行;(2)数列{1,2,3,4,5}中的每一项都是偶数;(3)∀a,b∈R,方程ax=b都有唯一解;(4)可以被5整除的整数,末位是0.解(1)是全称命题,其否定为:存在一个平行四边形的对边不都平行.(2)是全称命题,其否定:数列{1,2,3,4,5}中至少有一项不是偶数.(3)是全称命题,其否定:∃a,b∈R,使方程ax=b的解不唯一或不存在.(4)是全称命题,其否定:存在被5整除的整数,末位不是0.规律方法全称命题的否定是特称命题,对省略全称量词的全称命题可补上量词后进行否定.跟踪演练1写出下列全称命题的否定:(1)p:所有能被3整除的整数都是奇数;(2)p:每一个四边形的四个顶点共圆;(3)p:对任意x∈Z,x2的个位数字不等于3.解(1) p:存在一个能被3整除的整数不是奇数.(2) p:存在一个四边形,它的四个顶点不共圆.(3) p:∃x0∈Z,x20的个位数字等于3.要点二特称命题的否定例2写出下列特称命题的否定,并判断其真假.(1)p:∃x>1,使x2-2x-3=0;(2)p:有些素数是奇数;(3)p:有些平行四边形不是矩形;跟踪演练2写出下列特称命题的否定:(1)p:∃x0∈R,x20+2x0+2≤0;(2)p:有的三角形是等边三角形;(3)p:有一个素数含三个正因数.解(1) p:∀x∈R,x2+2x+2>0.(2) p:所有的三角形都不是等边三角形.(3) p:每一个素数都不含三个正因数.要点三特称命题、全称命题的综合应用例3已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数c,使得f(c)>0.求实数p的取值范围.解 在区间[-1,1]中至少存在一个实数c ,使得f (c )>0的否定是在[-1,1]上的所有实数x ,都有f (x )≤0恒成立.又由二次函数的图象特征可知,⎩⎪⎨⎪⎧ f -,f , 即⎩⎪⎨⎪⎧ 4+p --2p 2-p +1≤0,4-p --2p 2-p +1≤0,即⎩⎨⎧ p ≥1或p ≤-12,p ≥32或p ≤-3.∴p ≥32或p ≤-3. 故在区间[-1,1]上至少存在一个实数c 且使f (c )>0的实数p 的取值范围是(-3,32). 规律方法 通常对于“至多”“至少”的命题,应采用逆向思维的方法处理,先考虑命题的否定,求出相应的集合,再求集合的补集,可避免繁杂的运算.跟踪演练3 若∀x ∈R ,f (x )=(a 2-1)x 是单调减函数,则a 的取值范围是________.1.命题p :“存在实数m ,使方程x 2+mx +1=0有实数根”,则“p ”形式的命题是( )A .存在实数m ,使方程x 2+mx +1=0无实根B .不存在实数m ,使方程x 2+mx +1=0无实根C .对任意的实数m ,方程x 2+mx +1=0无实根D .至多有一个实数m ,使方程x 2+mx +1=0有实根答案 C解析 命题p 是特称命题,其否定形式为全称命题,即p :对任意的实数m ,方程x 2+mx +1=0无实根.2.对下列命题的否定说法错误的是( )A .p :能被2整除的数是偶数;p :存在一个能被2整除的数不是偶数B .p :有些矩形是正方形;p :所有的矩形都不是正方形C .p :有的三角形为正三角形;p :所有的三角形不都是正三角形D .p :∃n ∈N,2n ≤100;p :∀n ∈N,2n >100.答案 C解析 “有的三角形为正三角形”为特称命题,其否定为全称命题:“所有的三角形都不是正三角形”,故选项C 错误.对含有一个量词的命题的否定要注意以下问题:(1)确定命题类型,是全称命题还是特称命题.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词.(3)否定结论:原命题中的“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.(4)无量词的全称命题要先补回量词再否定.一、基础达标1.下列命题中,正确的全称命题是( )A .对任意的a ,b ∈R ,都有a 2+b 2-2a -2b +2<0B .菱形的两条对角线相等C .∃x ,x 2=xD .对数函数在定义域上是单调函数答案 D2.下列命题既是特称命题,又是真命题的是( )A .两个无理数的和必是无理数B .存在一个实数x ,使1x=0 C .至少有一个实数x ,使x 2<0D .有个实数的倒数等于它本身答案 D解析 A 项为全称命题;B 项1x是不能为零的,故B 假;C 项,x 2≥0,故不存在实数x 使x 2<0;D 项,当实数为1或-1时可满足题意,故D 正确.3.下列特称命题是假命题的是( )A .存在实数a ,b ,使ab =0;B .有些实数x ,使得|x +1|<1;C .存在一个函数,既是偶函数又是奇函数;D .有些实数x ,使得(12)x <0. 答案 D解析 A 真命题;B 真命题;C 真命题;D 假命题.4.命题“一次函数都是单调函数”的否定是( )A .一次函数都不是单调函数B .非一次函数都不是单调函数C .有些一次函数是单调函数D .有些一次函数不是单调函数答案 D解析 命题的否定只对结论进行否定,“都是”的否定是“不都是”,即“有些”.5.命题“对任意x ∈R ,都有x 2≥0”的否定为________.(1)对任意x ∈R ,都有x 2<0(2)不存在x ∈R ,都有x 2<0(3)存在x 0∈R ,使得x 20≥0(4)存在x 0∈R ,使得x 20<0答案 (4)解析 全称命题的否定是特称命题.6.已知命题p :“a =1”是“∀x >0,x +a x≥2”的充要条件,命题q :∀x ∈R ,x 2+x +1>0.则下列结论中正确的是________.(1)命题“p ∧q ”是真命题(2)命题“p ∧q ”是真命题(3)命题“p ∧q ”是真命题(4)命题“p ∨q ”是假命题答案 (3)解析 a =1⇒x +a x =x +1x ≥2x ×1x=2, 显然a =2时也能推出“∀x >0,x +a x≥2”成立, 所以“a =1”是“∀x >0,x +a x≥2”的充分不必要条件, 故p 是假命题,而q 是真命题,故(3)正确.7.判断下列命题的真假,并写出这些命题的否定:(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.二、能力提升8.命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是________.答案 存在x ∈R ,使得|x -2|+|x -4|≤3解析 由定义知命题的否定为“存在x ∈R ,使得|x -2|+|x -4|≤3”.9.写出命题“每个函数都有奇偶性”的否定________.答案 有些函数没有奇偶性解析 命题的量词是“每个”,即为全称命题,因此否定是特称命题,用量词“有些、有的、存在一个、至少有一个”等,再否定结论.故应填:有些函数没有奇偶性.10.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围是________.答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3.又因为p (2)是真命题,所以4+4-m >0,解得m <8,故实数m 的取值范围是[3,8).11.命题p 是“对某些实数x ,有x -a >0或x -b ≤0”,其中a 、b 是常数.(1)写出命题p 的否定;(2)当a 、b 满足什么条件时,命题p 的否定为真?解 (1)命题p 的否定:对任意实数x ,有x -a ≤0且x -b >0.(2)要使命题p 的否定为真,需要使不等式组⎩⎪⎨⎪⎧x -a ≤0,x -b >0的解集不为空集, 通过画数轴可看出,a 、b 应满足的条件是b <a .12.已知命题p :“至少存在一个实数x 0∈[1,2],使不等式x 2+2ax +2-a >0成立”为真,试求实数a 的取值范围.。
