中心极限定理的内涵和应用
中心极限定理的内容及意义

中心极限定理的内容及意义1. 中心极限定理呀,这可是个超神奇的东西呢!简单说就是不管原来的总体分布长啥样,只要样本量足够大,样本均值的分布就近似于正态分布。
就好比咱们学校组织抽奖,奖品有好多不同类型,一开始奖品的分布是乱七八糟的。
可是当抽奖的次数足够多,也就是样本量够大的时候,每次抽奖得到的平均奖品价值的分布就变得很有规律了,就像正态分布那样规规矩矩的。
这多奇妙啊!2. 中心极限定理的意义可不得了。
它就像一把万能钥匙,能打开很多统计学上的难题之门。
比如说,有个卖水果的小贩,他进的水果大小不一,最开始水果大小的分布特别复杂。
但是如果他每次称一大袋水果当作一个样本,称的次数多了,这些样本的平均水果大小就会遵循正态分布。
这让他能更好地预估自己水果的平均大小,然后定价啊,控制成本啥的,是不是超级有用?3. 嘿,中心极限定理!你知道吗?它让我们能在很复杂的情况下做出靠谱的估计。
想象一下,一个工厂生产各种形状和大小的零件,那些零件最初的尺寸分布乱得像一团麻。
但是呢,当我们从生产线每次取足够多的零件当作样本,样本的平均尺寸就会像听话的孩子一样,接近正态分布。
这就像给工程师们吃了颗定心丸,他们能根据这个来判断生产是否正常,多棒啊!4. 中心极限定理是统计学里的一颗璀璨明星啊。
它的内容就是告诉我们,即使总体是千奇百怪的分布,只要样本量上去了,样本均值的分布就向正态分布看齐。
就像一群性格各异的人,一开始乱哄哄的。
可是当把他们分成足够多的小组,每个小组的平均性格就会有一定的规律,就好像被正态分布的魔力给约束住了一样。
这对我们做调查研究可太有帮助了,能让我们从混乱中找到规律呢。
5. 哇塞,中心极限定理真的很牛!它的内容可以这么理解,无论总体的分布是像高山一样起伏不定,还是像迷宫一样错综复杂,只要样本数量足够大,样本均值的分布就会变得像正态分布那样平滑和有规律。
比如说,在一个大型的购物商场里,顾客的消费金额分布一开始各种各样。
统计学中心极限定理

统计学中心极限定理统计学中心极限定理是统计学中一个重要的概念和方法,它是对大数定律的推广和应用。
所谓大数定律是指在一定条件下,大量相互独立的随机变量的平均值趋向于一个确定的常数。
而中心极限定理则是关于随机变量和概率分布的一个定理,它揭示了随机变量和概率分布之间的关系。
中心极限定理的核心思想是,如果一个随机变量是由多个相互独立的随机变量的和或平均值构成的,那么当这些随机变量的数量足够大时,它的分布将逐渐接近于正态分布。
具体来说,中心极限定理分为三种形式:李雅普诺夫型、林德贝格-列维型和费歇尔-拉普拉斯型。
首先是李雅普诺夫型中心极限定理。
该定理是由俄国数学家亚历山大·利亚普诺夫于1901年提出的,它针对独立同分布的随机变量序列。
如果这个序列的方差有限,那么当随机变量的数量足够大时,它们的和的分布将逐渐接近于正态分布。
这个定理在实际应用中非常重要,例如在样本均值的抽样分布中,李雅普诺夫型中心极限定理可以帮助我们进行假设检验和置信区间的计算。
其次是林德贝格-列维型中心极限定理。
该定理由瑞典数学家约瑟夫·林德贝格和法国数学家保罗·列维于1922年独立提出,它针对独立同分布的随机变量序列。
如果这个序列的方差无限大,但是它们的均值的标准差趋向于零,那么当随机变量的数量足够大时,它们的标准化和的分布将逐渐接近于标准正态分布。
林德贝格-列维型中心极限定理在实际应用中常用于描述随机过程的极限行为,例如在金融市场中的股票价格变动。
最后是费歇尔-拉普拉斯型中心极限定理。
该定理由法国数学家西蒙·费歇尔和法国数学家皮埃尔-西蒙·拉普拉斯于1812年独立提出,它针对二项分布的随机变量序列。
如果这个序列的样本容量足够大,那么它的二项分布可以近似为正态分布。
费歇尔-拉普拉斯型中心极限定理在实际应用中常用于二项分布的近似计算,例如在品质控制中的不良品率的估计。
总结来说,统计学中心极限定理是关于随机变量和概率分布之间的一个重要定理。
