中考复习强化训练5函数(含答案)
2015中考模拟 青岛版九年级数学下册第5章对函数的再探索中考原题训练(附答案)

2015中考模拟青岛版九年级数学下册第5章对函数的再探索中考原题训练(附答案)一.选择题(共20小题)1.(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张2.(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()3.(2014•兰州)若反比例函数的图象位于第二、四象限,则k的取值可以是()y=5.(2014•毕节市)抛物线y=2x2,y=﹣2x2,共有的性质是()6.(2014•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主7.(2014•兰州)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,8.(2014•柳州)小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()9.(2014•湖里区模拟)已知两个变量x和y,它们之间的3组对应值如下表,则y与x之)10.(2014•哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,11.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()12.(2014•泰安)已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是(). C D .13.(2014•汕头)二次函数y=ax 2+bx+c (a ≠0)的大致图象如图,关于该二次函数,下列说法错误的是( ) ,14.(2014•泰安)二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应下列结论:(1)ac <0;(2)当x >1时,y 的值随x 值的增大而减小.(3)3是方程ax 2+(b ﹣1)x+c=0的一个根;(4)当﹣1<x <3时,ax 2+(b ﹣1)x+c >0.15.(2014•淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()217.(2014•黔东南州)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m218.(2014•济宁)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大19.(2014•东营)若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的20.(2014•济南)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()二.填空题(共4小题)21.(2014•赤峰)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于_________.(结果保留π)22.(2014•乌鲁木齐)对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②若a<0,函数在x>1时,y随x的增大而减小;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中所有正确的结论是_________.(填写正确结论的序号)23.(2014•德州)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(_________,_________).24.(2014•菏泽)如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则=_________.三.解答题(共6小题)25.(2013•泰安)如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.26.(2012•泰安)如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.27.(2014•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.28.(2014•绍兴)如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?29.(2014•陕西)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?30.(2014•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)2015中考模拟青岛版九年级数学下册第5章对函数的再探索中考原题训练(附答案)参考答案与试题解析一.选择题(共20小题)1.(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张2.(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()3.(2014•兰州)若反比例函数的图象位于第二、四象限,则k的取值可以是()反比例函数反比例函数本题考查了反比例函数的性质.对于反比例函数(y=是反比例函数,故本选项错误;y==x+5.(2014•毕节市)抛物线y=2x2,y=﹣2x2,共有的性质是()y=<﹣时,>﹣时,取得最小值<﹣时,>﹣时,取得最大值6.(2014•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主7.(2014•兰州)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,8.(2014•柳州)小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()9.(2014•湖里区模拟)已知两个变量x和y,它们之间的3组对应值如下表,则y与x之)y=,故此选项错误.10.(2014•哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,解:根据题意,在反比例函数11.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()12.(2014•泰安)已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是().C D.的图象位于第二、四象限;13.(2014•汕头)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(),,正确,故<14.(2014•泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.=1.515.(2014•淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()﹣,2.17.(2014•黔东南州)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m218.(2014•济宁)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大19.(2014•东营)若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的m+1(20.(2014•济南)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()=1二.填空题(共4小题)21.(2014•赤峰)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π))=故答案是:.22.(2014•乌鲁木齐)对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②若a<0,函数在x>1时,y随x的增大而减小;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中所有正确的结论是①③④.(填写正确结论的序号),,时,>==1﹣=,x,y=﹣23.(2014•德州)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(4027,4027).(((24.(2014•菏泽)如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则=3﹣.,(,(的横坐标相同,为,∴,﹣=﹣.三.解答题(共6小题)25.(2013•泰安)如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.y=,即可求出的图象经过点,解得﹣∴,∴∴﹣﹣=)或(﹣)26.(2012•泰安)如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.的图象在第二象限的交点为∴∴x﹣,,﹣27.(2014•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.∴.28.(2014•绍兴)如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?),个单位,再向下平移个单位得到.29.(2014•陕西)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?∴,解得﹣﹣30.(2014•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)。
中考数学三轮专题强化卷【专题7】函数与图象(含答案)

专题七函数与图象⊙热点一:图象信息题1.如图Z7-7,二次函数y=-x2-2x的图象与x轴交于点A,O,在抛物线上有一点P,满足S△AOP=3,则点P的坐标是()图Z7-7A.(-3,-3)B.(1,-3)C.(-3,-3)或(-3,1)D.(-3,-3)或(1,-3)2.(2013年山东菏泽)已知b<0时,二次函数y=ax2+bx+a2-1的图象是下列4个图之一.根据图象分析,a的值等于()A.-2 B.-1C.1 D.2⊙热点二:代数几何综合题1.(2013年湖南永州)如图Z7-8,已知二次函数y=(x-m)2-4m2(m>0)的图象与x轴交于A,B两点.(1)写出A,B两点的坐标(坐标用m表示);(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;(3)设以AB为直径的⊙M与y轴交于C,D两点,求CD的长.图Z7-82.(2013年四川资阳节选)如图Z7-9,四边形ABCD是平行四边形,过点A,C,D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连接CE,点A,B,D的坐标分别为(-2,0),(3,0),(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M,N分别是直线l和x轴上的动点,连接MN,当线段MN恰好被BC垂直平分时,求点N的坐标.图Z7-9⊙热点三:函数探索开放题(2013年四川雅安)如图Z7-10(1),已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图Z7-10(2),若E是线段AD上的一个动点(E与A,D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.(1) (2)图Z7-10函数与图象热点一 1.D 2.C 热点二1.解:(1)∵y =(x -m )2-4m 2, ∴当y =0时,(x -m )2-4m 2=0. 解得x 1=-m ,x 2=3m . ∵m >0,∴A ,B 两点的坐标分别是(-m,0),(3m,0). (2)∵A (-m,0),B (3m,0),m >0,∴AB =3m -(-m )=4m ,圆的半径为12AB =2m .∴OM =AM -OA =2m -m =m .∴抛物线的顶点P 的坐标为:(m ,-2m ).