人教课标版高中数学选修2-1:《含有一个量词的命题的否定》教案-新版

1.4 含有一个量词的命题的否定一、教学目标(一)学习目标1.掌握含有一个量词的命题与它们的否定命题在形式上的变化规律;2.掌握含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定.(二)学习重点1.含有一个量词的命题与它们的否定在形式上的变化规律;2.会正确地对含有一个量词的命题进行否定.(三)学习难点正确地对含有一个量词的命题进行否定.二、教学设计(一)课前设计1.预习任务(1)全称命题p :∀x ∈M ,p (x ),它的否定p ⌝:________________;(2)特称命题p :∃x 0∈M ,p (x 0),它的否定p ⌝:_______________;(3)命题的否定只否定______,否命题既否定________,又否定________.【答案】(1) ∃x 0∈M ,0()p x ⌝ (2)∀x ∈M ,()p x ⌝(3)结论 条件 结论预习自测1.已知命题p :∀x ∈R ,sin x ≤1,则( )A .p ⌝:∃x 0∈R ,sin x 0≥1B .p ⌝:∀x ∈R ,sin x ≥1C .p ⌝:∃x 0∈R ,sin x 0>1D .p ⌝:∀x ∈R ,sin x >1答案:C解析:【知识点】全称命题的否定.【解题过程】全称命题,()x M p x ∀∈的否定为:0x M ∃∈,0()p x ⌝. 点拨:首先判断为全称命题还是特称命题.2.“存在整数m 0,n 0,使得2200=2011m n +”的否定是( )A .任意整数m ,n ,使得22=2011m n +B .存在整数m 0,n 0,使得22002011m n ≠+C .任意整数m ,n ,使得222011m n ≠+D .以上都不对答案:C解析:【知识点】特称命题的否定.【解题过程】特称命题00,()x M p x ∃∈的否定为:,()x M p x ∀∈⌝.点拨:首先判断为全称命题还是特称命题.3.写出命题:“对任意实数m ,关于x 的方程x 2+x +m =0有实根”的否定为:______________________________________________________.答案:存在实数m ,关于x 的方程x 2+x +m =0没有实根.解析:【知识点】全称命题的否定.【解题过程】存在实数m ,关于x 的方程x 2+x +m =0没有实根.点拨:全称命题,()x M p x ∀∈的否定为:0x M ∃∈,0()p x ⌝.4.已知p ⌝:∃x ∈R ,sin x +cos x ≤m 为真命题,q :∀x ∈R ,x 2+mx +1>0为真命题,求实数m 的取值范围. 答案:-2≤m <2.解析:【知识点】命题的真假.【解题过程】因为p ⌝:∃x ∈R ,sin x +cos x ≤m 为真命题,所以p :∀x ∈R ,sin x +cos x >m 为假命题,所以sin x +cos x >m 不恒成立.由sin x +cosx )4x π⎡+∈⎣,所以m ≥ 因为q :∀x ∈R ,x 2+mx +1>0为真命题,所以x 2+mx +1>0恒成立,即2=40m ∆-<,解得22m -<<. 所以综上-2≤m <2.点拨:全称命题、特称命题的真假.(二)课堂设计1.知识回顾(1)全称量词和特称量词的含义;(2)全称命题和特称命题真假的判断.2.问题探究探究一 含有一个量词的命题的否定形式●活动① 回顾旧知,引入新课回顾1:我们在1.3.3中学习过的逻辑联结词“非”的有关知识,对给定的命题p ,如何得到命题p 的否定(即p ⌝),它们的真假性之间有何联系?回顾2:常见关键词的否定(1)等于:不等于(大于或小于);(2)大于:不大于(小于或等于);(3)都是:不都是(部分否定);(4)所有:某些(或部分);(5)至多n 个:至少1n +个;(6)任意一个:某一个;(7)p 或q :非p 且非q ;(8)p 且q :非p 或非q .【设计意图】复习旧知识,为学习全称命题和特称命题的否定做准备. ●活动② 探究全称命题的否定问题1:指出下列命题的形式,写出下列命题的否定.(学生讨论,展示)(1)所有的矩形都是平行四边形;(2)每一个偶数都不是素数;(3),sin [1,1]x R x ∀∈∈-.分析:三个命题都是全称命题,即具有形式“,()x M p x ∀∈”.其中命题(1)的否定是“某些矩形不是平行四边形”,也就是说,存在一个矩形不是平行四边形;命题(2)的否定是“某些偶数是素数”,也就是说,存在一个偶数是素数;命题(3)的否定是“并非,sin [1,1]x R x ∀∈∈-”,也就是说,,sin [1,1]x R x ∃∈∉-; 问题2:你能发现这些命题和它们的否定命题在形式上发生了什么变化吗? 总结规律:全称命题,()x M p x ∀∈的否定为:0x M ∃∈,0()p x ⌝,即全称命题的否定是特称命题.【设计意图】结合实例让学生更易理解.●活动③ 探究特称命题的否定问题1:指出下列命题的形式,写出下列命题的否定.(讨论,展示)(1)2,220x R x x ∃∈++≤;(2)有的三角形是等边三角形;(3)存在一个四边形,它的对角线互相垂直且平分.分析:三个命题都是特称命题,即具有形式“00,()x M p x ∃∈”.其中命题(1)的否定是“不存在2,220x R x x ∈++≤”,也就是说,2,220x R x x ∀∈++>;命题(2)的否定是“没有三角形是等边三角形”,也就是说,任意的三角形均不是等边三角形;命题(3)的否定是“不存在一个四边形,它的对角线互相垂直且平分”,也就是说任意一个四边形,它的对角线不垂直或不平分;问题2:你能发现这些命题和它们的否定命题在形式上发生了什么变化吗? 总结规律:特称命题00,()x M p x ∃∈的否定为:,()x M p x ∀∈⌝,特称命题的否定是全称命题.【设计意图】结合实例让学生更易理解.在这里再次强调命题的否定和否命题的区别,不要因为含有一个量词的命题的否定需要把,∀∃改变就误认为是否命题!●活动④ 运用反馈例1 判断下列命题是全称命题还是特称命题,并判断其真假,写出这些命题的否定:(1)三角形内角和为180°;(2)每个二次函数的图象都开口朝下;(3)存在一个四边形不是平行四边形.【知识点】全称命题和特称命题的否定.【思路点拨】 掌握全称命题和特称命题否定的形式.【答案】(1)是全称命题且为真命题.命题的否定:存在一个三角形其内角和不等于180°;(2)是全称命题且为假命题.命题的否定:存在一个二次函数的图象开口不朝下;(3)是特称命题且为真命题.命题的否定:所有四边形都是平行四边形. 同类训练 写出下列各命题的否定,并判断其真假.(1)不论m 取何实数,方程x 2+mx -1=0必有实数根.(2)存在一个实数x 0,使0112x >(). 答案:(1)命题的否定:存在一个实数m 0,使方程x 2+m 0x -1=0无实根.假命题.(2)命题的否定:对任意实数x ,(12)x ≤1.假命题.解析:【知识点】全称命题和特称命题的否定.点拨:掌握全称命题和特称命题否定的形式.例2 设命题p :函数cos 2y x =的最小正周期为2π;命题q :函数sin y x =的图像关于直线2x π=对称.则下列判断正确的是( )A .p 为真B .q ⌝为真C .p q ∧为真D .p q ∨为真答案:D 解析:【知识点】命题的真假.【解题过程】因为函数cos 2y x =的最小正周期2==2T ππ,所以命题p 为假命题;命题q 为真命题.所以q ⌝为假,p q ∧为假,p q ∨为真.点拨:先判断命题p 、q 的真假.同类训练 给出两个命题:p :函数21y x x =--有两个不同的零点;q :若11x<,则1x >.