中心极限定理的概念和意义

中心极限定理的概念和意义1. 什么是中心极限定理?中心极限定理,听起来像个高深的数学名词,其实它就像一道神奇的魔法,能够把许多复杂的事情简单化。
简单来说,中心极限定理告诉我们,当我们对一个大样本进行多次独立抽样时,不管原始数据的分布是什么样的,样本均值的分布都会逐渐趋向于正态分布,尤其是在样本量很大的时候。
就像你把各种水果放进果汁机,搅拌后,不管你放了苹果、香蕉还是橙子,最后出来的果汁看起来都是一样的好喝。
这就说明了,无论你起初的配方是什么,经过“搅拌”之后,结果会趋于一致。
再简单一点说,假如你在学校里收集了班上每个人的数学考试成绩,结果发现有些人考得很好,有些人却很糟糕,但当你把这所有的成绩加起来,算出平均分,你会发现这个平均值往往是一个相对稳定的数字,不管班上有多少人,成绩好坏参差不齐。
这种稳定性就是中心极限定理的魔力所在。
2. 中心极限定理的意义2.1 统计学的基石要说这个定理的重要性,那可真是“举足轻重”。
它是统计学中的一块基石,几乎所有的统计推断都离不开它。
比如,想知道一所学校学生的身高平均值,你不可能把每一个学生都量一遍,但你可以随机抽取一些学生,算出他们的平均身高。
根据中心极限定理,即使你只量了少数几个人,结果也能反映出全校的平均身高。
这种“以小见大”的智慧,简直就是统计界的“金钥匙”。
2.2 应用广泛再说说它的应用,中心极限定理简直是无处不在!比如在保险公司,他们要计算风险,得出保费,都会用到这个定理。
商家在做市场调查时,抽样调查也是通过它来推算出顾客的消费习惯。
这就好比打猎,猎人并不需要每一只动物的详细资料,只要找出一小部分的样本,就能知道整个森林里动物的情况,做到心中有数,真是一举两得。
3. 生活中的例子3.1 不怕风雨生活中,我们其实每天都在体验中心极限定理的作用。
比如你买彩票,很多人总是抱怨运气不佳,觉得自己永远不可能中大奖。
但是如果你从统计的角度来看,每次购买彩票的结果就是一个个小样本,虽然单个结果可能天差地别,但如果你连续购买彩票几次,最终的平均中奖概率会变得更加可预测。
计量经济学中心极限定理名词解释

计量经济学中心极限定理名词解释计量经济学中心极限定理是计量经济学中的一个基础理论,其主要用于解释样本的分布以及如何估计总体参数。
该定理包含多个重要的名词,下面将分步骤对其进行解释。
首先,需要了解样本和总体的概念。
样本是从总体中选取的一部分,用于对总体进行推断。
总体是研究对象的全体,研究人员往往无法对其进行直接观测和测量,因此需要通过对样本的观测和测量来推断总体的属性。
其次,需要了解中心极限定理的含义。
中心极限定理是指,当样本量充分大时,样本均值的分布近似于正态分布,且均值的期望等于总体均值,方差等于总体方差除以样本量。
这种近似关系在统计学中被广泛使用,可以帮助研究人员估计未知总体参数,并进行假设检验。
中心极限定理的应用需要满足一些条件,其中最重要的是样本量足够大。
样本量越大,比例就越接近正态分布,因此我们可以更准确地预测总体参数。
除此之外,样本应当是从总体中简单随机抽取,样本应当相互独立,且总体分布应当对称。
在实际应用中,中心极限定理通常用于进行假设检验。
假设检验是通过观测样本来推断总体参数的一种方法,其中核心是对样本均值和总体均值进行比较。
当样本均值与总体均值之间的差异显著超过统计学上的随机变异时,我们可以拒绝原假设,并认为两个均值存在显著差异。
总之,中心极限定理在计量经济学中有着广泛的应用,可以有效地进行总体参数估计和假设检验。
这一定理的核心概念包括样本、总体、正态分布以及样本均值等,了解这些概念对于进一步深入计量经济学理论和实践至关重要。
中心极限定理及其应用

中心极限定理及其应用中心极限定理(Central Limit Theorem,CLT)是统计学中的一个重要定理,它描述了当随机变量具有一定的条件下,独立同分布的随机变量之和近似服从正态分布的现象。