又∵二次函数y =(x -m )2-4m 2(m >0)的顶点P 的坐标为(m ,-4m 2), ∴-2m =-4m 2.解得m 1=12,m 2=0(舍去).∴二次函数的解析式为y =⎝⎛⎭⎫x -122-1, 即y =x 2-x -34.(3)如图89,连接CM .在Rt △OCM 中, ∵∠COM =90°,CM =2m =1,OM =m =12,∴OC =CM 2-OM 2=12-⎝⎛⎭⎫122=32. ∴CD =2OC = 3.图89 图902.解:(1)∵点A ,B ,D 的坐标分别为(-2,0),(3,0),(0,4),且四边形ABCD 是平行四边形,∴AB =CD =5,∴点C 的坐标为(5,4).∵点A ,C ,D 在抛物线y =ax 2+bx +c (a ≠0)上,∴⎩⎪⎨⎪⎧4a -2b +c =0,25a +5b +c =4,c =4.解得⎩⎪⎨⎪⎧a =-27,b =107,c =4.故抛物线的解析式为y =-27x 2+107x +4.(2)如图90,连接BD 交对称轴于G ,在Rt △OBD 中,易求BD =5,∴CD =BD ,则∠DCB =∠DBC .又∵∠DCB =∠CBE ,∴∠DBC =∠CBE .过G 作GN ⊥BC 于H ,交x 轴于N , 易证GH =HN ,∴点G 与点M 重合. 故直线BD 的解析式y =-43x +4.根据抛物线可知对称轴方程为x =52,则点M 的坐标为⎝⎛⎭⎫52,23,即GF =23,BF =12. ∴BM =FM 2+FB 2=56.又∵MN 被BC 垂直平分,∴BM =BN =56.∴点N 的坐标为⎝⎛⎭⎫236,0. 热点三解:(1)由题意,得⎩⎪⎨⎪⎧a +b +c =0,9a -3b +c =0,c =3.解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3.∴抛物线的解析式为:y =-x 2-2x +3. (2)∵△PBC 的周长为PB +PC +BC , ∵BC 是定值,∴当PB +PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴l 对称,∴连接AC 交l 于点P ,即点P 为所求的点(如图91).图91∵AP =BP ,∴△PBC 的周长最小是PB +PC +BC =AC +BC . ∵A (-3,0),B (1,0),C (0,3), ∴AC =3 2,BC =10.故△PBC 周长的最小值为3 2+10.(3)①∵抛物线y =-x 2-2x +3顶点D 的坐标为(-1,4),A (-3,0), ∴直线AD 的解析式为y =2x +6. ∵点E 的横坐标为m ,∴E (m,2m +6),F (m ,-m 2-2m +3).∴EF =-m 2-2m +3-(2m +6)=-m 2-4m -3, AH =12AB =12×4=2,∴S =S △DEF +S △AEF =12EF ·GH +12EF ·AG =12EF ·AH =12(-m 2-4m -3)×2=-m 2-4m -3.②存在.∵S =-m 2-4m -3=-(m +2)2+1. ∴当m =-2时,S 最大,最大值为1. 此时点E 的坐标为(-2,2).。
备战中考数学(人教版)综合能力冲刺练习(含解析)

2021备战中考数学〔人教版〕-综合才能冲刺练习〔含解析〕一、单项选择题1.y关于t的函数y=--,那么以下有关此函数图像的描绘正确的选项是〔〕A.该函数图像与坐标轴有两个交点B.该函数图象经过第一象限C.该函数图像关于原点中心对称D.该函数图像在第四象限2.a、b均为正整数,且a>,b<,那么a+b的最小值是〔〕A.3B.4C.5D.63.以下语句不是命题的是〔〕A.两点之间线段最短B.不平行的两条直线有一个交点C.x与y的和等于0吗?D.相等的角是对顶角4.假如零上6℃记作+6℃,那么零下4℃记作〔〕A.-4B.4C.-4℃D.4℃5.以下关系式中,y是x反比例函数的是〔〕A.y=B.y=-1C.y=-D.y=6.如下图,四边形ABCD的四个顶点都在℃O上,称这样的四边形为圆的内接四边形,那么图中℃A+℃C=〔〕度.A.90°B.180°C.270°D.360°7.下面哪个点不在函数y = -2x+3的图象上〔〕A.〔-5,13〕B.〔0.5,2〕C.〔3,0〕D.〔1,1〕8.如图,在平面直角坐标系xOy中,℃A′B′C′由℃ABC绕点P旋转得到,那么点P的坐标为〔〕A.〔0,1〕B.〔0,﹣1〕C.C〔1,﹣1〕D.〔1,0〕9.如图,下午2点30分时,时钟的分针与时针所成角的度数为〔〕A.90°B.120°C.105°D.135°10.假如将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,那么这一方向应为〔〕A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°11.把一副三角板如图甲放置,其中℃ACB=℃DEC=90,℃A=45,℃D=30,斜边AB=6,DC=7,,把三角板DCE绕着点C顺时针旋转15得到℃D1CE1〔如图乙〕,此时AB与CD1交于点O,那么线段AD1的长度为〔〕A. B.5 C.4 D.二、填空题12.假设最简二次根式与是同类根式,那么b的值是________.13.我区有15所中学,其中九年级学生共有3000名.为了理解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进展排序.①搜集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.那么正确的排序为________.〔填序号〕14.假设分式有意义,那么实数x的取值范围是________15.估计与的大小关系是:________ 〔填“>〞“=〞或“<〞〕16.假如3y9﹣2m+2=0是关于y的一元一次方程,那么m=________.17.如图, 量具ABC是用来测量试管口直径的,AB的长为10cm,AC被分为60等份.假如试管口DE正好对着量具上20等份处(DE℃AB),那么试管口直径DE是________cm.三、计算题18.解方程:.19.计算:〔﹣﹣+ 〕÷〔﹣〕20.计算以下各题〔1〕计算:〔﹣〕﹣2﹣|2﹣|﹣3tan30°;〔2〕解不等式组:.21.解方程组:.四、解答题22.小明为班级联欢会设计了一个摸球游戏.游戏规那么如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全一样,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,假设两次摸到的球颜色一样,那么游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.23.阅读以下材料:“为什么不是有理数〞.假是有理数,那么存在两个互质的正整数m,n,使得=,于是有2m2=n2.℃2m2是偶数,℃n2也是偶数,℃n是偶数.设n=2t〔t是正整数〕,那么n2=2m,℃m也是偶数℃m,n都是偶数,不互质,与假设矛盾.℃假设错误℃不是有理数有类似的方法,请证明不是有理数.五、综合题24.如图,AB为℃O直径,C是℃O上一点,CO℃AB于点O,弦CD与AB交于点F.过点D作℃O 的切线交AB的延长线于点E,过点A作℃O的切线交ED的延长线于点G.〔1〕求证:℃EFD为等腰三角形;〔2〕假设OF:OB=1:3,℃O的半径为3,求AG的长.25.一工地方案租用甲、乙两辆车清理淤泥,从运输量来估算,假设租两车合运,10天可以完成任务,假设甲车的效率是乙车效率的2倍.〔1〕甲、乙两车单独完成任务分别需要多少天?〔2〕两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.答案解析局部一、单项选择题1.【答案】D【考点】函数关系式,函数自变量的取值范围【解析】【分析】在w关于t的函数式y=--中,根据二次根式有意义的条件解答此题.【解答】函数式中含二次根式,分母中含t,故当t>0时,函数式有意义,此时y<0,函数图象在第四象限.应选D.【点评】此题考察了函数式的意义,自变量与函数值对应点的坐标的位置关系.2.【答案】B【考点】估算无理数的大小【解析】【分析】此题需先根据条件分别求出a、b的最小值,即可求出a+b的最小值.【解答】a、b均为正整数,且a>,b<℃a的最小值是3,b的最小值是:1,那么a+b的最小值4.应选B.【点评】此题主要考察了如何估算无理数的大小,在解题时要能根据题意求出a、b的值是此题的关键.3.【答案】C【考点】命题与定理【解析】【分析】判断一件事情的语句叫做命题.x与y的和等于0吗是询问的语句,故不是命题.【解答】A、正确,符合命题的定义;B、正确,符合命题的定义;C、错误;D、正确,符合命题的定义.应选C.【点评】主要考察了命题的概念.判断一件事情的语句叫做命题.4.【答案】C【考点】正数和负数【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.【解答】“正〞和“负〞相对,℃假如零上6℃记作+6℃,那么零下4℃记作-4℃,应选C.【点评】解题关键是理解“正〞和“负〞的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.5.【答案】A【考点】根据实际问题列反比例函数关系式【解析】【解答】解:A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.应选A.【分析】此题应根据反比例函数的定义,解析式符合y=〔k≠0〕的形式为反比例函数6.【答案】B【考点】圆内接四边形的性质【解析】【解答】解:℃四边形ABCD为圆的内接四边形,℃℃A+℃C=180°.应选B.【分析】根据圆内接四边形的对角互补即可作答.7.【答案】C【考点】一次函数的性质【解析】【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】A、当x=-5时,y=-2x+3=13,点在函数图象上;B、当x=0.5时,y=-2x+3=2,点在函数图象上;C、当x=3时,y=-2x+3=-3,点不在函数图象上;D、当x=1时,y=-2x+3=1,点在函数图象上;应选C.【点评】此题考察了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上8.【答案】C【考点】坐标与图形变化-旋转【解析】【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.℃直线MN为:x=1,设直线CC′为y=kx+b,由题意:,℃ ,℃直线CC′为y= x+ ,℃直线EF℃CC′,经过CC′中点〔,〕,℃直线EF为y=﹣3x+2,由得,℃P〔1,﹣1〕.应选:C.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.9.【答案】C【考点】钟面角、方位角【解析】【解答】解:下午2点30分时,时针与分针相距3.5份,下午2点30分时下午2点30分时3.5×30°=105°,应选:C.【分析】根据钟面平均分成12份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.10.【答案】D【考点】平移的性质【解析】【解答】解:从图中可发现挪动形成的三角形ABC中,AB=AC=3,℃BAC=90°﹣30°=60°,故℃ABC是等边三角形.℃℃ACB=60°,℃℃2=90°﹣60°=30°.所以此题的答案为南偏东30°.应选D.【分析】根据方位角的概念,画图正确表示出方位角,利用等边三角形的断定与性质即可求解.11.【答案】B【考点】勾股定理,旋转的性质【解析】【分析】℃把三角板DCE绕着点C顺时针旋转15得到℃D1CE1,℃℃BCE1=15°,℃D1CE1=℃DCE=60°℃℃BCO=45°又℃℃B=45°℃OC=OB℃BOC=90°℃℃D1OA=90°℃℃ABC是等腰直角三角形℃AO=BO=AB=3℃CO=3又℃CD=7℃OD1=CD1-CO=CD-OC=4在Rt℃D1OA中,AD1=。
中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
2020初中数学中考专题复习——四边形中的线段最值问题专项训练5(附答案详解)

1.C
参考答案
【解析】
【分析】
根据三个角都是直角的四边形是矩形,得四边形 AEPF 是矩形,根据矩形的对角线相等,得
EF=AP,则 EF 的最小值即为 AP 的最小值,根据垂线段最短,知:AP 的最小值即等于直角
三角形 ABC 斜边上的高.