在下列四个命题中,真命题时( )A .p q ⌝∨()B .p q ∧C .()p q ⌝∧⌝() D .()p q ⌝∨⌝() 答案:D解析:【知识点】命题的真假.【解题过程】命题p :=1450∆+=>恒成立,即函数有两个不同的零点,p 为真命题,p ⌝为假命题;命题q : 1110(1)001x x x x x x x-<⇒<⇒->⇒<>或,所以q 为假命题,q ⌝为真命题;所以()p q ⌝∨⌝()为真命题. 点拨:先判断命题p 、q 的真假.例3给出两个命题:命题p :对任意实数x 都有21ax ax >--恒成立,命题q :关于x 的方程2+0x x a -=有实数根.若p q ∨为真命题,p q ∧为假命题,求实数a 的范围.【知识点】由命题的真假求参数范围,方程根的判断.【解题过程】命题p :21ax ax >--恒成立,则0a =或240a a ∆=-<,即04a ≤<;命题q :140a ∆=-≥,即14a ≤. 因为p q ∨为真命题,p q ∧为假命题,所以p 、q 一真一假.(1)p 真q 假时,144a <<;(2)p 假q 真时,0a <;综上1(,0)(,4)4a ∈-∞⋃. 【思路点拨】 先判断命题p 、q 的真假, p q ∨为真命题,p q ∧为假命题,则 p 、q 一真一假. 【答案】1(,0)(,4)4a ∈-∞⋃ 同类训练 命题p :方程2++10x mx =有两个不等的正实数根;命题q :方程24+4+2+10x m x =()无实数根.若p 或q 为真命题时,求实数m 的范围. 答案:1m <-解析:【知识点】由命题的真假求参数范围,方程根的判断.【解题过程】命题p:212124010mx x mx x⎧∆=->⎪+=->⎨⎪⋅=>⎩,即2m<-;命题q:216(2)160m∆=+-<,即31m-<<-.因为p或q为真命题,所以p为真或q为真.综上1m<-.点拨:先判断命题p、q的真假,p或q为真命题,则p为真或q为真.【设计意图】通过练习,熟悉知识.课堂总结知识梳理1.含有一个量词的命题与它们的否定在形式上的变化规律;2.含有一个量词的命题进行否定.重难点归纳含有一个量词的命题进行否定时除了将结论否定,还要将任意改为存在,存在改为任意.(三)课后作业基础型自主突破1.命题:对任意x∈R,x3-x2+1≤0的否定是( )A.不存在x0∈R,x30-x20+1≤0B.存在x0∈R,x30-x20+1≥0C.存在x0∈R,x30-x20+1>0D.对任意x∈R,x3-x2+1>0答案:C解析:【知识点】全称命题的否定.【解题过程】由全称命题的否定可知,命题的否定为“存在x0∈R,x30-x20+1>0”.故选C.点拨:掌握全称命题的否定形式.2.命题p:∃m0∈R,使方程x2+m0x+1=0有实数根,则“⌝p”形式的命题是( ) A.∃m0∈R,使得方程x2+m0x+1=0无实根B.对∀m∈R,方程x2+mx+1=0无实根C.对∀m∈R,方程x2+mx+1=0有实根D.至多有一个实数m,使得方程x2+mx+1=0有实根答案:B解析:【知识点】特称命题的否定.【解题过程】由特称命题的否定可知,命题的否定为“对∀m∈R,方程x2+mx+1=0无实根”.故选B.点拨:掌握特称命题的否定形式.3.“∃x0∉M,p(x0)”的否定是( )A.∀x∈M,⌝p(x)B.∀x∉M,p(x)C.∀x∉M,⌝p(x)D.∀x∈M,p(x)答案:C解析:【知识点】特称命题的否定.【解题过程】由特称命题的否定可知,命题的否定为“∀x∉M,⌝p(x)”.故选C.点拨:掌握特称命题的否定形式.4.已知命题p:∃x∈R,使tan x=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:①命题“p∧q”是真命题;②命题“p∧¬q”是假命题;③命题“¬p∨q”是真命题;④命题“¬p∨¬q”是假命题,其中正确的是( )A.②③B.①②④C.①③④D.①②③④【知识点】命题真假的判断.【解题过程】当x=π4时,tan x=1,∴命题p为真命题.由x2-3x+2<0得1<x<2,∴命题q为真命题.∴p∧q为真,p∧¬q为假,¬p∨q为真,¬p∨¬q为假.【思路点拨】首先判断命题p、q的真假.【答案】D5.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是( )A.¬p∨qB.p∧qC.¬p∧¬qD.¬p∨¬q答案:D解析:【知识点】命题真假的判断.【解题过程】不难判断命题p为真命题,命题q为假命题,从而上面叙述中只有¬p∨¬q为真命题.点拨:首先判断命题p、q的真假.6.已知命题p:∃x∈R,cos x=54;命题q:∀x∈R,x2-x+1>0,则下列结论正确的是( )A.命题p∨q是假命题B.命题p∧q是真命题C.命题(¬p)∧(¬q)是真命题D.命题(¬p)∨(¬q)是真命题答案:D解析:【知识点】命题真假的判断.【解题过程】易判断p为假命题,q为真命题,从而只有选项D正确.点拨:首先判断命题p、q的真假.能力型师生共研7.下列命题中的假命题是( )A.∃x0∈R,lg x0=0B.∃x0∈R,tan x0= 3C.∀x∈R,x3>0D.∀x∈R,2x>0答案:C解析:【知识点】命题真假的判断.【解题过程】当x=1时,lg x=0,故命题“∃x0∈R,lg x0=0”是真命题;当x=π3时,tan x=3,故命题“∃x0∈R,tan x0=3”是真命题;由于x=-1时,x3<0,故命题“∀x∈R,x3>0”是假命题;根据指数函数的性质,对∀x∈R,2x>0,故命题“∀x∈R,2x>0”是真命题.点拨:熟悉全称命题和特称命题的形式.8.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是( )A.p为真B.¬q为假C.p∧q为假D.p∨q为真答案:C解析:【知识点】命题真假的判断.【解题过程】易判断p为假命题,q为假命题,从而只有选项C正确.点拨:首先判断命题p、q的真假.探究型多维突破9.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,并说明理由.(2)若存在一个实数x0,使不等式m-f(x0)>0成立,求实数m的取值范围.答案:(1)m>-4;(2)m>4.解析:【知识点】全称命题、特称命题.【解题过程】(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.点拨:恒成立问题和存在性问题转化为函数求最值得问题.10.已知命题p :“∀x ∈R ,∃m ∈R,4x -2x +1+m =0”,若命题¬p 是假命题,则实数m 的取值范围是__________.答案:(-∞,1]解析:【知识点】根据命题求参数的范围.【解题过程】若¬p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解.由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.点拨:分离参数求最值.自助餐1.命题p :∃x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题¬p :____________________,它是________命题(填“真”或“假”).【知识点】全称命题、特称命题的形式及命题真假的判断.【数学思想】【解题过程】∵x 2+2x +5=(x +1)2+4≥0恒成立,所以命题p 是假命题.【思路点拨】特称命题00,()x M p x ∃∈的否定为:,()x M p x ∀∈⌝.【答案】特称命题;假;∀x ∈R ,x 2+2x +5≥0;真.2.(1)命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是________.