具体来说,中心极限定理包括以下两个主要形式:1.林德伯格-列维中心极限定理(Lindeberg–Lévy CLT):对于从任意分布中独立同分布抽取的n个随机变量的和,当n趋于无穷大时,这个和的标准化形式近似服从标准正态分布。
即使原始随机变量不是正态分布,这一定理仍然成立。
2.德梅勒-拉普拉斯中心极限定理(De Moivre–Laplace CLT):对于二项分布或渐进服从二项分布的离散随机变量,经过适当的标准化处理,当抽样量n趋于无穷大时,其近似服从标准正态分布。
中心极限定理的应用广泛,以下是一些常见的应用场景:1.抽样分布的近似:当抽样量较大时,根据中心极限定理,我们可以使用正态分布来近似描述抽样分布,从而简化计算和推断统计。
2.参数估计与假设检验:中心极限定理可用于估计未知总体分布的参数,并进行统计推断。
例如,使用样本均值的抽样分布的近似可以进行置信区间估计和假设检验。
3.统计模型的诊断与推断:利用中心极限定理,我们可以对统计模型的残差进行正态性检验,以验证模型的合理性,并进行参数估计、模型比较和推断分析。
4.投资与金融分析:中心极限定理可以用于模拟股票价格、利率等金融变量的分布,从而帮助分析风险、定价衍生品等。
总之,中心极限定理是统计学中非常重要和有用的一个定理,它为我们提供了一种近似描述随机变量和抽样分布的方法,广泛应用于统计推断、参数估计、模型诊断和金融分析等领域。
中心极限定理的内涵和应用

中心极限定理的内涵和应用在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。
中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。
这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。
故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。
一、独立同分布下的中心极限定理及其应用在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1:定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记nn X Y n i i n σμ-=∑=1 则对任意实数y ,有 {}⎰∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22(1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。
由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。
为此,设μ-n X 的特征函数为)(t ϕ,则n Y 的特征函数为nY n t t n ⎥⎦⎤⎢⎣⎡=)()(σϕϕ 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0ϕ'=0,2)0(σϕ-=''。
于是,特征函数)(t ϕ有展开式)(211)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σϕϕϕϕ 从而有=⎥⎦⎤⎢⎣⎡+-=+∞→+∞→n n Y n n t o nt t n )(21lim )(lim 22ϕ22t e - 而22t e -正是N(0,1)分布的特征函数,定理得证。
中心有限定理

中心极限定理(Central Limit Theorem)是概率论中的一种重要定理,它描述了在独立同分布随机变量的条件下,这些随机变量的平均值的分布性质。
具体来说,如果有一组独立同分布的随机变量,它们的平均值(或者中心化后的平均值)会趋近于正态分布,无论这些随机变量的分布是什么。
这个定理有几个重要的应用:
统计学和数据分析:中心极限定理是统计学的基础,因为它允许我们使用正态分布来近似其他分布的统计量,如样本均值等。
在很多统计分析方法中,中心极限定理都是一个关键的组成部分。