【详解】
连接 AP,
∵在△ ABC 中,AB=3,AC=4,BC=5, ∴AB2+AC2=BC2, 即∠BAC=90°, 又∵PE⊥AB 于 E,PF⊥AC 于 F, ∴四边形 AEPF 是矩形, ∴EF=AP, ∵AP 的最小值即为直角三角形 ABC 斜边上的高,即 2.4, ∴EF 的最小值为 2.4, 故选:C. 【点睛】 本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要 求的线段的最小值转化为便于求的最小值得线段是解此题的关键. 2.C 【解析】 【分析】 根据轴对称确定最短路线问题,作点 P 关于 BD 的对称点 P',连接 与 BD 的交点即为所求的 点 K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知 ⊥CD 时
的最小值,求解即可.
【详解】
解::如图,∵
,
,,
∴点 P'到 CD 的距离为 2× = ,
∴ 故选 C.
的最小值为 .
【点睛】 本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最 短路线的方法是解题的关键. 3.C 【解析】 【分析】 先作点 M 关于 AC 的对称点 M′,连接 M′N 交 AC 于 P,此时 MP+NP 有最小值.然后证明 四边形 ABNM′为平行四边形,即可求出 MP+NP=M′N=AB=2. 【详解】 解:如图,作点 M 关于 AC 的对称点 M′,连接 M′N 交 AC 于 P,此时 MP+NP 有最小值, 最小值为 M′N 的长. ∵菱形 ABCD 关于 AC 对称,M 是 AB 边上的中点, ∴M′是 AD 的中点, 又∵N 是 BC 边上的中点, ∴AM′∥BN,AM′=BN, ∴四边形 ABNM′是平行四边形, ∴M′N=AB=2, ∴MP+NP=M′N=2,即 MP+NP 的最小值为 2, 故选:C.
初三数学中考复习 求函数表达式及其应用 专题训练题 含答案

精品基础教育教学资料,仅供参考,需要可下载使用!初三数学中考复习 求函数表达式及其应用 专题训练题1.在函数y =1x +1中,自变量x 的取值范围是( )A .x >-1B .x <-1C .x ≠-1D .x =-1 2.函数y =x 3-x的自变量的取值范围是( )A .x ≠3B .x ≠0C .x ≠3且x ≠0D .x <33. 据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有将水龙头拧紧,水龙头以测试的速度滴水,当小康离开x 分钟后,水龙头滴出y 毫升的水,请写出y 与x 之间的函数表达式是( )A .y =0.05xB .y =5xC .y =100xD .y =0.05x +1004. 某工程队承建一条长30 km 的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y(km)与施工时间x(天)之间的函数表达式为( )A .y =30-14xB .y =30+14xC .y =30-4xD .y =14x5. 图中的圆点是有规律地从里到外逐层排列的,设y 为第n 层(n 为正整数)圆点的个数,则下列函数表达式中正确的是( )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2 6. 函数12x -3中,自变量x 的取值范围是_________. 7. 如图,△ABC 的边BC 的长是8,BC 边上的高AD ′是4,点D 在BC 上运动,设BD 长为x ,请写出△ACD 的面积y 与x 之间的函数关系式_______________.8. A ,B 两地相距20 km ,小李步行从A 地到B 地,若设他的速度为每小时5 km ,他与B 地的距离为y km ,步行的时间为x 小时,则y 与x 之间的函数关系式为____________,自变量x 的取值范围是_____________. 9. 如图,用边长60 cm 的正方形铁皮做一个无盖水箱,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,如果截去的小正方形的边长是x cm ,水箱的容积是y cm 3,则y 与x 之间的函数表达式是_____________,自变量x 的取值范围是___________.10. 某自行车存车处在星期日存车4 000辆,其中变速车存车费是每辆一次0.30元,普通车存车费是每辆一次0.20元,若普通车存车数为x ,存车总收入y(元)与x 的函数表达式是_________________,自变量x 的取值范围是________________. 11. 求下列函数的自变量的取值范围. (1)y =x 2+5;(2)y =x -2x +4;(3)-x ;(4)y =1x 2+2.12. 如图,正方形ABCD的边长为16,M为DC边上一个动点,M点不与D,C点重合,CM=x.(1)试写出△ADM的面积y关于x的函数表达式;(2)求出自变量x的取值范围;(3)当x取多少时,△ADM面积为64?13. 李大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米,要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,长方形ABCD的面积为S.(1)分别求出y,S与x之间的函数表达式;(2)求自变量x的取值范围.14. 高空的气温与距地面的高度有关,某地地面气温为24℃,且已知离地面距离每升高1 km,气温下降6 ℃.(1)写出该地空中气温T(℃)与高度h(km)之间的函数表达式;(2)求距地面3 km处的气温T;(3)求气温为-6 ℃处距地面的高度h.15. 某剧院的观众席的座位为扇形,且按下列方式设置:(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.16. 如图,在Rt△ABC中,已知∠ACB=90°,BC=4 cm,AC=9 cm,点D在射线CA上从点C出发向点A方向运动(点D不与点A重合),且点D运动的速度为2 cm/s,现设运动时间为x(s)时,对应的△ABD 的面积为y(cm2).(1)填写下表:时间x(s) … 2 4 6 … 面积y(cm 2)……(2)请写出y 与x 之间满足的关系式.(3)在点D 的运动过程中:①直接指出出现△ABD 为等腰三角形的次数有______次,当第一次出现△ABD 为等腰三角形时,请用所学知识描述此时点D 所在的位置为__________________与________的交点处; ②求当x 为何值时,△ABD 的面积是△ABC 的面积的14.参考答案:1---5 CABAB 6. x ≠327. y =-2x +168. y =20-5x 0≤x ≤4 9. y =(60-2x)2·x 0<x<30 10. y =1 200-0.1x 0≤x ≤4 000 11. (1) 解:x ≠-4. (2) 解:x 是任意实数. (3) 解:x ≥0. (4) 解:x 是任意实数 12. 解:(1) y =128-8x. (2) 0<x<16. (3) x =8.13. 解:(1) y =-12x +12,S =-12x 2+12x.(2) 0<x<24.14. 解:(1)∵离地面距离每升高1 km ,气温下降6 ℃,∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T =24-6h.(2)当h =3时,T =24-6×3=6(℃).(3)当T =-6℃时,-6=24-6h ,解得h =5,答:距地面的高度h 为5 km.15. 解:(1)由图表中数据可得,当x 每增加1时,y 增加3. (2)由题意可得,y =50+3(x -1)=3x +47.(3)某一排不可能有90个座位,理由:由题意可得:y =3x +47=90,解得x =433.x 不是整数,故某一排不可能有90个座位. 16. (1) 10 2 6(2) ①当点D 在线段AC 上时(不包括A 点),y =12AD ·BC =12(9-2x)×4=-4x +18;②当点D 在CA 的延长线时,y =12AD ·BC =12(2x -9)×4=4x -18.综合①②,得y =⎩⎪⎨⎪⎧-4x +18(0≤x<92)4x -18(x>92).(3) ① AB 的垂直平分线 AC②△ABC 的面积=12AC ×BC =12×9×4=18,令y =184,即184=-4x +18,或者184=4x -18,解得x =278或x =458.∴当x =278或x =458时,△ABD 的面积是△ABC 面积的14.。
2023年中考数学二轮复习 函数的实际问题 拓展练习(含答案)