(2)命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________.答案:(1)∃x 0∈R ,|x 0-2|+|x 0-4|≤3;(2)∀x ∈R ,x 2+2x +5≠0解析:【知识点】全称命题、特称命题的否定.点拨:全称命题,()x M p x ∀∈的否定为:0x M ∃∈,0()p x ⌝;特称命题00,()x M p x ∃∈的否定为:,()x M p x ∀∈⌝.3.写出下列命题的否定并判断其真假.(1)所有正方形都是矩形;(2)∀α,β∈R ,sin(α+β)≠sin α+sin β;(3)∃θ0∈R ,函数y =sin(2x +θ0)为偶函数;(4)正数的对数都是正数.答案:(1)命题的否定:有的正方形不是矩形,假命题.(2)命题的否定:∃α,β∈R ,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:∀θ∈R ,函数y =sin(2x +θ)不是偶函数,假命题.(4)命题的否定:存在一个正数,它的对数不是正数,真命题.解析:【知识点】命题的否定,命题真假的判断.点拨:全称命题、特称命题的否定.4.写出下列各命题的否命题和命题的否定,并判断真假.(1)∀a ,b ∈R ,若a =b ,则a 2=ab ;(2)若a ·c =b ·c ,则a =b ;(3)若b 2=ac ,则a ,b ,c 是等比数列.答案:(1)否命题:∀a ,b ∈R ,若a ≠b ,则a 2≠ab ,假;命题的否定:∃a ,b ∈R ,若a =b ,则a 2≠ab ,假;(2)否命题:若a ·c ≠b ·c ,则a ≠b .真;命题的否定:∃a ,b ,c ,若a ·c =b ·c ,则a ≠b ,真;(3)否命题:若b 2≠ac ,则a ,b ,c 不是等比数列,真.命题的否定:∃a ,b ,c ∈R ,若b 2=ac ,则a ,b ,c 不是等比数列,真. 解析:【知识点】命题的否定和否命题.点拨:否命题是直接否定命题的条件和结论.5.已知命题p :∃φ∈R ,使f (x )=sin(x +φ)为偶函数;命题q :∀x ∈R ,cos 2x +4sin x -3<0,则下列命题中为真命题的是( )A .p ∧qB .(¬p )∨qC .p ∨(¬q )D .(¬p )∧(¬q )C .p ∧q 为假D .p ∨q 为真答案:C解析:【知识点】命题真假的判断.【解题过程】利用排除法求解.∃φ=π2,使f (x )=sin(x +φ)=)2(sin π+x =cos x 是偶函数,所以p 是真命题,¬p 是假命题;∃x =π2,使cos 2x +4sin x -3=-1+4-3=0,所以q 是假命题,¬q 是真命题.所以p ∧q ,(¬p )∨q ,(¬p )∧(¬q )都是假命题,排除A ,B ,D ,p ∨(¬q )是真命题,故选C .点拨:首先判断命题p 、q 的真假.6.已知c >0,设命题p :函数y =c x为减函数.命题q :当x ∈⎣⎢⎡⎦⎥⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果“p ∨q ”为真命题,“p ∧q ”为假命题,则c 的取值范围是__________. 答案:]21,0(∪[1,+∞) 解析:【知识点】根据命题求参数的范围.【解题过程】由命题p 为真知,0<c <1;由命题q 为真知,2≤x +1x ≤52.要使此式恒成立,需1c <2,即c >12.若“p 或q ”为真命题,“p 且q ”为假命题,则p ,q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1.综上可知,c 的取值范围是]21,0(∪[1,+∞). 点拨:“p 或q ”为真命题,“p 且q ”为假命题,则p ,q 中必有一真一假,再进行分类讨论.。
人教版高中数学教案-含有一个量词的命题的否定

1. 4.2含有一個量詞的命題的否定課前預習學案一、預習目標(1) 歸納總結出含有一個量詞的命題的含義與它們的否定在形式上的變化規律。
(2)根據全稱量詞和存在量詞的含義,用簡潔、自然的語言表敘含有一個量詞的命題的否定二、預習內容1、明確命題的構成我們現在所涉及的命題一般由四部分組成:一是被判斷物件;二是被判斷物件的結果(或性質);三是修飾被判斷物件的量詞,分為兩類:一類是————,一般常用“一切”、“所有”、“每一個”、“任意一個”等詞語表達,另一類是————,一般常用“有些”、“存在”、“至少有一個”等詞語表達;四是“判斷詞”,是聯繫被判斷物件與結果(或性質)的肯定詞或否定詞,肯定詞常用“是”、“有”等表示,否定詞常用“不是”、“沒有”等表示.如命題“至少有一個質數不是奇數”中,“質數”為被判斷物件,“奇數”為結果(或性質),“至少有一個”為量詞,“不是”為否定詞.2﹑掌握常見的關鍵字(量詞與判斷詞)的否定形式 正面詞語 等於 大於 小於 是 都是 能 否定詞語正面詞語 任意的 所有的 至多一個 至少一個至多有n 個 至少有n 個 否定詞語說明:寫命題p 的否定形式,不能一概在關鍵字前加“不”,而要搞清一個命題研究的物件是個體還是全體,如果研究的物件是個體,只須將“是”改成“不是”,將“不是”改成“是”等即可.如果命題研究的物件不是一個個體,就不能簡單地將“是”改在“不是”, 將“不是”改成“是”等,而是要分清命題是全稱命題,還是特稱命題.注:全稱命題“,()x M P x ∀∈”的否定為特稱命題“00,()x M P x ⌝∃∈”特稱命題“00,()x M P x ∃∈”的否定為全稱命題“,()x M P x ∀∈”三、提出疑惑同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中疑惑點疑惑內容課內探究學案一、學習目標1.通過生活和數學中的實例,理解對含有一個量詞的命題的否定的意義;2.能正確地對含有一個量詞的命題進行否定;3.進一步提高利用全稱量詞與存在量詞準確、簡潔地敘述數學內容的能力;4.培養對立統一的辯證思想二、學習過程探究一:1、全稱命題的否定1.(2007年山東高考文理科)命題“對任意的x∈R,x3-x2+1≤0”的否定是()A.不存在x∈R,x3-x2+1≤0 B.存在x∈R,x3-x2+1≤0C.存在x∈R,x3-x2+1>0 D.對任意的x∈R,x3-x2+1>0探究二:特稱命題的否定3.(2007年海南省調研文理科)已知特稱命題p:∃x∈R,2x+1≤0,則命題P的否定是()A.∃x∈R,2x+1>0 B.∀x∈R,2x+1>0C.∃x∈R,2x+1≥0 D.∀x∈R,2x+1≥0(三)反思總結1、書寫命題的否定時一定要抓住決定命題性質的量詞,從對量詞的否定入手,書寫命題的否定2.書寫命題的否定時,一定要注重理解數學符號的意義3.由於全稱量詞的否定是存在量詞,而存在量詞的否定又是全稱量詞;因此,全稱命題的否定一定是特稱命題;特稱命題的否定一定是全稱命題.(四)當堂檢測寫出下列全稱命題與特稱的否定⑴p:所有能被3整除的整數都是奇數;⑵p:每一個四邊形的四個頂點共圓;⑶p:對任意,的個位數字不等於3。
1.4.3 含有一个量词的 命题的否定 全称命题-高中数学选修2-1教案

1.4.3含有一个量词的命题的否定【教学内容分析】“含有一个量词的命题的否定”选自数学人教A版选修2-1第一章第四节的内容,它包括两块内容:一是含有一个全称量词的命题的否定,二是含有一个存在量词的命题的否定。
本节课是学生在老师的带领下,通过探究理解含有一个量词的命题与它们的否定在形式上的变化规律,并且会正确地对含有一个量词的命题进行否定。
在教学中使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力,通过学生的合作探究,培养培养他们的良好的思维品质。
