混凝土受弯构件正截面受力性能

合集下载

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章钢筋混凝土受弯构件正截面承载力计算受弯构件(bendingmember)是指截面上通常有弯矩和剪力共同作用而轴力可以忽视不计的构件。

钢筋混凝土受弯构件的主要形式是板(Slab)和梁(beam),它们是组成工程结构的基本构件,在桥梁工程中应用很广。

在荷载作用下,受弯构件的截面将承受弯矩M和V的作用。

因此设计受弯构件时,一般应满意下列两方面的要求:(1)由于弯矩M的作用,构件可能沿弯矩最大的截面发生破坏,当受弯构件沿弯矩最大的截面发生破坏时,破坏截面与构件轴线垂直,称为正截面破坏。

故需进行正截面承载力计算。

(2)由于弯矩M和剪力V的共同作用,构件可能沿剪力最大或弯矩和努力都较大的截面破坏,破坏截面与构件的轴线斜交,称为沿斜截面破坏,故需进行斜截面承载力计算。

为了保证梁正截面具有足够的承载力,在设计时除了适当的选用材料和截面尺寸外,必需在梁的受拉区配置足够数量的纵向钢筋,以承受因弯矩作用而产生的拉力;为了防止梁的斜截面破坏,必需在梁中设置肯定数量的箍筋和弯起钢筋,以承受由于剪力作用而产生的拉力。

第一节受弯构件的截面形式与构造一、钢筋混凝土板的构造板是在两个方向上(长、宽)尺度很大,而在另一方向上(厚度)尺寸相对较小的构件。

钢筋混凝土板可分为整体现浇板和预制板。

在施工场地现场搭支架、立模板、配置钢筋,然后就地浇筑混凝土的板称为整体现浇板。

通常这种板的截面宽度较大,在计算中常取单位宽度的矩形截面进行计算。

预制板是在预制厂和施工场地现场预先制好的板,板宽度一般掌握在Inl左右,由于施工条件好,预制板不仅能采纳矩形实心板,还能采纳矩形空心板,以减轻板的自重。

板的厚度h由截面上的最大弯矩和板的刚度要求打算,但是为了保证施工质量及耐久性的要求,《大路桥规》规定了各种板的最小厚度;行车道板厚度不小于IOOmm人行道板厚度,就地浇注的混凝土板不宜小于80mm,预制不宜小于60mm。

空心板桥的顶板和底板厚度,均不宜小于80mm。

混凝土受弯构件正截面承载力计算

混凝土受弯构件正截面承载力计算
h0—有效高度。 1.最大配筋率及界限相对受压区高度
r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y

x
h0

r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。

钢筋混凝土梁受弯构件 正截面承载力实验

钢筋混凝土梁受弯构件 正截面承载力实验

有技术、技术秘密、软件、算法及各种新的产品、工程、技术、系统的应用示范等。

第三条本办法所称科技成果转化,是指为提高生产力水平而对科学研究与技术开发所产生的具有实用价值的科技成果所进行的后续试验、开发、应用、推广直至形成新技术、新工艺、新材料、新产品,发展新产业等活动。

第四条科技成果转化应遵守国家法律法规,尊重市场规律,遵循自愿、互利、公平、诚实信用的厚则,依照合同的约定,享受利益,承担风险,不得侵害学校合法权益。

第二章组织与实施第五条学校对科技成果转化实行统一管理。

合同的签订必须是学校或具有独立法人资格的校内研究机构,否则科技成果转化合同的签订均是侵权行为,由行为人承担相应的法律责任。

第六条各学院应高度重视和积极推动科技成果转化工作,并在领导班子中明确分管本单位科技成果转化工作的负责人。

第七条学校科学技术处是学校科技成果转化的归口管理部门,是科技成果的申报登记和认定的管理机构,负责确认成果的权属并报批科技成果转化合同。

第八条学校科技成果可以采用下列方式进行转化:(一)自行投资实施转化;(二)向他人转让;(三)有偿许可他人使用;(四)以该科技成果作为合作条件,与他人共同实施转化;(五)以该科技成果作价投资,折算股份或者出资比例;(六)其它协商确定的方式。