2023年中考数学二轮复习《函数的实际问题》拓展练习一、选择题1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是( )A.Q=8xB.Q=8x﹣50C.Q=50﹣8xD.Q=8x+502.如左图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,右图中能大致表示水的最大深度h与时间t之间的关系的图象是()3.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量( )A.小于3tB.大于3tC.小于4tD.大于4t4.在体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )5.当温度不变时,某气球内的气压p(kPa)与气体体积V(m3)的函数关系如图所示,已知当气球内的气压p>120 kPa时,气球将爆炸,为了安全起见,气球的体积V 应( )A.不大于45m 3 B.大于45m 3 C.不小于45m 3D.小于45m 36.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为( )A.y =36(1﹣x)B.y =36(1+x)C.y =18(1﹣x)2D.y =18(1+x 2)7.某工厂第一年的利润为20万元,第三年的利润为y 万元.设该公司利润的平均年增长率为x,则y 关于x 的二次函数的表达式为( ).A.y =20(1﹣x)2B.y =20(1+x)2C.y =(1﹣x)2+2D.y =(1﹣x)2﹣208.从地面竖直向上抛出一个小球,小球的高度h(m)关于小球运动时间t(s)的二次函数表达式为h =30t ﹣5t 2.则小球从抛出到回落到地面所需要的时间是( ).A.6sB.4sC.3sD.2s9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4x(单位:米)的一部分,则水喷出的最大高度是 ()A.4米B.3米C.2米D.1米10.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y 和月份n 之间的函数关系式为y=-n 2+14n -24,则该企业一年中应停产的月份是( )A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月11.在A 、B 两地之间有汽车站C(C 在直线AB 上),甲车由A 地驶往C ,乙车由B 地驶往A 地,两车同时出发,匀速行驶.甲、乙两车离C 站的路程y 1,y 2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇.正确的结论有( )A.1个B.2个C.3个D.4个12.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB以相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF 的长为( )A.0.4米B.0.16米C.0.2米D.0.24米二、填空题13.小高从家骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间x(分钟)与离家距离y(千米)的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家需要的时间是分钟.14.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6 km的公路,如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120范围内,且具有一次函数的关系,如下表所示.则y关于x的函数表达式为_____________(写出自变量x的取值范围).15.小东早晨从家骑车到学校,先上坡后下坡,行驶的路程y(千米)与所用的时间x(分)之间的函数关系如图所示,若小东返回时上、下坡的速度仍保持不变,则他从学校骑车回家用的时间是分.16.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示.点P(4,3)在图象上,则当力达到10N时,物体在力的方向上移动的距离是________m.17.如图所示,正方形EFGH的顶点在边长为2的正方形ABCD的边上.若设AE =x,正方形EFGH的面积为y,则y关于x的函数表达式为.18.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.三、解答题19.某气象研究中心观测一场沙尘暴从发生到结束的全过程.开始时风速平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时.一段时间,风速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减l千米/时,最终停止.结合右侧风速与时间的图像回答下列问题:(1)在y轴( )内填入相应的数值;(2)沙尘暴从发生到结束,共经过小时;(3)当x≥25时,风速y(千米/时)与时间x(小时)之间的函数关系式为.20.一辆汽车匀速通过某段公路,所需时间t(单位:h)与行驶速度v(单位:km/h)满足函数关系:t=kv,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?21.甲有存款600元,乙有存款2 000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.(1)求甲、乙的存款额y1、y2(元)与存款月数x(月)之间的函数关系式,画出函数图象.(2)请问到第几个月,甲的存款额超过乙的存款额?22.用一根长是20cm的细绳围成一个长方形(如图),这个长方形的一边的长为xcm,它的面积为ycm2.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(4)猜想一下,怎样围法,得到的长方形的面积最大?最大是多少23.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元,该市一户居民在5月以后,某月用电x千瓦时,当月交电费y 元.(1)上表中,a=_______;b=_______;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?参考答案1.C2.C3.D4.C5.C6.C7.B.8.A.9.A 10.C ;11.D 12.C13.答案为:15;14.答案为:y=-0.2x +50(30≤x≤120)15.答案为:37.216.答案为:1.217.答案为:y =2x 2﹣4x +4.18.答案为:0.5;19.解:(1)8,32.(2)57.(3)y=-x+57(25≤x≤57).20.解:(1)将(40,1)代入t =k v ,得1=k40,解得k =40.函数关系式为:t =40v.当t =0.5时,0.5=40m ,解得m =80.所以,k =40,m =80. (2)令v =60,得t =4060=23.结合函数图象可知,汽车通过该路段最少需要23小时.21.解:(1)y1=600+500x y2=2000+200x;(2)x>423,到第5个月甲的存款额超过乙的存款额.22.解:(1)y=10﹣x)·x,x是自变量,它的值应在0到10之间(不包括0和10) (2)如下表:x1234567891y9162124252421169(3)可以看出:①当x逐渐增大时,y的值先由小变大,后又由大变小;②y的值在由小变大的过程中,变大的速度越来越慢,反过来y的值在由大变小的过程中,变小的速度越来越快;③当x取距5等距离的两数时,得到的两个y值相等.(4)从表中可以发现x=5时,y取到最大的值25.23.解:(1)0.6,0.65;(2)当x≤150时,y=0.6x;当150<x≤300时,y=0.65x﹣7.5;当x>300时,y=0.9x﹣82.5.(3)0.62元.。
安徽省2019年中考二轮复习题型五:函数的实际应用题(含答案)