【学情分析】本节内容是数学选修2-1第一章的最后一节内容,学习对象为高二年级学生,他们在前面已经学习了全称量词与存在量词的定义,以及否命题和一般命题的否定。
所以本节课在此基础上,也是学生对命题的否定的再认识,学生能够知道含有一个量词的命题的否定方法和前面学习的一般命题的否定方法有部分区别。
同时学好本节课也是为了让学生对否命题与命题的否定能够区分开。
【教学目标】1.知识与技能目标:理解全称命题的否定是特称命题,特称命题的否定是全称命题;2.过程与方法目标:通过探究实例,能够归纳出含一个量词的命题与它们的否定在形式上的变化规律;3.情感态度价值观:通过本节课的学习,培养学生的辨析能力以及良好的思维品质。
【教学重难点】重点:理解全称命题的否定是特称命题,特称命题的否定是全称命题;难点:正确地对含有一个量词的命题进行否定。
【设计思路】本节课是针对于高二年级的教学内容,“含有一个量词的命题的否定”即是含有全称量词或者存在量词的命题的否定。
学生通过探究实例,老师进行引导归纳出全称命题的否定变成了特称命题,在这一过程当中,量词进行改变,条件不变,结论进行否定。
其次学生通过类比全称命题的否定是特称命题,自行归纳得出特称命题的否定是全称命题,在这一过程当中,还是量词进行改变,条件不变,结论否定。
所以通过对比形式变化,可以得出:含有一个量词的命题的否定即是:量词改变,结论否定。
含有一个量词的命题的否定教案

含有一个量词的命题的否定教学目标:利用日常生活中的例子和数学的命题介绍对量词命题的否定,使学生进一步理解全称量词、存在量词的作用.教学重点:全称量词与存在量词命题间的转化;教学难点:隐蔽性否定命题的确定;教学过程:一、引入数学命题中出现“全部”、“所有”、“一切”、“任何”、“任意”、“每一个”等与“存在着”、“有”、“有些”、“某个”、“至少有一个”等的词语,在逻辑中分别称为全称量词与存在性量词(用符号分别记为“ ∀”与“∃”来表示);由这样的量词构成的命题分别称为全称命题与存在性命题。
在全称命题与存在性命题的逻辑关系中,,p q p q ∨∧都容易判断,但它们的否定形式是我们困惑的症结所在。
问题1:指出下列命题的形式,写出下列命题的否定。
(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)∀x ∈R ,x 2-2x+1≥0分析:(1)∀∈x M,p(x),否定:存在一个矩形不是平行四边形;∃∈⌝x M,p(x)(2)∀∈x M,p(x),否定:存在一个素数不是奇数;∃∈⌝x M,p(x)(3)∀∈x M,p(x),否定:∃x ∈R ,x 2-2x+1<0;∃∈⌝x M,p(x)这些命题和它们的否定在形式上有什么变化?结论:从命题形式上看,这三个全称命题的否定都变成了存在性命题.问题2:写出命题的否定(1)p :∃ x ∈R ,x 2+2x +2≤0;(2)p :有的三角形是等边三角形;(3)p :有些函数没有反函数;(4)p :存在一个四边形,它的对角线互相垂直且平分;分析:(1)∀ x ∈R ,x 2+2x+2>0;(2)任何三角形都不是等边三角形;(3)任何函数都有反函数;(4)对于所有的四边形,它的对角线不可能互相垂直或平分;从集合的运算观点剖析:()U U U A B A B =,()U U U A B A B = 二1.全称命题、存在性命题的否定一般地,全称命题P :∀ x ∈M,有P (x )成立;其否定命题┓P 为:∃x ∈M,使P (x )不成立。
人教A版高中数学高二版选修1-1 1.4.2含一个量词的命题的否定教案

1.4.2 含一个量词的命题的否定教学目标分析:知识目标:(1)掌握对含有一个量词的命题进行否定的方法,要正确掌握量词否定的各种形式;(2)明确全称命题的否定是存在命题,存在命题的否定是全称命题.过程与方法:使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.情感目标:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.重难点分析:重点:全称量词与存在量词命题间的转化;难点:隐蔽性否定命题的确定;互动探究:一、课堂探究:1、复习引入:(1)判断下列命题是否为全称命题:①有一个实数α,tan α无意义;②任何一条直线都有斜率;(2)判断以下命题的真假: ①21,04x R x x ∀∈-+≥;②2,3x Q x ∃∈=数学命题中出现“全部”、“所有”、“一切”、“任何”、“任意”、“每一个”等与“存在着”、“有”、“有些”、“某个”、“至少有一个”等的词语,在逻辑中分别称为全称量词与存在性量词(用符号分别记为“ ∀”与“∃”来表示);由这样的量词构成的命题分别称为全称命题与特称命题。
在全称命题与特称命题的逻辑关系中,,p q p q ∨∧都容易判断,但它们的否定形式是我们困惑的症结所在。
探究一、写出下列命题的否定:(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)2,210x R x x ∀∈-+≥.这些命题和它们的否定在形式上有什么变化?2、含有一个量词的全称命题的否定:一般地,对于一个含有一个量词的全称命题的否定有下面的结论:全称命题p :,()x M p x ∀∈,它的否定p ⌝:00,()x M p x ∃∈⌝说明:全称命题的否定是特称命题.探究二、写出下列命题的否定:(1)有些实数的绝对值是正数;(2)某些平行四边形是菱形;(3)200,10x R x ∃∈+<. 这些命题和它们的否定在形式上有什么变化?3、含有一个量词的特称命题的否定:一般地,对于一个含有一个量词的特称命题的否定有下面的结论:特称命题p :00,()x M p x ∃∈,它的否定p ⌝:,()x M p x ∀∈⌝.说明:特称命题的否定是全称命题.4、关键量词的否定:(1)p :所有能被3整除的数都是奇数;(2)p :每一个平行四边形的四个顶点共圆;(3)p :对任意x Z ∈,2x 的个位数字不等于3.(4)p :所有的正方形都是矩形.变式:命题“对任意的32,10x R x x ∈-+≤”的否定是( ).A. 不存在32,10x R x x ∈-+≤B. 存在32,10x R x x ∈-+≤C. 存在32,10x R x x ∈-+>D. 对任意的32,10x R x x ∈-+>例2、写出下列特称命题的否定:(1)p :2000,220x R x x ∃∈++≤; (2)p :有的三角形是等边三角形;(3)p :有一个素数含有三个正因数.(4)p :至少有一个实数x ,使310x +=.变式:对下列命题的否定说法错误的是( ).A. p :能被3整除的数是奇数;p ⌝:存在一个能被3整除的数不是奇数B. p :每个四边形的四个顶点共圆;p ⌝:存在一个四边形的四个顶点不共圆C. p :有的三角形为正三角形;p ⌝:所有的三角形不都是正三角形D. p :2,220x R x x ∃∈++≤;p ⌝:2,220x R x x ∀∈++>小结:全称命题的否定变成特称命题.例3、命题“所有能被2整除的整数都是偶数”的否定是( ).A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的整数是偶数D .存在一个能被2整除的整数不是偶数答案:原命题是全称命题,则其否定是特称命题,故选D.变式:下列命题正确的个数是( ).①“在三角形ABC 中,若sin sin A B >,则A B >”的否命题是真命题;②命题:23p x y ≠≠或,命题:5q x y +≠,则p 是q 的必要不充分条件;③“32,10x R x x ∀∈-+≤”的否定是“32,10x R x x ∃∈-+>”.A.0B.1C.2D.3答案:D.