组合数学和概率论:中心极限定理在组合数学和概率论中有广泛的应用,例如在研究随机游走、随机图、随机过程等问题时。
机器学习和人工智能:在机器学习和人工智能领域,中心极限定理也被用来解释一些算法的收敛性和稳定性。
例如,在梯度下降等优化算法中,中心极限定理可以解释为什么在多次迭代后,算法的输出会趋近于一个正态分布。
这个定理是概率论中的一个基本结果,其证明涉及到了更高级的概率论概念,包括大数定律和特征函数等。
尽管它的应用非常广泛,但其证明过程比较复杂,需要深入的概率论知识。
中心极限定理内容

中心极限定理内容
中心极限定理是概率论和统计学中的一个重要定理,它指出,对于一个具有相同分布和有限均值和方差的独立随机变量样本,它们的平均值的分布在样本量足够大时趋近于正态分布。
中心极限定理的含义在于,当样本量增大时,样本均值的变异性逐渐减小,而均值的分布逐渐趋近于一个确定的正态分布。
这一定理充分展示了正态分布作为统计学中常用分布的优越性。
中心极限定理具有广泛的应用,例如在样本比例推断和回归分析中,可以使用中心极限定理来计算样本均值的置信区间和标准误差。
因此,中心极限定理是概率论和统计学中最重要的定理之一,是许多统计学方法的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心极限定理的涵和应用在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。
中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。
这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。
故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。
一、独立同分布下的中心极限定理及其应用在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1:定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记nn XY ni in σμ-=∑=1则对任意实数y ,有{}⎰∞--∞→=Φ=≤yt n n t y y Y P .d e π21)(lim 22(1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。
由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。
为此,设μ-n X 的特征函数为)(t ϕ,则n Y 的特征函数为nY n t t n ⎥⎦⎤⎢⎣⎡=)()(σϕϕ又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0ϕ'=0,2)0(σϕ-=''。
于是,特征函数)(t ϕ有展开式)(211)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σϕϕϕϕ从而有=⎥⎦⎤⎢⎣⎡+-=+∞→+∞→nn Y n n t o nt t n )(21lim )(lim 22ϕ22t e -而22t e-正是N(0,1)分布的特征函数,定理得证。
这个中心极限定理是由林德贝格和勒维分别独立的在1920年获得的,定理告诉我们,对于独立同分布的随机变量序列,其共同分布可以是离散分布,也可以是连续分布,可以是正态分布,也可以是非正态分布,只要其共同分布的方差存在,且不为零,就可以使用该定理的结论。
定理1的结论告诉我们:只有当n 充分大时,n Y 才近似服从标准正态分布)1,0(N ,而当n 较小时,此种近似不能保证。
也就是说,在n 充分大时,可用)1,0(N 近似计算与n Y 有关事件的概率,而n 较小时,此种计算的近似程度是得不到保障的。