题型五函数的实际应用题类型一最大利润问题1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=-2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?2.某旅行社推出一条成本价为500元/人的省内旅游线路,游客人数y(人/月)与旅游报价x(元/人)之间的关系为y=-x+1300,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;(2)求经营这条旅游线路每月所需要的最低成本;(3)当这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?3.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并直接写出当x取何值时,商场可获得最大利润,最大利润为多少元?4. (2018合肥庐阳区一模)某公司2017年初刚成立时投资1000万元购买新生产线生产新产品,此外,生产每件该产品还需要成本40元.按规定,该产品售价不得低于60元/件且不得超过160元/件,且每年售价确定以后不再变化,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)求2017年该公司的最大利润?(3)在2017年取得最大利润的前提下,2018年公司将重新确定产品售价,能否使两年共盈利达980万元,若能,求出2018年产品的售价;若不能,请说明理由.第4题图5.某公司生产一种产品,每件成本为2元,售价为3元,年销售量为100万件.为获取更好的效益,公司准备拿出一定资金做广告,通过市场调查发现:每年投入的广告费用为x(单位:十万元) 时,产品的年销售量将是原来的y倍,同时y又是x的二次函数,且满足的相互关系如下表:x0 1 2 …y 1 1.5 1.8 …(1)求y与x之间的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润s(单位:十万元)与广告费x(单位:十万元)的函数关系;(3)如果公司一年投入的年广告费为10-30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增加?公司可获得的最大年利润是多少?6.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送鲜花,感恩母亲,祝福母亲.节日前夕,某花店采购了一批鲜花礼盒,成本价为每件30元,分析上一年母亲节的鲜花礼盒销售情况,得到了如下数据,同时发现每天的销售量y(件)是销售单价x (元/件)的一次函数.(1)求出y 与x 的函数关系;(2)物价局要求,销售该鲜花礼盒获得的利润不得高于100%.①当销售单价x 取何值时,该花店销售鲜花礼盒每天获得的利润为5000元?(利润=销售总价-成本总价);②试确定销售单价x 取何值时,花店销售该鲜花礼盒每天获得的利润W (元)最大?并求出花店销售该鲜花礼盒每天获得的最大利润.7. 某种商品的成本为每件20元,经市场调查发现,这种商品在未来40天内的日销售量m (件)与x (天)的关系如表.时间x (天) 1361036…日销售量m (件)9490847624…未来40天内,前20天每天的价格y 1(元/件)与时间x (天)的函数关系式为y 1=14x +25(1≤x ≤20且x 为整数),后20天每天的价格y 2(元/件)与时间x (天)的函数关系式为y 2=-12x +40(21≤x ≤40且x 为整数).(1)求日销售量m (件)与时间x (天)之间的关系式;(2)请预测本地市场在未来40天中哪一天的日销售利润最大?最大日销售利润是多少?类型二最优方案问题1.某商店分两次购进A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.2.某公司开发了一种新产品,现要在甲地或者乙地进行销售,设年销量为x(件),其中x>0.若在甲地销售,每件售价y(元)与x之间的函数关系式为y=-110x+100,每件成本为20元,设此时的年销售利润为w甲(元)(利润=销售额-成本);若在乙地销售,受各种不确定因素的影响,每件成本为a元(a为常数,15≤a≤25),每件售价为106元,销售x(件)每年还需缴纳110x2元的附加费,设此时的年销售利润为w乙(元)(利润=销售额-成本-附加费);(1)当a=16,且x=100时,w乙=________元;(2)求w甲与x之间的函数关系式(不必写出x的取值范围),并求x为何值时,w甲最大以及最大值是多少?3.近年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?4.都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2∶1.运行区间票价起点站终点站一等座二等座都匀桂林95(元) 60(元)(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式;(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.类型三抛物线型问题1. (2018滨州)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?第1题图2. 有一座抛物线拱型桥,在正常水位时,水面BC 的宽为8米,拱桥的最高点D 到水面BC 的距离DO 为4米,点O 是BC 的中点,如图,以点O 为原点,直线BC 为x 轴,建立直角坐标系xOy .(1)求该抛物线的表达式;(2)如果水面BC 上升3米(即OA =3)至水面EF ,点E 在点F 的左侧,求水面宽度EF 的长.第2题图3. 有一个抛物线型蔬菜大棚,将其截面放在如图所示的直角坐标系中,抛物线可以用函数y =ax 2+bx 来表示.已知大棚在地面上的宽度OA 为10米,距离O 点2米处的棚高BC 为3米.(1)求该抛物线的函数关系式;(2)求蔬菜大棚离地面的最大高度是多少米?(3)若借助横梁DE 建一个门,要求门的高度不低于1.5米,则横梁DE的宽度最多是多少米?第3题图4. 某校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面209m ,与篮圈中心的水平距离为7 m ,当球出手后水平距离为4 m 时到达最大高度4 m ,篮圈距地面3 m ,设篮球运行的轨迹为抛物线.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式; (2)此球能否准确投中?(3)此时,若对方队员乙在甲前面1 m 处跳起拦截,已知乙的最大摸高为3.1 m ,那么他能否拦截成功?第4题图5. 如图,一个圆形喷水池的中央垂直于水面安装了一个柱形喷水装置OA ,O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,按如图所示建立直角坐标系,水流喷出的高度y (m)与水平距离x (m)之间的关系式可以用y =-x 2+bx +c 表示,且抛物线经过点B (12,52),C (2,74),请根据以上信息,解答下列问题.(1)求抛物线的函数关系式,并确定喷水装置OA 的高度; (2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?第5题图类型四 几何面积最大值问题1. 投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m ,平行于墙的边的费用为200元/m ,垂直于墙的边的费用为150元/m ,设平行于墙的边长为x m.(1)设垂直于墙的一边长为y m ,直接写出y 与x 之间的函数关系式; (2)若菜园面积为384 m 2,求x 的值;(3)当x 为何值时,菜园的面积最大,最大值为多少?第1题图2.为了保护环境,实现城市绿化,某房地产公司要在拆迁的一块地上进行绿化改造,他们依据地势整理出了一块矩形区域ABCD,铺成人们可以活动的砖石地面,又分别以AB、BC、CD、DA为斜边向外作等腰直角三角形(如图所示),通过测量,发现四边形MNGH的周长正好为200米,设AB =x米,BC=y米 .(1)求y与x之间的函数关系式;(2)如果矩形区域ABCD铺设砖石地面,建设费用为每平方米50元,其他区域种花草,建设费用为每平方米100元,设总建设费用为w元,求w与x之间的函数关系式;当x取何值时,w有最小值,最小值为多少?第2题图3. (2018合肥瑶海区三模)国际慢城,闲静高淳,景区内有一块矩形油菜花田地(数据如图所示,单位:m),现在其中修建一条观花道(如图阴影所示),供游人赏花.设改造后剩余油菜花地所占面积为y m2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13 m2,求x的值;(3)若要求0.5≤x≤1,求改造后剩余油菜花地所占面积的最大值.第3题图4. (2017潍坊)如图,工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线、虚线表示折痕,并求长方体底面面积为12 dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元.裁掉的正方形边长多大时,总费用最低,最低为多少?第4题图5.如图,为美化社区环境,满足市民休闲娱乐需要,某社区计划在一块长为60 m,宽为40 m 的矩形空地上修建四个面积相等的休闲区,并将余下的空地修建成横向宽x m,纵向宽为2x m的鹅卵石健身道.第5题图(1)用含x(m)的代数式表示休闲区的面积S(m2),并注明x的取值范围;(2)若休闲区的面积与鹅卵石健身道的面积相等,求此时x的值;(3)已知承建公司修建休闲区、鹅卵石健身道的前期投入及造价w1(万元)、w2(万元)与修建面积a(m2)之间的关系如下表所示,并要求满足1≤x≤3,要使修建休闲区和鹅卵石健身道的总价w最低,x应取多少米,最低造价多少万元?a(m2) 0 10 100 …w1(万元) 0.5 0.6 1.5 …w2(万元) 0.5 0.58 1.3 …参考答案类型一最大利润问题1.解:(1)w=(x-80)·y=(x-80)(-2x+320)=-2x2+480x-25600,w与x的函数关系式为:w=-2x2+480x-25600;(2)w=-2x2+480x-25600=-2(x-120)2+3200,∵-2<0,80≤x≤160, ∴当 x=120 时,w 有最大值,w 最大值为 3200. 