二、课堂练习:教材第26页练习第1、2题1、写出下列命题的否定:(1),n Z n Q ∀∈∈;(2)任意素数都是奇数;(3)每个指数函数都是单调函数.2、写出下列命题的否定:(1) 有些三角形是直角三角形;(2)有些梯形是等腰梯形;(3)存在一个实数,它的绝对值不是正数.反思:全称命题的否定变成特称命题.反思总结:1、 本节课你学到了哪些知识点?2、 本节课你学到了哪些思想方法?3、 本节课有哪些注意事项?课外作业:(一)教材第26页习题1.4 A 组第3题,B 组第1题1、写出下列命题的否定:(1)32,x N x x ∀∈>;(2) 所有可以被5整除的整数,末位数字都是0;(3) 2000,10x R x x ∃∈-+≤; (4) 存在一个四边形,它的对角线互相垂直.2、判断下列命题的真假,写出下列命题的否定:(1)每条直线在y 轴上都有截矩;(2)每个二次函数都与x 轴相交;(3)存在一个三角形,它的内角和小于180︒;(4)存在一个四边形没有外接圆.(二)补充3、命题“对任意的x R ∈,3210x x -+≤”的否定是( )A .不存在x R ∈,3210x x -+≤B .存在x R ∈,3210x x -+≤C .存在x R ∈,3210x x -+>D .对任意的x R ∈,3210x x -+>答案:C4、命题“若12<x ,则11<<-x ”的逆否命题是( )A .若12≥x ,则1≥x 或1-≤x B.若11<<-x ,则12<xC.若1>x 或1-<x ,则12>xD.若1≥x 或1-≤x ,则12≥x答案:D5、已知命题:p x ∀∈R ,sin 1x ≤,则( )A.:p x R ⌝∃∈,sin 1x ≥B.:p x R ⌝∀∈,sin 1x ≥C.:p x R ⌝∃∈,sin 1x >D.:p x R ⌝∀∈,sin 1x >6、写出下列命题的否定:(1)若24x >,则2x >;(2)若0,m ≥则20x x m +-=有实数根;(3)可以被5整除的整数,末位是0;(4)被8整除的数能被4整除;(5)若一个四边形是正方形,则它的四条边相等.7、已知:,sin cos p x R x x m ⌝∃∈+≤为真命题,2:,10q x R x mx ∀∈++>为真命题,求实数m 的取值范围.2m ≤<.课后反思:。
含有一个量词的命题的否定

1.4.3含有一个量词的命题的否定学习目标 1.理解含有一个量词的命题的否定的意义.2.会对含有一个量词的命题进行否定.3.掌握全称命题的否定是特称命题,特称命题的否定是全称命题.知识点一全称命题的否定思考尝试写出下面含有一个量词的全称命题的否定,并归纳写全称命题否定的方法.(1)所有矩形都是平行四边形;(2)每一个素数都是奇数;(3)∀x∈R,x2-2x+1≥0.答案(1)将量词“所有”换为:“存在一个”然后将结论否定,即“不是平行四边形”,所以原命题的否定为:“存在一个矩形不是平行四边形”;用同样的方法可得(2)(3)的否定:(2)存在一个素数不是奇数;(3)∃x0∈R,x20-2x0+1<0.梳理写全称命题的否定的方法:①更换量词,将全称量词换为存在量词;②将结论否定.对于含有一个量词的全称命题的否定,有下面的结论:全称命题p:∀x∈M,p(x),它的否定綈p:∃x0∈M,綈p(x0).全称命题的否定是特称命题.知识点二特称命题的否定思考尝试写出下面含有一个量词的特称命题的否定,并归纳写特称命题否定的方法.(1)有些实数的绝对值是正数;(2)某些平行四边形是菱形;(3)∃x0∈R,x20+1<0.答案(1)先将存在量词“有些”改写为全称量词“所有”,然后将结论“实数的绝对值是正数”否定,即“实数的绝对值不是正数,于是得原命题的否定为:“所有实数的绝对值都不是正数”;同理可得(2)(3)的否定:(2)所有平行四边形都不是菱形;(3)∀x∈R,x2+1≥0.梳理写特称命题的否定的方法:①将存在量词改写为全称量词,②将结论否定.(1)特称命题p:∃x∈M,p(x),它的否定¬p:∀x∈M,¬p(x).(2)对含有一个量词的命题进行否定,先对量词进行否定,全称量词变为存在量词,存在量词变为全称量词,然后再否定结论即可.类型一全称命题与特称命题的否定例1写出下列命题的否定,并判断真假.(1)p:不论m取何实数,方程x2+mx-1=0必有实数根;(2)p:存在x∈N,x2-2x+1≤0.解(1)非p:存在一个实数m,使得方程x2+mx-1=0没有实数根,因为该方程的判别式Δ=m2+4>0恒成立,故非p为假命题.(2)非p:对任意x∈N,x2-2x+1>0,显然当x=1时,x2-2x+1>0不成立,故非p是假命题.反思与感悟(1)全称命题的否定将全称量词变为存在量词,再否定它的结论,全称命题的否定是特称命题.(2)特称命题的否定将存在量词变为全称量词,再否定它的结论,特称命题的否定是全称命题.(3)对全称命题与特称命题的否定要注意以下两点:①对省略全称量词的全称命题要补回全称量词再否定.解题中若遇到省略“所有”“任何”“任意”等量词的简化形式,这时则应先将命题写成完整形式,再依据法则写出其否定形式.对特称命题的否定,在否定判断词时,也要否定存在量词.②要注意命题的否定形式不唯一.跟踪训练1写出下列命题的否定,并判断真假.(1)p:矩形是平行四边形;(2)q:∀x≥0,x2>0;(3)r:存在一个三角形,它的内角和大于180°;(4)t:某些梯形的对角线互相平分.解(1) ¬p:存在一个矩形不是平行四边形,假命题.(2) ¬q:∃x≥0,x2≤0,真命题.(3) ¬r:所有三角形的内角和都小于等于180°,真命题.(4) ¬t:每一个梯形的对角线都不互相平分,真命题.类型二利用全称命题与特称命题求参数取值范围例2已知函数f(x)=x2-mx+1,命题p:“对任意x∈R,都有f(x)>0”,命题q:“存在x∈R,使x2+m2<9”.若命题“非p”与“q”均为真命题,求实数m的取值范围.解由于命题p:“对任意x∈R,都有f(x)>0”,所以非p:“不等式f(x)≤0在实数集上有解”,故Δ=m2-4≥0,得m≤-2或m≥2.又命题q:“存在x∈R,使x2+m2<9”,即不等式x 2<9-m 2在实数集上有解,故9-m 2>0,所以-3<m <3.因为命题“非p ”与“q ”均为真命题,所以m 的取值范围为(-3,-2]∪[2,3).反思与感悟 利用全称命题、特称命题求参数的范围或求值是一类综合性较强、有一定难度的问题,主要考查这两种命题及其否定的定义.全称命题为真,意味着对限定的每一个元素都具有某种性质,使所给语句为真.因此,当给出限定集合中的任一个特殊的元素时,自然应导出“这个特殊元素具有这个性质”. 跟踪训练2 已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2,若同时满足条件:①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0.则m 的取值范围是________. 答案 -4<m <-2 解析 由题意知m ≠0,∴f (x )=m (x -2m )(x +m +3)为二次函数, (1)若∀x ∈R ,f (x )<0或g (x )<0, 必须抛物线开口向下,即m <0. f (x )=0的两根x 1=2m ,x 2=-m -3, 则x 1-x 2=3m +3.①当x 1>x 2,即m >-1时,大根x 1=2m <1,即m <12.②当x 1<x 2,即m <-1时,大根x 2=-m -3<1,即m >-4.③当x 1=x 2,即m =-1时,x 1=x 2=-2<1也满足条件.∴满足条件①的m 的取值范围为-4<m <0.(2)若∃x ∈(-∞,-4),f (x )g (x )<0, 则满足f (x )=0的小根小于是-4.①当m >-1时,小根x 2=-m -3<-4且m <0,无解. ②当m <-1时,小根x 1=2m <-4且m <0,解得m <-2. ③当m =-1时,f (x )=-(x +2)2≤0恒成立, ∴不满足②.