弹性极限拧紧技术及其应用_王艳忠

弹性极限拧紧技术及其应用_王艳忠
弹性极限拧紧技术及其应用_王艳忠

常用材料的弹性模量、切变模量及泊松比[1]

常用材料的弹性模量及泊松比 数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 79.38 0.25~0.3 2 碳钢196~206 79 0.24~0.28 3 铸钢172~202 - 0.3 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 0.23~0.27 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 0.32~0.35 8 轧制纯铜108 39 0.31~0.34 9 轧制锰青铜108 39 0.35 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 0.32~0.42 12 轧制锌82 31 0.27 13 硬铝合金70 26 - 14 轧制铝68 25~26 0.32~0.36 15 铅17 7 0.42 16 玻璃55 22 0.25 17 混凝土17.5~32.5 4.9~15.7 0.1~0.18 18 纵纹木材9.8~12 0.5 - 19 横纹木材0.5~0.98 0.44~0.64 - 20 橡胶0.00784 - 0.47 21 电木 1.96~2.94 0.69~2.06 0.35~0.38 22 尼龙28.3 10.1 0.4 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 1.07 - - 29 夹布酚醛塑料4~8.8 - - 30 石棉酚醛塑料 1.3 - - 31 高压聚乙烯0.15~0.25 - - 32 低压聚乙烯0.49~0.78 - - 33 聚丙烯 1.32~1.42 - -

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

(推荐)常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━2003表3.4.3统一取弹性模量206000MPa。泊松比约为0.3 )(有限元材料库的参数为:45号钢密度7890kg/m3,泊松比0.269,杨氏模量209000GP.)(HT200,弹性模量为135GPa,泊松比为0.27) (HT200 密度:7.2-7.3,弹性模量:70-80; 泊松比0.24-0.25 ;热膨胀系数加热: 10 冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E=1.22e 11 Pa, 泊松比λ=0.25,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为0.3) ( HT200,其弹性模量 E=140GPa,泊松比μ=0.25,密度ρ=7.8×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,C-3.47%,Si-2.5%,密度 7210 kg / m3 ,泊松比 0.27。) (箱体材料为HT200,其性能参数为:弹性模量E=1.4×10 11 Pa,泊松比μ=0.3,密度为ρ=7.8×10 3 kg.m -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度7.25 t/m 3 ,弹性模量126 GPa, 泊松比0.3) (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━ (有限元材料库的参数为:45号钢密度7890kg/m3,泊松比,杨氏模量209000GP.) (HT200,弹性模量为135GPa,泊松比为) (HT200 密度:,弹性模量:70-80; 泊松比热膨胀系数加热:10冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E= 11 Pa, 泊松比λ=,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为 ( HT200,其弹性模量 E=140GPa,泊松比μ=,密度ρ=×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,%,%,密度 7210 kg / m3 ,泊松比。) (箱体材料为HT200,其性能参数为:弹性模量E=×10 11 Pa,泊松比μ=,密度为ρ=×10 3 -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度 t/m 3 ,弹性模量126 GPa, 泊松比 (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

常用弹性模量及泊松比 ━━━━━━━━━━━━━━━━━━名称弹性模量E 切变模量G 泊松比μ GPa GPa ──────────────────镍铬钢 206 合金钢 206 碳钢 196-206 79 铸钢 172-202 球墨铸铁 140-154 73-76 灰铸铁 113-157 44 白口铸铁 113-157 44 冷拔纯铜 127 48 轧制磷青铜 113 41 轧制纯铜 108 39 轧制锰青铜 108 39

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

极限的性质与四则运算法则

第四节 极限的性质与四则运算法则 教学目的:使学生掌握极限的四则运算法则,并会利用它们求极限; 教学重点:有理函数极限的计算; 教学过程: 一、复习无穷大和无穷小的概念及性质 二、讲解新课: 一、函数极限的性质 定理1:(保号性)设A x f x x =→)(lim 0 , (i ) 若)0(0<>A A ,则0>?δ,当),(0δ∧ ∈x U x 时,0)(>x f )0)((A 的情形。取2 A =ε,由定义,对此0,>?δε,当),(0δ∧∈x U x 时, 2)(A A x f =<-ε,即0)(2 32)(220>?=+<<-=”,“<”不能改为“≥”,“≤”。 在(ii)中,若0)(>x f ,未必有0>A 。 二、极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