答:销售单价定为 120 元时,每天销售利润最大,最大销售利润 3200 元. 2. 解:(1)由题意得 y<200 时,即-x+1300<200, 解得:x>1100, 即该旅游线路报价的取值范围为 1100 元/人~1200 元/人之间; (2)设经营这条旅游线路每月所需要的成本为 z 元, ∴z=500(-x+1300)=-500x+650000, ∵-500<0, ∴当 x=1200 时,z 最低=-500×1200+650000=50000; 答:经营这条旅游线路每月所需的最低成本为 50000 元. (3)设经营这条旅游线路的总利润为 w, 则 w=(x-500)(-x+1300)=-x2+1800x-650000=-(x-900)2+160000, ∵-1<0,800≤x≤1200, ∴当 x=900 时,w 最大=160000. 答:当这条旅游线路的旅游报价为 900 元时,可获得最大利润,最大利润为 160000 元. 3. 解:(1)若商场经营该商品不降价,则一天可获利润 100×(100-80)=2000(元); (2)①依题意得: (100-80-x)(100+10x)=2160, 即 x2-10x+16=0, 解得:x1=2,x2=8, 经检验:x1=2,x2=8 均符合题意, 答:商场经营该商品一天要获利润 2160 元,则每件商品应降价 2 元或 8 元; ②依题意得: y=(100-80-x)(100+10x)=-10x2+100x+2000=-10(x-5)2+2250, ∵-10<0, ∴当 x=5 时,商场所获利润最大,最大利润为 2250 元. k=- 1 60k+b=15 20, 4. 解:(1)设 y=kx+b,则根据题图可知 ,解得 160k+b=10 b=18 ∴y 与 x 的函数关系为 y=- 1 x+18(60≤x≤160); 201 1 (2)设公司的利润为 w 万元,则 w=(x-40)(- x+18)-1000=- (x-200)2+280, 20 20 1 又∵- <0, 20 ∴当 x<200 时,w 随 x 增大而增大,则 60≤x≤160, ∴当 x=160 时,w 最大,最大值为 200, ∴2017 年该公司的最大利润为 200 万元; (3)根据题意可得: 1 (x-40)(- x+18)+200=980, 20 解得 x1=100,x2=300(舍), ∴当 x=100 时,能使两年共盈利达 980 万元. 5. 解:(1)设二次函数的解析式为 y=ax2+bx+c,c=1 根据题意,得 a+b+c=1.5 , 4a+2b+c=1.8 a=- 10 解得: 3 , b= 5 c=1 1 3 故所求函数的解析式是:y=- x2+ x+1; 10 5 (2)根据题意,得 s=10y(3-2)-x=-x2+5x+10; (3)s=-x2+5x+10 5 65 =-(x- )2+ . 2 4 由于 1≤x≤3,所以当 1≤x≤2.5 时,s 随 x 的增大而增大. ∴当广告费在 10~25 万元之间,公司获得的年利润随广告费的增大而增大,公司可获得的最大 65 年利润是 万元. 4 6. 解:(1)设一次函数的解析式为 y=kx+b,将(30,350)和(40,300) 分别代入 y=kx+b 30k+b=350 k=-5 得: ,解得 , 40k+b=300 b=5001∴y 与 x 的函数关系式为 y=-5x+500; (2)①据题意得:(x-30)(-5x+500)=5000 即 x2-130x+4000=0, 解得:x1=50,x2=80, 又∵30×(1+100%)=60,80>60 不合题意,舍去, 答:当销售单价 x=50 时,该花店销售鲜花礼盒每天获得的利润为 5000 元. ②据题意得,W=(x-30)(-5x+500),即 W=-5(x-65)2+6125 ∵-5<0,30≤x≤60, 在对称轴直线 x=65 的左边,y 随 x 的增大而增大, 所以,当销售单价 x=60 时,花店销售该鲜花礼盒每天获得的利润 W(元)最大,最大利润 W= -5(60-65)2+6125=6000 元. 7. 解:(1)通过图表可知 m 与 x 之间的关系式为一次函数,设一次函数解析式为 m=kx+b, k+b=94 k=-2 把(1,94)和(3,90)代入,得 ,解得 , 3k+b=90 b=96 ∴m=-2x+96; (2)设日销售利润为 W 元, 1 1 当 1≤x≤20 时,W=(-2x+96)( x+25-20)=- (x-14)2+578, 4 2 当 x=14 时,W 最大=578, 1 当 21≤x≤40 时,W=(-2x+96)(- x+40-20)=(x-44)2-16, 2∵当 x<44 时,W 随 x 增大而减小, ∴x=21 时,W 最大=(21-44)2-16=513, ∴未来 40 天中,第 14 天日销售利润最大,最大利润 578 元. 类型二 最优方案问题 1. 解:(1)设 A 种商品每件的进价为 x 元,B 种商品每件的进价为 y 元, 30x+40y=3800 根据题意得: , 40x+30y=3200 x=20 解得 , y=80 答:A 种商品每件的进价为 20 元,B 种商品每件的进价为 80 元; (2)设购进 B 种商品 m 件,获得的利润为 w 元,则购进 A 种商品(1000-m)件, 根据题意得:w=(30-20)(1000-m)+(100-80)m=10m+10000, ∵A 种商品的数量不少于 B 种商品数量的 4 倍, ∴1000-m≥4m, 解得:m≤200, ∵在 w=10m+10000 中,10>0, ∴w 的值随 m 的增大而增大, ∴当 m=200 时,w 取最大值,最大值为 10×200+10000=12000, ∴当购进 A 种商品 800 件、B 种商品 200 件时,销售利润最大,最大利润为 12000 元. 2. 解:(1)8000; 1 【解法提示】w 乙=(106-a)x- x2, 10 当 a=16 且 x=100 时,w 乙=90×100-1000=8000(元); 1 1 1 (2)w 甲=(y-20)x=(- x+100-20)x=- x2+80x=- (x-400)2+16000, 10 10 10 1 ∵- <0,∴当 x=400 时,w 甲最大,最大值是 16000. 10 3. 解:(1)由题意得: y1=(120-a)x(1≤x≤125,x 为正整数), y2=(180-80)x-0.5x2=100x-0.5x2(1≤x≤120,x 为正整数); (2)①∵40<a<100, ∴120-a>0, 即 y1 随 x 的增大而增大, ∴当 x=125 时,y1 最大值=(120-a)×125=15000-125a(万元), 即方案一的最大年利润为(15000-125a)万元; ②y2=-0.5(x-100)2+5000, ∵-0.5<0, ∴当 x=100 时,y2 最大值=5000(万元), 即方案二的最大年利润为 5000 万元; (3)由 15000-125a>5000, 解得 a<80, ∴当 40<a<80 时,选择方案一;由 15000-125a=5000,解得 a=80, ∴当 a=80 时,选择方案一或方案二均可; 由 15000-125a<5000,得 a>80, ∴当 80<a<100 时,选择方案二. 4. 解:(1)设参加社会实践的老师有 m 人,学生有 n 人,则学生家长代表有 2m 人, 根据题意得: 95(3m+n)=6175 m=5 ,解得 , 60(m+2m)+60×0.75n=3150 n=50 则 2m=10, 答:参加社会实践的老师、家长代表与学生各有 5、10 与 50 人; (2)由(1)知所有参与人员总共有 65 人,其中学生有 50 人, ①当 50≤x<65 时,最经济的购票方案为: 学生都买学生票共 50 张,(x-50)名成年人买二等座火车票,(65-x)名成年人买一等座火车票. ∴火车票的总费用(单程)y 与 x 之间的函数关系式为:y=60×0.75×50+60(x-50)+95(65-x), 即 y=-35x+5425(50≤x<65); ②当 0<x<50 时, 最经济的购票方案为: 一部分学生买学生票共 x 张, 其余的学生与家长代表、 老师一起购买一等座火车票共(65-x)张. ∴火车票的总费用(单程)y 与 x 之间的函数关系式为:y=60×0.75x+95(65-x), 即 y=-50x+6175(0<x<50), ∴购买单程火车票的总费用 y 与 x 之间的函数关系式为:-50x+6175(0<x<50) y= ; -35x+5425(50≤x<65)(3)∵x=30<50, ∴y=-50x+6175=-50×30+6175=4675, 答:当 x=30 时,购买单程火车票的总费用为 4675 元. 类型三 抛物线型问题 1. 