∴满足①②的m 的取值范围是-4<m <-2.1.已知a >0且a ≠1,命题“∃x >1,log a x >0”的否定是( ) A .∃x ≤1,log a x >0 B .∃x >1,log a x ≤0 C .∀x ≤1,log a x >0 D .∀x >1,log a x ≤0答案 D解析 a >0且a ≠1,命题“∃x >1,log a x >0”的否定是“∀x >1,log a x ≤0”.2.已知命题p :∀x >0,x +1x ≥2,则¬ p 为( )A .∀x >0,x +1x <2B .∀x ≤0,x +1x <2C .∃x ≤0,x +1x <2D .∃x >0,x +1x<2答案 D解析 由命题的否定的定义及全称命题的否定为特称命题可得. 3.下列说法不正确的是( )A .若“p 且q ”为假,则p ,q 至少有一个是假命题B .命题“∃x ∈R ,x 2-x -1<0”的否定是“∀x ∈R ,x 2-x -1≥0”C .“φ=π2”是“y =sin(2x +φ)为偶函数”的充要条件D .当α<0时,幂函数y =x α在(0,+∞)上单调递减 答案 C解析 A :若“p 且q ”为假,则p ,q 至少有一个是假命题,正确;B :命题“∃x ∈R ,x 2-x -1<0”的否定是“∀x ∈R ,x 2-x -1≥0”,正确;C :“φ=π2”是“y =sin(2x +φ)为偶函数”的充分不必要条件,故C 错误;D :α<0时,幂函数y =x α在(0,+∞)上单调递减,正确.故选C.4.命题“∃x 0∈R,030≤x”的否定是( ) A .∀x ∈R,3x ≤0 B .∃x 0∈R,030≥xC .∃x 0∈R,030xD .∀x ∈R,3x >0答案 D解析 命题“∃x 0∈R,030≤x”的否定使“∀x ∈R,3x >0.”5.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a =________. 答案 1解析 由题意得命题“∀x ∈R ,x 2+2x +m >0”是真命题,所以Δ=4-4m <0,即m >1,故实数m 的取值范围是(1,+∞),从而实数a 的值为1.1.对含有全称量词的命题进行否定需两步操作:第一步,将全称量词改写成存在量词,即将“任意”改为“存在”;第二步,将结论加以否定,如本例,将“≥”否定为“<”. 2.对含有存在量词的命题进行否定需两步操作:第一步,将存在量词改写成全称量词;第二步,将结论加以否定.含有存在量词的命题的否定是含有全称量词的命题.注意命题中可能省略了全称或存在意义的量词,要注意判断.3.全称命题的否定是特称命题,特称命题的否定是全称命题,因此在书写时,要注意量词以及形式的变化,熟练掌握下列常见词语的否定形式:原词语 否定词语 原词语 否定词语 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有n 个 至多有(n -1)个 小于 不小于 至多有n 个至少有(n +1)个任意的 某个 能 不能 所有的某些等于不等于一、选择题1.已知命题p :∀x ∈R ,sin x ≤1,则¬ p 是( ) A .∃x ∈R ,sin x ≥1 B .∃x ∈R ,sin x >1 C .∀x ∈R ,sin x ≥1 D .∀x ∈R ,sin x >1答案 B解析 所给命题为全称命题,故其否定为特称命题,∃x ∈R ,sin x >1,故选B. 2.命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0 答案 D解析 “f (n )∈N *且f (n )≤n ”的否定为“f (n )∉N *或f (n )>n ”,全称命题的否定为特称命题,故选D.3.已知命题p :∀x >0,x +4x ≥4;命题q :∃x 0∈(0,+∞),0122=,x 则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧(¬ q )是真命题D .(¬ p )∧q 是真命题答案 C解析 由基本不等式知命题p 正确;由0122=x知,x 0=-1,故命题q 不正确;利用复合命题的判断方法可知应选C.4.已知命题p :存在a ∈R ,使函数y =x 2+ax 的定义域为实数集R ,命题q :不等式x -1x -2≤0的解集为{x |1<x <2},则下列结论正确的是( ) A .命题“p 且q ”为真命题 B .命题“p 且(¬ q )”为真命题 C .命题“(¬ p )且q ”为真命题 D .命题“(¬ p )且(¬ q )”为真命题 答案 B解析 根据命题p 得x 2+ax ≥0,因为Δ=a 2≥0,故∀a ∈R ,都成立,故命题p 为真命题;由命题q 得{ (x -1)(x -2)≤0,x -2≠0,解得1≤x <2,故命题q 为假命题,结合复合命题的真假判断,得到只有B 符合题意,故选B.5.命题“存在x ∈R ,x 3-x 2+1>0”的否定是( ) A .不存在x ∈R ,x 3-x 2+1≤0 B .存在x ∈R ,x 3-x 2+1≤0 C .对任意的x ∈R ,x 3-x 2+1≤0 D .对任意的x ∈R ,x 3-x 2+1>0 答案 C解析 特称命题“存在x ∈R ,x 3-x 2+1>0”的否定是:把量词“存在”改为“对任意的”并把结论进行否定,即把“>”改为“≤”.故选C.6.有命题m :“∀x 0∈(0,13),01031()log 2x x <”,命题n :“∃x 0∈(0,+∞),010031()log 2=x x x >”. 则在命题p 1:m ∨n ,p 2:m ∧n ,p 3:(¬ m )∨n 和p 4:m ∧(¬ n )中,真命题是( ) A .p 1,p 2,p 3 B .p 2,p 3,p 4 C .p 1,p 3 D .p 2,p 4答案 A解析 当x ∈(0,13)时,13log 1x >,(12)x <1,∴此时131log ()2x x >恒成立,即命题m 为真命题,作出函数13log =,y x y =(12)x ,y =x 的图象如图,则由图象可知∃x 0∈(0,+∞),满足010031log ()2=,x x x 故命题n 为真命题,则m ∨n ,m ∧n ,(¬ m )∨n 为真命题,m ∧(¬ n )为假命题,故p 1,p 2,p 3为真命题,故选A. 7.下列命题正确的是( )(1)已知命题p :∃x ∈R,2x =1,则¬ p 是:∃x ∈R,2x ≠1;(2)设l ,m 表示不同的直线,α表示平面,若m ∥l ,且m ∥α,则l ∥α;(3)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为23;(4)“a >0,b >0”是“a b +ba ≥2”的充分不必要条件.A .(1)(4)B .(2)(3)C .(1)(3)D .(3)(4)答案 D解析 ¬ p 为∀x ∈R,2x ≠1,故(1)错误;若m ∥l ,且m ∥α,则l 可能在α内或l ∥α,故(2)错误;由3a -1>0得,a >13,即事件“3a -1>0”发生的概率为23,故(3)正确;a b +ba ≥2⇔ab >0,故(4)正确.所以选D. 二、填空题8.若“∀x ∈[0,π4],tan x ≤m ”是真命题,则实数m 的最小值为________.答案 1解析 ∵0≤x ≤π4,∴0≤tan x ≤1,∵“∀x ∈[0,π4],tan x ≤m ”是真命题,∴m ≥1.∴实数m 的最小值为1.9.已知全集U =R ,A ⊆U ,B ⊆U ,如果命题p :3∈A ∪B ,则命题“¬ p ”是________. 答案3∈(∁U A )∩(∁U B )解析 p :3∈A 或3∈B ,所以¬ p :3∉A 且3∉B, 即¬ p :3∈(∁U A )∩(∁U B ).10.