当)1,0(~N Y n 时,则有),(~),,(~221nN X n n N X ni i σμσμ∑=经过多方面的理论研究,我们可知定理1主要适用于以下两个方面; 应用一:求随机变量之和n S 落在某区间的概率(例如例2.)。
应用二:已知随机变量之和n S 取值的概率,求随机变量的个数n 。
在日常生活中,我们会发现其实有很多的例子均可用林德伯格-勒维中心极限定理来解决。
在此我们从中选择了几个典型而又带有新意的例子,仅供大家参考。
例1.用中心极限定理说明在正常的射击条件下,炮弹的射程服从或近似服从正态分布。
[1]解:设a 为理论射程,ξ为实际射程,则η=ξ-a 为实际射程对理论射程的偏差,显然ξ=η+a ,故只需证η~N(μ,2σ)。
由于在实际射击中,有很多不可控制的随机因素在不断变化,所以造成了实际射程对理论射程的偏差,若设1ξ:射击时炮身振动引起的偏差,2ξ:炮弹外形差异引起的偏差,3ξ:炮弹火药的成分引起的偏差,4ξ:射击时气流的差异引起的偏差……,n ξ:……,显然有η=∑=ni i 1ξ∵影响实际射程的因素是大量的, ∴这里的n 一定很大,又∵炮身的振动、炮弹的外形、火药的成分、气流的变化…….这些因素之间没有什么关系(或有微弱关系)。
∴由它们引起的1ξ,2ξ,……n ξ可看做是相互独立的。
而正常的射击条件也就是对射程有显著影响的因素已被控制,所以1ξ,2ξ,……n ξ所起的作用可看做是同样微小。
∴由中心极限定理可知η~N(μ,2σ)。
∵η可正,可负且相会均等 ∴p=0 ∴η~N(0,2σ)。
则),(~2σηξa N a +=从这个例子来看,虽然看上去有点复杂,但是我们还是很清晰地可以看到如果一个随机变量能表示成大量独立随机变量的和,并且其中每一个随机变量所起的作用都很微小,则这个随机变量服从或近似服从正态分布,这给我们的计算带来很大方便。
现在的旅游、汽车等行业越来越受欢迎,为了体现中心极限定理的重要性,我们不妨从现实生活中的热门行业说起,看看它到底起到怎样的重要性。
例2.某汽车销售点每天出售的汽车服从参数为λ=2的泊松分布,若一年365天都经营汽车销售,且每天出售的汽车数是相互独立的,求一年中售出700辆以上汽车的概率。
[1]解:设i ξ为第i 天出售的汽车的数量,则36521......ξξξξ+++=为一年的总销量,由2)()(==i i Var E ξξ,知=)(ξE 365×2=730利用中心极限定理得 P(ξ>700)=1-P(ξ≤700)≈1—)730730700(-Φ=1-Φ(一1.11)=0.8665从此例可以看出,中心极限定理揭示了离散型随机变量与连续型随机变量的在关系,即离散型随机变量的极限分布是正态分布。
事实上,在现实生活中的很多方面,我们都能清晰地看到中心极限定理的存在。
那么在理论中,我们也可用它来解决一些比较抽象的问题,比如下面的极限求解问题。
例3.利用中心极限定理证明:21!lim 0=∑=-∞→nk k nn k n e [1] 证明:设{k ξ}独立同分布且k ξ~P(1),k=1,2……. 则a=()k E ξ=l ,2σ=()k Var ξ=1 ∵由泊松分布的可加性知∑=nk k 1ξ~P(n)∴n nk k n k n i i n k k e k n k P n P -====∑∑∑∑=⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛≤0011!ξξ又∵由中心极限定理知:()⎥⎦⎤⎢⎣⎡≤-=⎪⎭⎫ ⎝⎛≤-=⎪⎭⎫ ⎝⎛≤∑∑∑===010111k n k n k k n k k P n P n P ξξξ ()()00111Φ→⎥⎦⎤⎢⎣⎡≤-=∑=n k k n P ξ()∞→=n 21∴21!lim 0=∑=-∞→nk k nn k n e如果在林德伯格-勒维中心极限定理中,n X 服从二项分布,就可以得到以下的定理:定理2(棣莫弗-拉普拉斯中心极限定理)设n 重伯努利试验中,事件A 在每次试验中出现的概率为p (0<p<1),记n S 为n 次试验中事件A 出现的次数,且记npqnp S Y n n -=*,则对任意实数y ,有dt ey y Y P ytn n ⎰∞--∞→==≤2*221)()(lim πφ该定理是林德伯格-莱维中心极限定理的特殊情况,是最早的中心极限定理。