常用材料弹性模量

常用材料弹性模量 所谓弹性模量,是以在一定比例限度范围内拉伸应力和拉伸变形之比来表示。实际应用时,多以F-2 、F-5来表示2%或5%伸长时的应力。 在GB∕T 13022-1991中7.3规定:作应力-应变曲线,从曲线的初始直线部分计算拉伸弹和模量,以E(MPa)表示,E=δ∕ξ,式中δ-应力,MPa;ξ-应变。 在初始拉伸阶段,拉伸应力与形变化呈直线段,从这段应力与应变的关系可以计算试样的弹性模量。 而我们通常检测的薄膜断裂拉伸强度以及断裂伸长率,对于张力的设定而言不具有任何参考性,印刷复合时加载在薄膜上的应力必须控制在薄膜产生弹性变形的范围内,否则就是薄膜不可逆的拉伸变形,将产生严重的尺寸变化。 另外,薄膜张力设定还要考虑薄膜材料的受热稳定性,例如印刷干燥温度在50-80℃,复合干燥温度在55-90℃(水胶复合要高一些),复合热鼓温度在50-70℃等。常用材料的热稳定性依次为PET、NY >BOPP>消光OPP>CPP>PE。

下面我们探讨一下常用材料的弹性模量及耐热性对张力设定的影响:1、双向拉伸薄膜 作为表层基材,PET的弹性模量最高,其次是BOPP,再次是消光OPP,而BOPA在干燥条件时有良好的弹性模量(接近于PET薄膜),但受潮后挺度不足(弹性模量大幅降低,印刷套印困难)。同时,PET膜的热稳定性最好,其次是BOPP,再次消光OPP,由于消光OPP膜的弹性模量相对较低,同时热稳定性又较差,印刷冷却收卷后的回缩率较大,在夏季印刷收卷后易容易出现反粘现象,所以印刷消光OPP 时张力要调整得略小,干燥温度适当降低。 2、热封层基材的弹性模量 同时CPP的热稳定性远高于PE薄膜,因而LDPE薄膜的多色套印非常困难,需要配方调整提高其弹性模量及耐热稳定性。 对复合过程来说,最关键的是两贴合薄膜的张力匹配问题,也就是说复合后两层膜的回缩率要尽量一致,不然,轻则卷曲,重则产生遂道现象。例如,消光OPP干复铝箔,铝箔可以认为是不收缩,而消光OPP薄膜在加载复合张力的情况下经过50-80℃的烘箱,由于其弹性模量及耐热性都较PET及普通OPP差,因而松掉张力后的回缩率也会大一些,一般消光膜复合时张力要小干燥温度也要低一些。

大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

大数定理与中心极限定理的关系及应用

本科生毕业论文(设计) 题目大数定律与中心极限定理的 关系及应用 姓名学号 院系数学科学学院 专业数学与应用数学 指导教师职称 2013年4 月16 日 曲阜师范大学教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Key words (3) 引言 (3) 1 大数定律与中心极限定理的关系 (4) 1.1预备知识 (4) 1.1.1大数定律 (4) 1.1.2中心极限定理 (5) 1.2大数定律与中心极限定理的关系 (6) 1.2.1服从大数定律不服从中心极限定理的例子 (7) 1.2.2服从中心极限定理不服从大数定律的例子 (8) 1.2.3大数定律与中心极限定理均不服从的例子 (9) 2 大数定律与中心极限定理在实际生活中的应用 (10) 2.1 在误差分析中的应用 (10) 2.2 在数学分析中的应用 (11) 2.3 在近似计算中的应用 (13) 2.4 在保险业中的应用 (14) 2.5 在企业管理方面的应用 (15) 结论 (16) 致谢 (16) 参考文献 (17)