解:(1)当 y=15 时, 15=-5x2+20x, 解得 x1=1,x2=3, 答:在飞行过程中,当小球的飞行高度为 15 m 时,飞行时间是 1 s 或 3 s; (2)当 y=0 时, 0=-5x2+20x, 解得 x1=0,x2=4, ∵4-0=4, ∴在飞行过程中,小球从飞出到落地所用时间是 4 s; (3)y=-5x2+20x=-5(x-2)2+20, ∵-5<0 ∴当 x=2 时,y 取得最大值,此时,y=20, 答:在飞行过程中,小球飞行高度在第 2 s 时最大,最大高度是 20 m. 2. 解:(1)设抛物线的表达式为:y=ax2+c, 由题意可得图象经过(4,0),(0,4),c=4 则 , 16a+c=01 解得:a=- , 4 1 故抛物线的表达式为:y=- x2+4; 4 (2)由题意可得:y=3 时, 1 3=- x2+4, 4 解得:x=± 2, 故 EF=4, 答:水面宽度 EF 的长为 4 m. 3. 解:(1)由题意可得,抛物线经过(2,3),(10,0),100a+10b=0 故 , 4a+2b=3 a=-16 解得: , 15 b = 83 15 故抛物线的函数关系式为:y=- x2+ x; 16 8 3 15 (2)y=- x2+ x 16 8 3 75 =- (x-5)2+ , 16 16 3 ∵- <0, 16 75 ∴当 x=5 时,y 最大= , 16 75 故蔬菜大棚离地面的最大高度是 米; 16 (3)由题意可得:当 y=1.5 时, 3 15 1.5=- x2+ x, 16 8 解得:x1=5+ 17,x2=5- 17, 故 DE=x1-x2=5+ 17-(5- 17)=2 17. 答:门高度不低于 1.5 米时,横梁 DE 最宽为 2 17米. 20 4. 解:(1)根据题意,求出手点、最高点和篮圈的坐标分别为:(0, ),(4,4),(7,3), 9 设二次函数解析式为 y=a(x-h)2+k,由题知 h=4,k=4,即 y=a(x-4)2+4, 20 20 将点(0, )代入上式可得 16a+4= , 9 931 解得 a=- , 9 1 ∴抛物线解析式为 y=- (x-4)2+4(0≤x≤7); 9 (2)将(7,3)点坐标代入抛物线解析式得: 1 - ×(7-4)2+4=3, 9 ∴(7,3)点在抛物线上, ∴此球一定能投中; (3)能拦截成功, 1 理由:将 x=1 代入 y=- (x-4)2+4 得 y=3, 9 ∵3<3.1, ∴他能拦截成功. 1 5 7 5. 解:(1)根据题意,将点 B( , ),C(2, )代入 y=-x2+bx+c, 2 2 4-(2) +2b+c=2 得 , 7 - 2 + 2 b + c = 42 2115b=2 解得 7 , c=4 7 ∴抛物线的函数关系式为 y=-x2+2x+ , 4 7 7 当 x=0 时,y= ,∴喷水装置 OA 的高度为 米; 4 4 7 11 (2)∵y=-x2+2x+ =-(x-1)2+ , 4 4 11 11 ∴当 x=1 时,y 取得最大值 ,故喷出的水流距水面的最大高度是 米; 4 4 7 (3)当 y=0 时,解方程-x2+2x+ =0, 4 解得 x1=1- 11 11 (舍去),x2=1+ , 2 2 11 )米,才能使喷出的水流不至于落在池外. 2 类型四 几何面积最大值问题 1. 解:(1)根据题意知,y= (2)根据题意,得: 2 100 (- x+ )x=384, 3 3 解得:x=18 或 x=32, ∵墙的长度为 24 m, 10000-200x 2 100 =- x+ (0<x≤24); 3 3 2×150答:水池的半径至少要(1+∴x=32,不合题意,舍去, ∴x=18; (3)设菜园的面积为 S m2, 2 100 则 S=(- x+ )x 3 3 2 100 =- x2+ x 3 3 2 1250 =- (x-25)2+ , 3 3 2 ∵- <0, 3 ∴当 x<25 时,S 随 x 的增大而增大, ∵x≤24, 2 1250 ∴当 x=24 时,S 取得最大值,最大值为- ×(24-25)2+ =416(m2), 3 3 答:当 x=24 时,菜园的最大面积为 416 m2. 2. 解:(1)∵以 AB、BC、CD、DA 为斜边向外作等腰直角三角形, ∴四边形 MNGH 为矩形, ∵AB=CD, ∴△AHB≌△DNC, ∴AH=DN, 又∵MA=MD,∴MH=MN, ∴矩形 MNGH 为正方形, ∵AB=x,∴BH= ∵BC=y,∴BG= ∴ 2 x, 2 2 y, 22 2 x+ y=200÷ 4=50, 2 2 200 2 ) - xy]×100 =- 50xy + 250000 =- 50x( - x + 50 2) + 250000 = 50x2 - 4整理得 y=-x+50 2; (2)∵w = 50xy + [(2500 2 x+250000, 2500 2 ∵50>0, ∴当 x= =25 2时, w 有最小值, w 最小=50×(25 2)2-2500 2×25 2+250000 2×50 =187500. 答:当 x=25 2时,w 有最小值,最小值为 187500 元. 3. 解:(1)由题意可得:y=(8-x)(6-x)=x2-14x+48(0<x<6); (2)由题意可得:y=48-13=35, 则 x2-14x+48=35, 即(x-1)(x-13)=0, 解得:x1=1,x2=13, 经检验得:x=13 不合题意,舍去, 答:x 的值为 1; (3)y=x2-14x+48=(x-7)2-1, 当 0.5≤x≤1 时,y 随 x 的增大而减小, 165 故当 x=0.5 时,y 最大,最大值为(0.5-7)2-1= (m2). 4 165 答:改造后剩余油菜花地所占面积的最大值为 m2. 4 4. 解:(1)裁剪示意图如解图:第 4 题解图 设裁掉的正方形的边长为 x dm. 根据题意可得:(10-2x)(6-2x)=12, 即 x2-8x+12=0, 解得 x1=2,x2=6(不合题意,舍去), ∴裁掉的正方形的边长为 2 dm; (2)由题意可得 10-2x≤5(6-2x),解得 0<x≤2.5, 设总费用为 y 元, 根据题意得 y=2[x(10-2x)+x(6-2x)]×0.5+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24, ∵对称轴为直线 x=6,函数图象开口向上, ∴当 0<x≤2.5 时,y 随 x 的增大而减小, ∴当 x=2.5 时,y 有最小值,最小值为 4×(2.5-6)2-24=25(元). 答:当正方形的边长为 2.5 dm 时,总费用最低,最低为 25 元. 5. 解:(1)S=40×60-2x×40×3-60×x×3+2x· x· 9=18x2-420x+2400; x<10 60-2x×3>0 ∵ ,得 40, 40-x×3>0 x< 3 ∴0<x<10, ∴S=18x2-420x+2400(0<x<10); 40×60 (2)由题意得:18x2-420x+2400= ,化简得 3x2-70x+200=0, 2 10 10 解得 x1= ,x2=20(不合题意,舍去),∴此时 x 为 m; 3 3 (3)由表可知:修建休闲区前期投入 0.5 万元,每平方米造价 0.01 万元;修建鹅卵石健身道前期 投入 0.5 万元,每平方米造价 0.008 万元,由上述信息可得:w=0.01×(18x2-420x+2400)+ 0.008×(-18x2+420x)+1 , 整理, 得 w=0.036x2-0.84x+25, 配方后, 得 w= 35 ∵a>0,∴当 x< 时,w 随 x 的增大而减小, 3 ∵1≤x≤3,∴当 x=3 时,w 最小=0.036×9-0.84×3+25=22.804(万元), 答 : 当 x 的 值 取 3 米 时 , 最 低 造 价 为 元. 22.804 万 9 35 201 (x- )2+ , 250 3 10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1初三数学强化训练(五)函数(一)(总分150分,时间100分钟)班级__________________姓名_______________学号__________得分_______一、填空题(每题3分,共36分)1.点(-2,1)在第_______象限,它关于x 轴的对称点在第________象限.2.函数x y 1-=的自变量x 的取值范围是 . 3.将直线x y 31=向下平移3个单位所得直线的解析式为___________________.4.已知一次函数b kx y +=的图象交y 轴于正半轴,且y 随x 的增大而减小,请写出符合上述条件的一个解析式.....: . 5.已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是 . 6.已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2)若223x y +=,1xy =,则x y -= . 7.一次函数y =34x +4分别交x 轴、y 轴于A 、B 两点,在x 轴上取一点,使△ABC 为等腰三角形,则这样的的点C 最多..有 个. 8.已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .9.