大约在1733年,棣莫弗对p=21证明了上述定理,后来拉普拉斯把它推广至p 是任意一个小于l 的正数上去。
它表明,n 充分大时,npqnp S Y n n -=*分布近似服从与标准正态分布,常称为“二项分布收敛于正态分布”,正态分布是二项分布的极限分布,当n 充分大时,我们可以利用该定理的结论来计算二项分布的概率。
由于此定理有更广泛的实际应用,我们将在下面的部分具体地分析棣莫弗-拉普拉斯中心极限定理在实际生活中的应用。
二、独立不同分布下的中心极限定理及其应用前面我们已经在独立同分布的条件下,解决了随机变量和的极限分布问题。
在实际问题中说诸i X 具有独立性是常见的,但是很难说诸i X 是“同分布”的随机变量。
比如在我们的生活中所遇到的某些加工过程中的测量误差n Y ,由于其是由大量的“微小的”相互独立的随机因素i X 叠加而成的,即∑==ni i n X Y 1,诸iX 间具有独立性,但不一定同分布。
在此,我们还要深入地研究在独立不同分布的前提下,各随机变量和的极限分布问题,目的是给出极限分布为正态分布的条件。
为使极限分布是正态分布,必须对∑==ni i n X Y 1的各项有一定的要求。
譬如若允许从第二项开始都等于0,则极限分布显然由1X 的分布完全确定,这时就很难得到什么有意思的结果。
这就告诉我们,要使中心极限定理成立,在和的各项中不应有起突出作用的项,或者说,要求各项在概率意义下“均匀地小”。
下面我们来分析如何用数学式子来明确表达这个要求。
设}{X n 是一个相互独立的随机变量序列,它们具有有限的数学期望和方差:i i X E μ=)(,2)(i i X Var σ=,.,2,1⋅⋅⋅=i要讨论随机变量的和∑==ni i n X Y 1,我们先将其标准化,即将它减去均值、除以标准差,由于,)(21n n Y E μμμ+⋅⋅⋅++=)(n Y σ=)(n Y Var =22221n σσσ+⋅⋅⋅++, 且记)(n Y σ=n B ,则n Y 的标准化为∑=*-=+⋅⋅⋅++-=ni n ii n n n nB X B Y Y 121)(μμμμ。
如果要求中各项nii B X μ-“均匀地小”,即对任意的,0>τ要求事件}{}{n i i nii ni B X B X A τμτμ>-=>-=发生的可能性小,或直接要求其概率趋于0.为达到这个目的,我们要求0)max (lim1=>-≤≤∞→n i i ni n B X P τμ。
因为∑==≤≤>-≤>-=>-ni n i i ni n i i n i i ni B X P B X P B X P 111)())(()max (τμτμτμ ,若设诸i X 为连续随机变量,其密度函数为)(x p i ,则上式右边=∑⎰∑⎰=>-=>--≤ni B x i i nni B x i ni ni dx x p x B dx x p 12221)()(1)(τμτμμτ因此,只要对任意的,0>τ有0)()(1lim 1222=-∑⎰=>-∞→ni B x i i nn ni dx x p x B τμμτ, )2(就可保证*n Y 中各加项“均匀地小”。
上述条件(2)称为林德伯格条件[2]。
林德伯格证明了满足(2)条件的和*n Y 的极限分布是正态分布,这就是下面给出林德伯格中心极限定理。
定理3(林德伯格中心极限定理) 设独立的随机变量序列设}{X n 满足(2)林德伯格条件,则对任意的x ,有dt ex X B P xt ni i i nn ⎰∑∞--=∞→=≤-21221))(1(lim πμ.假如独立随机变量序列}{X n 具有同分布和方差有限的条件,则必定满足以上(2)林德伯格条件,也就是说定理l 是定理3的特例。