大数定律与中心极限定理的 关系及应用 摘要:本文通过对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据。另外,叙述了大数定律与中心极限定理之间的关系,同时通过举出很多相关的反例说明二者的关系。最后给出了一些简便的大数定律与中心极限定理在误差分析、数学分析、近似计算、保险业及企业管理等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。 关键词:大数定律中心极限定理随机变量应用 Relationship and Applications between the Law of Large Number and Central Limit Theorem Student majoring in mathematics and applied mathematics Bai Yanfei Tutor Liu Li Abstract: Based on the law of large numbers and central limit theorem in the independent distribution with the different distribution of both cases, it makes more systematic exposition, and reveals the phenomenon of the random nature of the most fundamental an average of the results of the Stability. Through the central limit theorem discussion, it gives out the random variables and the distribution of the normal distribution. At the same time, it demonstrates the relationship between the two aspects through lots of anti-related examples. Finally, it gives out several aspects of applications of a number of simple law of large numbers and the central limit theorem in error analysis, mathematical analysis, the approximate calculation, the insurance industry and business management to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value. Key words: Laws of large number; Central-limit theorem; Random variables; Applications 引言概率论与数理统计是研究随机现象的统计规律的一门学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带。大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。在现实生活中经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然。 而中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分

最新1.4极限的性质与四则运算法则

1.4极限的性质与四 则运算法则

第四节极限的性质与四则运算法则 教学目的:使学生掌握极限的四则运算法则,并会利用它们求极限; 教学重点:有理函数极限的计算; 教学过程: 一、复习无穷大和无穷小的概念及性质 二、讲解新课: 一、函数极限的性质 定理1:(保号性)设?Skip Record If...?, (i)若?Skip Record If...?,则?Skip Record If...?,当?Skip Record If...?时,?Skip Record If...??Skip Record If...?。 (ii)若?Skip Record If...?,必有?Skip Record If...?。 证明:(i)先证?Skip Record If...?的情形。取?Skip Record If...?,由定 义,对此?Skip Record If...?,当?Skip Record If...?时,?Skip Record If...?,即?Skip Record If...?。 当?Skip Record If...?时,取?Skip Record If...?,同理得证。 (ii)(反证法)若?Skip Record If...?,由(i)?Skip Record If...?矛盾,所以?Skip Record If...?。 当?Skip Record If...?时,类似可证。 注:(i)中的“?Skip Record If...?”,“?Skip Record If...?”不能改为“?Skip Record If...?”,“?Skip Record If...?”。 在(ii)中,若?Skip Record If...?,未必有?Skip Record If...?。 二、极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。定理1:若?Skip Record If...?,则?Skip Record If...?存在,且?Skip Record If...?。

常用材料的弹性模量及泊松比数据表

常用材料的弹性模量及泊松比数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 ~ 2 碳钢196~206 79 ~ 3 铸钢172~202 - 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 ~ 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 ~ 8 轧制纯铜108 39 ~ 9 轧制锰青铜108 39 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 ~ 12 轧制锌82 31 13 硬铝合金70 26 - 14 轧制铝68 25~26 ~ 15 铅17 7 16 玻璃55 22 17 混凝土14~23 ~~ 18 纵纹木材~12 - 19 横纹木材~~- 20 橡胶- 21 电木~~~ 22 尼龙 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 - - 29 夹布酚醛塑料4~- - 30 石棉酚醛塑料- - 31 高压聚乙烯~- - 32 低压聚乙烯~- - 33 聚丙烯~- -

Q235等属于碳素结构钢,35#、45#等属于优质碳素钢,强度较高,塑性和韧性都比碳素钢好。 屈服强度:是弹性变形的极限也叫屈服点。增加应力到一定程度时成为塑性变形,也就是变弯了。每种钢的屈服强度是不一样的 镍铬钢、合金钢的弹性模量是206GPa 碳钢的弹性模量为196~206GPa,计算时一般取206GPa 铸钢的弹性模量为172~202Gpa

中心极限定理的应用

毕业论文 题目中心极限定理的应用 学生姓名张世军学号1109014148 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学专业(统计类)11级2班指导教师程小静 2015 年 5 月 25 日