对∀x ∈[-1,2],使4x -2x +1+2-a <0恒成立,则实数a 的取值范围为________. 答案 (10,+∞)解析 已知不等式化为22x -2·2x +2-a <0,①令t =2x ,因为x ∈[-1,2],所以t ∈[12,4],则不等式①化为t 2-2t +2-a <0,即a >t 2-2t +2,原命题等价于∀t ∈[12,4],a >t 2-2t +2恒成立,令y =t 2-2t +2=(t -1)2+1,当t ∈[12,4]时,y max =10,所以只需a >10即可,即所求实数a 的取值范围是(10,+∞). 三、解答题11.写出下列命题的否定,并判断真假. (1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x ∈R ,x 2+2x +2≤0.解 (1)非p :∃x ∈R ,x 2-x +14<0,假命题.∵∀x ∈R ,x 2-x +14=(x -12)2≥0,∴非p 是假命题.(2)非q :有的正方形不是矩形,假命题. (3)非r :∀x ∈R ,x 2+2x +2>0,真命题. ∵∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0, ∴非r 是真命题.12.已知函数f (x )=x 2-2x +5.(1)是否存在实数m ,使不等式m +f (x )>0对于任意x ∈R 恒成立?并求出m 的取值范围; (2)若存在一个实数x 0,使不等式m -f (x 0)>0成立,求实数m 的取值范围. 解 (1)不等式m +f (x )>0可化为m >-f (x ),即m >-x 2+2x -5=-(x -1)2-4.要使m >-(x -1)2-4对于任意x ∈R 恒成立,只需m >-4即可.故存在实数m 使不等式m +f (x )>0对于任意x ∈R 恒成立,此时m >-4. (2)不等式m -f (x 0)>0可化为m >f (x 0), 若存在实数x 0,使不等式m >f (x 0)成立, 只需m >f (x )min .∵f (x )=(x -1)2+4, ∴f (x )min =4,∴m >4.∴所求实数m 的取值范围是(4,+∞).13.已知函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]上至少存在一个实数c ,使得f (c )>0.求实数p 的取值范围.解 “在区间[-1,1]上至少存在一个实数c ,使得f (c )>0”的否定是“在[-1,1]上的所有实数x ,都有f (x )≤0恒成立”.又由二次函数的图象特征可知,{ f (-1)≤0,f (1)≤0,即{ 4+2(p -2)-2p 2-p +1≤0,4-2(p -2)-2p 2-p +1≤0,即⎩⎨⎧p ≥1或p ≤-12,p ≥32或p ≤-3,∴p ≥32或p ≤-3. 故p 的取值范围是-3<p <32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.3 “含有一个量词的命题的否定”教案
阮 晓 锋
【教学目标】
一.知识与技能目标
(1)通过探究数学中一些实例,使学生总结归纳出含有一个量词的命题与它们的否定在形式上的变化规律.
(2)通过例题和习题的教学,使学生能够根据含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定.
二.过程与方法目标 :使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.
三.情感态度价值观:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.
【教学重难点】
重点:通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律,会正确地对 含有一个量词的命题进行否定.
难点:正确地对含有一个量词的命题进行否定.
【教学过程】
1.回顾引入
数学命题中常出现“全部”、“所有”、“一切”、“任何”、“任意”、“每一个”等与“存在着”、“有些”、“某个”、“至少有一个”等的词语,在逻辑中分别称为全称量词与存在性量词(用符号分别记为“ ∀”与“∃”来表示);由这样的量词构成的命题分别称为全称命题与存在性命题.那么对这样含有一个量词的命题如何进行否定呢?
2.思考、分析
判断下列命题是全称命题还是特称命题,你能写出下列命题的否定吗?
(1)所有的矩形都是平行四边形;
(2)每一个素数都是奇数;
(3)∀x ∈R,x 2-2x +1≥0。
(4)有些实数的绝对值是正数;
(5)某些平行四边形是菱形;
(6)∃ x ∈R,x 2+1<0。
你能发现这些命题和它们的否定在形式上有什么变化?(学生自己表述)
分析:前三个命题都是全称命题,即具有形式“,()x M p x ∀∈”。
其中:命题(1)的否定是“并非所有的矩形都是平行四边形”,也就是说,存在一个矩形不都是平行四边形;
命题(2)的否定是“并非每一个素数都是奇数;”,也就是说,存在一个素数不是奇数;
命题(3)的否定“并非∀x ∈R, x 2-2x +1≥0”,也就是说,∃x ∈R,x 2-2x +1<0;
后三个命题都是特称命题,即具有形式“,()x M p x ∃∈”。
其中:命题(4)的否定是“不存在一个实数,它的绝对值是正数”,也就是说,所有实数的绝对值都不是正数;
命题(5)的否定是“没有一个平行四边形是菱形”,也就是说,每一个平行四边形都不是菱形;
命题(6)的否定是“不存在x ∈R,x 2+1<0”,也就是说,∀x ∈R,x 2+1≥0;
3.发现、归纳
从命题的形式上看,前三个全称命题的否定都变成了特称命题。
后三个特称命题的否定都变成了全称命题。
一般地,对于含有一个量词的全称命题的否定,有下面的结论:
全称命题P :,()x M p x ∀∈ 它的否定¬P :,()x M p x ∃∈
特称命题P :,()x M p x ∃∈它的否定¬P :∀x ∈M ,¬P(x)
全称命题的否定是特称命题。
特称命题的否定是全称命题。
4.巩固练习
判断下列命题是全称命题还是特称命题,并写出它们的否定:
(1) p :所有能被3整除的整数都是奇数;
(2) p :每一个四边形的四个顶点共圆;
(3) p :对∀x ∈Z ,x 2个位数字不等于3;
(4) p :∃ x ∈R, x 2+2x +2≤0;
(5) p :有的三角形是等边三角形;
(6) p :有一个素数含三个正因数。
5.辨析提升
辨析题: 写出下列命题的否定与否命题,并判断其真假性.
(1)p :正方形的四条边相等;
(2)p:平方和为0的两个实数都为0.
解:(1)⌝ P :存在一个四边形是正方形,但它的四条边中至少有两条边不相等;假命题. 否命题:若一个四边形不是正方形,则它的四条边不相等.假命题.
(2)⌝ P :存在两个实数的平方和为0,但这两个实数不都为0;假命题.
否命题:若两个实数的平方和不为0,则这两个实数不都为0;真命题.
想一想:命题的否定与否命题有何不同?
(两者是完全不同的概念:①任何命题均有否定,而否命题仅针对命题“若P 则q”提出来的. ②命题的否定是原命题的矛盾命题,两者的真假性必然是一真一假;而否命题与原命题可能是同真同假,也可能是一真一假.)
6.小结与布置作业
小结:本节主要学习了含有一个量词的命题的否定! 关键词语的否定表:
作业:P27 习题1.4 A 组 第3题:B 组 (1)(2)(3)(4) 词语
是 一定是 都是 大于 小于 且 词语的
否定
不是 一定不是 不都是 小于或等于 大于或等于 或 词语 必有一个 至少有n 个 至多有一
个 所有x 成立 所有x 不成立
词语的 否定 一个也没有 至多有n-1个 至少有两个 存在一个x 不成立 存在有一个
成立。