如图, 在平面直角坐标系中, 若△ABC 与△A 1B 1C 1关于E 点成中心对称,则对称中心E 点的坐标是 .10.在直角坐标系中,横坐标和纵坐标都是整数的点称为格点.已知一个圆的圆心在原点,半径等于5,那么这个圆上的格点有 个. 二、选择题(每题3分,共30分).11坐标半面上,在第二象限内有一点P ,且P 点到x 轴的距离是4,到y 轴的距离是5,则P 点坐标为何? ( )A .(-5,4)B .(-4,5)C . (4,5)D . (5,-4) 12.要使式子a +2a有意义,a 的取值范围是 ( )A .a ≠0B .a >-2且a ≠0C .a >-2或a ≠0D .a ≥-2且a ≠0 13.在平面直角坐标系中,以O (0,0),A (1,1),B (3,0)为顶点,构造平行四边形,下列各点中不能..作为平行四边形顶点坐标的是 ( ) A .(-3,1) B .(4,1) C .(-2,1) D .(2,-1) 14.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 15.下列函数中,y 随x 增大而增大的是( )A .x y 3-= B . 5+-=x y C . 12y x = D . )0(212<=x x y 16.已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x (k 2≠0)的图象有一个交点的坐标为 (-2,-1),则它的另一个交点的坐标是 ( )A . (2,1)B . (-2,-1)C . (-2,1)D . (2,-1)17.如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是 ( ) 18.一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是 ( )A .摩托车比汽车晚到1 hB .A ,B 两地的路程为20 kmC .摩托车的速度为45 km/hD .汽车的速度为60 km/h19.某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 ( ) A.20kg B .25kg C .28kg D .30kg20.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为 ( ) A .1或-2 B .2或-1 C .3 D .4火车隧道o y x o y x o y x o y x A B C DO 3050300900x (kg)y (元)三、解答题(共84分)21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,益阳地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米? (10分)22.已知直线经过点(1,2)和点(3,0),求这条直线的解析式.(8分)23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟.(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?(12分)24.直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P . (1)求b 的值;(2)不解关于y x ,的方程组 ⎩⎨⎧+=+=nmx y x y 1请你直接写出它的解;(3)直线3l :y nx m =+是否也经过点P ?请说明理由.(10分)25.点P (1,a )在反比例函数xky =的图象上,它关于y 轴的对称点在一次函数42+=x y 的图象上,求此反比例函数的解析式.(10分)26.保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式. ⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平? ⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?(12分)27.如图, 已知在平面直角坐标系xOy 中,一次函数b kx y +=(k ≠0)的图象与反比例函数x m y =(m ≠0)的图象相交于A 、B 两点,且点B 的纵坐标为21-,过点A 作AC ⊥x 轴于点C , AC =1,OC =2. 求:(1)求反比例函数的解析式;(2)求一次函数的解析式.(10分)28.在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形.(1)求函数y =43-x +3的坐标三角形的三条边长; (2)若函数y =43-x +b (b 为常数)的坐标三角形周长为16,求此三角形面积.(12分)参考答案一、填空题1.二,三 2.0≠x 3. 331-=x y 4.如32+-=x y 5.y <-2 6.(1)3-(2).1- 7.4. 8.(4,0);(4,4);(0,4);(0,0).9.(3,-1) 10.12. 二、选择题.11. A 12.D 13.A 14.A 15.C 16.A 17. A 18.C 19.B 20.A 三、解答题(共58分)21.⑴ x y 620-= (0>x )⑵ 500米=5.0千米 1750620=⋅⨯-=y (℃) ⑶ x 62034-=- x=9千米22.解:设这直线的解析式是(0)y kx b k =+≠,将这两点的坐标(1,2)和(3,0)代入,得2,30,k b k b +=⎧⎨+=⎩,解得1,3,k b =-⎧⎨=⎩ 所以,这条直线的解析式为3y x =-+.23.解:(1)15,154(2)由图像可知,s 是t 的正比例函数设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454= 解得:454=k ∴s 与t 的函数关系式t s 454=(450≤≤t ) (3)由图像可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为n mt s +=(0≠m )代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m解得:⎪⎩⎪⎨⎧=-=12154n m ∴12154+-=t s (4530≤≤t )令t t 45412154=+-,解得4135=t 当4135=t 时,34135454=⨯=S 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。
24.(1)∵),1(b 在直线1+=x y 上, ∴当1=x 时,211=+=b .(2)解是⎩⎨⎧==.2,1y x(3)直线m nx y +=也经过点P∵点P )2,1(在直线n mx y +=上, ∴2=+n m .把,1x =代入m nx y +=,得2m =+n . ∴直线m nx y +=也经过点P .25.解:点P (1,a )关于y 轴的对称点是(-1,a ),因为点(-1,a )在一次函数y=2x+4的图象上,所以a=2×(-1)+4=2因为点P (1,2)在反比例函数xky =的图象,所以k=2 所以反比例函数的解析式是2y x= 26.⑴①当1≤x ≤5时,设k y x =,把(1,200)代入,得200k =,即200y x=;②当5x = 时,40y =,所以当x >5时,4020(5)2060y x x =+-=-;⑵当y =200时,20x -60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元; ⑶对于200y x=,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2=6个月. 27.解:(1)∵AC ⊥x 轴 AC=1 OC=2 ∴点A 的坐标为(2,1)∵反比例函数xmy =的图像经过点A (2,1)∴ m =2 ∴反比例函数的解析式为xy 2=(2)由(1)知,反比例函数的解析式为xy 2=∵反比例函数x y 2=的图像经过点B 且点B 的纵坐标为-21∴点B 的坐标为(-4,-21)∵一次函数y =kx +b 的图象经过点A (2,1)点B (-4,-21)∴ ⎪⎩⎪⎨⎧-=+-=+21412b k b k 解得:k =41 b =21 ∴一次函数的解析式为2141+=x y 28.解:(1) ∵ 直线y =43-x +3与x 轴的交点坐标为(4,0),与y 轴交点坐标为(0,3), ∴函数y =43-x +3的坐标三角形的三条边长分别为3,4,5.(2) 直线y =43-x +b 与x 轴的交点坐标为(b 34,0),与y 轴交点坐标为(0,b ), 当b >0时,163534=++b b b ,得b =4,此时,坐标三角形面积为332;当b <0时,163534=---b b b ,得b =-4,此时,坐标三角形面积为332.综上,当函数y =43-x +b 的坐标三角形周长为16时,面积为332.。