第九条不论以何种方式实施科技成果转化,都应依法签订合同,明确各方享有的权益和各自承担的责任,并在合同中约定在科技成果转化过程中产生的后续改进技术成果的权属。

第十条对重大科研项目所形成的成果,或拟转让的、作价入股企业的、金额达到100万元的科技成果,应先到科学技术处申请、登记备案,并报请学校校长办公会审核、批准、公示后才能进行。

第十一条科技成果转让的定价主要采取协议定价方式,实行协议定价的,学校对科技成果名称、简介、拟交易价格等内容进行公示,公示期15天。

第十二条对于公示期间实名提出的异议,学校科学技术处组织不少于3人的行业专家进行论证,并将论证结果反馈至科技成果完成人和异议提出者,如任何一方仍有异议,则应提交第三方评估机构进行评估,并以评估结论为准。

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算摘要:一、引言二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念2.影响因素3.计算公式及步骤三、简便计算方法1.经验公式2.修正系数法3.截面分类法四、计算实例1.实例一2.实例二3.实例三五、结论与建议正文:一、引言钢筋混凝土受弯构件在我国建筑行业中有着广泛的应用,其正截面承载力计算一直是工程技术人员关注的问题。

为了简化计算过程,本文将介绍一种简便的计算方法,以提高工程实践中的工作效率。

二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念正截面承载力:指受弯构件在正截面上能承受的最大弯矩引起的内力。

影响因素:材料强度、截面尺寸、钢筋配置等。

2.影响因素(1)材料强度:包括混凝土抗压强度fc和钢筋抗拉强度fs。

(2)截面尺寸:截面宽度b、截面高度h。

(3)钢筋配置:包括钢筋直径d、钢筋间距s和钢筋数量n。

3.计算公式及步骤根据我国现行的设计规范,正截面承载力计算公式如下:c = fc * b * h * γcs = fs * d * (h - d / 2) * γs其中,Nc为混凝土截面承载力,Ns为钢筋截面承载力,γc和γs分别为混凝土和钢筋的截面折减系数。

三、简便计算方法1.经验公式根据工程实践经验,可得以下经验公式:c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)2.修正系数法针对不同钢筋直径和截面尺寸,采用修正系数进行计算。

3.截面分类法根据截面尺寸和钢筋配置,将受弯构件分为若干类别,各类别计算公式如下:(1)类别一:h / d ≤ 25c = 0.75 * fc * b * hs = 0.75 * fs * d * (h - d / 2)(2)类别二:25 < h / d ≤ 50c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)(3)类别三:h / d > 50c = 1.0 * fc * b * hs = 1.0 * fs * d * (h - d / 2)四、计算实例1.实例一某受弯构件,混凝土抗压强度fc = 20MPa,截面宽度b = 200mm,截面高度h = 300mm,钢筋直径d = 16mm,钢筋间距s = 200mm,钢筋数量n = 4。

第3章钢筋混凝土受弯构件正截面承载力

第3章钢筋混凝土受弯构件正截面承载力

b b
钢筋级别
不超筋 超筋
b
≤C50 C80
HPB300
HRB335 HRB400 RRB400
0.576
0.550
0.518
0.493
0.518
0.429
2.适筋与少筋的界限——截面最小配筋率
min
min 不少筋 min 少筋
附表9
min
ft max(0.45 ,0.2%) fy
第3章 钢筋混凝土受弯构件正截面承载力
3.1 3.2 3.3 3.4 3.5 3.6
概述 受弯构件正截面受力性能试验 受弯构件正截面承载力计算的基本原则 单筋矩形截面受弯构件正截面承载力计算 双筋矩形截面受弯构件正截面承载力计算 T形截面受弯构件正截面承载力计算
3.1 概述
截面上有弯矩和剪力共同作用,轴力可以忽略不计的构件称为 受弯构件。梁和板是典型的受弯构件 。 一是由M引起,破坏截面与构件的纵轴线垂直,为沿正截面破 坏; 二是由M和V共同引起,破坏截面是倾斜的,为沿斜截面破坏。
特征:受压区混凝土被压碎 破坏时,钢筋尚未屈服。 属于:“脆性破坏”
③ 少筋破坏
配筋率小于最小配筋率 的梁为少筋梁。 ρ<ρmin
特征:一裂就坏 属于:“脆性破坏”
3.3 受弯构件正截面承载力计算的基本原则
3.3.1 正截面受弯承载力计算的几个基本假定
①平截面假定 构件正截面弯曲变形后仍保持一平面,即截面 上的应变沿梁高度为线性分布,基本上符合平截面假定。 ②不考虑截面受拉区混凝土的抗拉强度 认为拉力完全由钢筋 承担。因为混凝土开裂后所承受的拉力很小,且作用点又靠近中 和轴,对截面所产生的抗弯力矩很小,所以忽略其抗拉强度。