中心极限定理的应用 张世军 (陕西理工学院数学与计算机科学学院数学与应用数学专业2011级数应2班,陕西汉中 723000) 指导教师:程小静 [摘要]中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类重要定理。本文首先从中心极限定理的内容出发,给出几种常见的中心极限定理并对其进行了证明;其次讨论了中心极限定理在供应电力、器件价格、商场管理、烟卷制造业、社会生活、军事问题等这几个方面的实际应用;最后总结分析了中心极限定理在应用上的优缺点。 [关键词]随机变量;中心极限定理;正态分布;概率论;近似计算 Central Limit Theorem of Application Zhang Shijun (Grade11,Class02,Major Mathematics and Applied Mathematics Specialty,Mathematics and computer scienceDept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Cheng Xiaojing Abstract:The central limit theorem is an important limit theorem in probability theory to discuss a set of random variables and the distribution of the normal distribution. Firstly starting from the content of the central limit theorem, given several common central limit theorems and its proofs; Second central limit theorem is discussed in the electric power supply, prices, market management, cigarette manufacturing, social life, the practical application of this a few aspects such as military questions; Summarized and analyzed the advantages and disadvantages of central limit theorem on the application. Keywords:Random variables; Central limit theorem; Normal distribution; Probability theory;Approximate calculation

极限的性质和运算法则

第 周第 学时教案 授课教师:贾其鑫 1.4 极限的性质与运算法则 教学目标: 1.掌握极限的性质及四则运算法则。 2.会应用极限的性质及运算法则求解极限 教学重点:极限的性质及四则运算法则; 教学难点:几种极限的种类及求解方法的归纳 教学课时:2学时 教学方法:讲授法、归纳法、练习法 教学过程: 1.4.1 极限的性质 性质1.5(唯一性) 若极限)(lim x f 存在,则极限值唯一. 性质1.6(有界性) 若极限)(lim 0 x f x x →存在,则函数)(x f 在0x 的某个空心邻域内有界. 性质1.7(保号性) 若A x f x x =→)(lim 0 ,且0>A (或0x f (或0)(

第 周第 学时教案 授课教师:贾其鑫 (3)当0)(lim ≠=B x v 时,B A x v x u x v x u ==)(lim )(lim )()(lim 证 我们只证(1). 因为A x u =)(lim ,B x v =)(lim ,由定理1.2有α+=A x u )(,β+=B x v )(,其中α,β是同一极限过程的无穷小量,于是)()()()(βα+±+=±B A x v x u )()(βα±+±=B A .根据无穷小量的性质,βα±仍是无穷小量,再由定理1.2的充分性可 得.[]B A x v x u x v x u ±=±=±)(lim )(lim )()(lim . 上述运算法则,不难推广到有限多个函数的代数和及乘法的情况. 推论 设)(lim x u 存在,c 为常数,n 为正整数,则有 (1) [])(lim )(lim x u c x u c ?=?; (2) []n n x u x u )]([lim )(lim =. 在使用这些法则时,必须注意两点: (1)法则要求每个参与运算的函数的极限存在. (2)商的极限的运算法则有个重要前提,即分母的极限不能为零. 例1 求)522(lim 1 +--→x x x . (初等函数定义域内某点的极限) 解 )522(lim 1 +--→x x x 5lim 1 )2(lim 1)2(lim 1-→+-→--→=x x x x x 5lim 1 )2(lim 1)2(lim 1-→+-→--→=x x x x x

中心极限定理应用

中心极限定理及其应用 【摘要】中心极限定理的产生具有一定的客观背景,最常见的是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。它们表明了当n 充分大时,方差存在的n 个独立同分布的随机变量和近似服从正态分布,在实际中的应用相当广泛。本文讨论了中心极限定理的内容、应用与意义。 【关键词】:中心极限定理 正态分布 随机变量 一、概述 概率论与数理统计是研究随机现象、统计规律性的学科。随机现象的规律性只有在相同条件下进行大量重复的实验才会呈现出来,而研究大量的随机现象常常采用极限的形式,由此导致了对极限定理的研究。极限定理的内容很广泛,中心极限定理就是其中非常重要的一部分内容。中心极限定理主要描述了在一定条件下,相互独立的随机变量序列X1、X2、…Xn 、…的部分和的分布律:当n →∞时的极限符合正态分布。因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使得中心极限定理有了广泛的应用。 二、定理及应用 1、定理一(林德贝格—勒维定理) 若 ξ 1 ,ξ 2 ,…是一列独立同分布的随机变量,且 E k ξ=a, D k ξ = σ 2 ( σ 2 >0) ,k=1,2,…则有 dt e x n na p x t n k k n ? ∑∞ -- =∞ →= ≤-2 1 221)(lim π σξ 。 当n 充分大时, n na n k k σξ ∑=-1 ~N (0,1),∑=n k k 1 ξ ~N (2 ,σn na ) 2、定理二(棣莫弗—拉普拉斯中心极限定理) 在n 重伯努利试验中,事件A 在每次试验中出现的概率为错误!未找到引用源。, 错误!未 找到引用源。为n 次试验中事件A 出现的次数,则dt e x npq np p x t n n ?∞ -- ∞ →= ≤-2 2 21 )( lim π μ 其中1q p =-。这个定理可以简单地说成二项分布渐近正态分布,因此当n 充分大时,可

中心极限定理论文:中心极限定理及其简单应用.

中心极限定理论文:中心极限定理及其简单应用 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极pH定理的内容并简单介绍了它在实际中的应用。关键词:中心极限定理正态分布随机变量一、概述概率论与数理统计是研究随机现象、统计规律性的学科。随机现象的规律性只有在相同条件下进行大量重复的实验才会呈现出来,而研究大量的随机现象常常采用极限的形式,由此导致了对极限定理的研究。极限定理的内容很广泛,中心极限定理就是其中非常重要的一部分内容。中心极限定理主要描述了在一定条件下,相互独立的随机变量序列X1、X2、…Xn、…的部分和的分布律:当n→∞时的极限符合正态分布。因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使得中心极限定理有了广泛的应用。二、定理及应用中心极限定理有多种形式:1、独立同分布下的中心极限定理定理 1[1],设x1,X2,…,Xn,…是独立同分布随机变量,EXi=μDXi=σ2(i=1,2,…,n)则它表明当n充分大时,n个具有期望和方差的独立同分布的 随机变量之和近似服从正态分布。定理1也称为林德伯格定理或列维——林德伯格定理。其中上下同除n,分子中有xi,其在数理统计中可表示样本的均值,可见独立同分布的样本均值近似地服从正态分布。这使得中心极限定理在数理统计中有着广泛而重要的作用。而上述定理应用到伯努利实验序列的情形,我们可以得到如下定理。定理2[1](拉普拉斯定理),在n重伯 努利试验中,事件A在每次实验中出现的概率P(0 2、同分布下中心极限定理的简单应用独立同分布的中心极限定理可应用于求随机变量之和Sn落在某区间的概率和已知随机变量之和Sn取值的概率,求随机变量的个数。 例1[3],设各零件的重量都是随机变量,它们相互独立且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总重量超过2510kg的概率是多少? 解:设Xi(i=1,2,…,5000)表示第i个零件的重量X1, X2,…,X5000独立同分布且E(Xi)=0.5,D(Xi)=0.12。由独立同分布的中心极限定理可知=I-φ(1.414)=1-0.9215 =0.0785 例 2[3],一生产线生产的产品成箱包装,每箱的重量是随机的且同分布,设每箱平均重50kg,标准差为5kg,若用最大载重为50吨的汽车承运,每辆车最多可以装多少箱才能保证不超载的概率大于0.977?解:设Xi(i=1,2,…,n)是装运第i箱的重量,n为所求箱数。由条件可把X1,X2,…,Xn看作独立同分布的随机变量,而n箱的总重量为Tn=X1+X2+…+Xn,是独立同分布的随机变量之和。由E(Xi)=50、D(Xi)=52得:E(Tn)=50n,D(Tn)=52n 根据独立同分布的中心极限定理:即最多可以装98箱。例3[2],报名听 心理学课程的学生人数K是服从均值为100的泊松分布的随机变量,负责这门课的教授决定,如果报名人数不少于120,就分成两班,否则就一班讲授。问 该教授讲授两个班的概率是多少? 分析:该教授讲授两个班的情况出现当且仅当报名人数x不少于120,精确解为P(x≥120)=e-100100i/i!很难求解,如果利用泊松分布的可加性,想到均值为100的泊松分布随机变量等于 100个均值为1的独立泊松分布随机变量之和,即X=Xi,其中每个Xi具有参数1的泊松分布,则我们可利用中心极限定理求近似解。解:可知 E(X)=100,D(X)=100 ∴P(X≥120)=1-φ()=1-φ(2)=0.023 即教授讲授两个班的概率是0.023。例4[1],火炮向目标不断地射击,若每

相关文档
最新文档