第三章-钢筋混凝土受弯构件正截面承载力计算

第三章-钢筋混凝土受弯构件正截面承载力计算
截面抗裂验算是建立在第Ⅰa阶段的基础之上,构 件使用阶段的变形和裂缝宽度的验算是建立在第 Ⅱ阶段的基础之上,而截面的承载力计算则是建 立在第Ⅲa阶段的基础之上的。
§3.3 建筑工程中受弯构件正截面承载力计算方法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
fcu,k——混凝土立方体抗压强度标准值;
n——系数,当计算的n大于2.0时,应取为2.0。
n,ε0,εcu的取值见表3—1。
由表3-1可见,当混凝土的强度等级小于和等于C50时,
n,ε0和εcu均为定值。当混凝土的强度等级大于C50时,随 着混凝土强度等级的提高,ε0的值不断增大,而εcu值却逐渐
M
f y As (h0
x) 2
(3-9b)
式中M——荷载在该截面上产生的弯矩设计值; h0——截面的有效高度,按下式计算
h0=h-as
h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。
对于处于室内正常使用环境(一类环境)的梁和板,
当混凝土强度等级> C20,保护层最小厚度(指从构件 边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝 士保护层厚度不得小于15mm
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;

混凝土受弯构件正截面承载力影响因素分析

混凝土受弯构件正截面承载力影响因素分析

混凝土受弯构件正截面承载力影响因素分析引言混凝土结构在工程中得到了广泛应用,作为一种常见的结构材料,混凝土结构具有良好的耐久性和硬度。

其中,受弯构件是混凝土结构中的常用部件,在建筑、桥梁等工程中都有应用。

受弯构件的承载力是设计中的重要问题,因此需要对其承载力影响因素进行分析和研究。

本文将分析混凝土受弯构件正截面承载力的影响因素,旨在为工程师提供参考和思路。

承载力定义混凝土受弯构件正截面承载力是指在混凝土受弯构件桁架效应未产生前,混凝土受弯构件正截面最大承载扭矩的大小。

混凝土受弯构件的正截面承载力是由混凝土的强度和钢筋的强度共同决定的。

在混凝土结构中,承载力往往是需要考虑多种因素影响的。

影响因素分析混凝土受弯构件正截面承载力受到多种因素影响,主要包括以下几个方面:1. 混凝土强度混凝土强度是决定受弯构件承载力的基本因素之一,混凝土的强度会影响构件的质量和强度。

在设计时,需要根据受力情况选择合适的混凝土等级,同时还需考虑混凝土的施工、养护等因素。

2. 钢筋配筋率钢筋配筋率也是影响受弯构件承载力的重要因素,不同的配筋率会直接影响受弯构件的初始刚度和极限承载力。

过小的配筋率会导致构件的破坏类型从韧性破坏转变为脆性破坏,过大的配筋率则会使得构件的刚度增大,导致其受力性能下降。

因此,在设计时,需要根据受力情况以及混凝土、钢筋的强度等因素综合考虑,选择合适的配筋率。

3. 受力形态混凝土受弯构件的受力形态也是影响其承载力的重要因素,不同的受力形态会直接影响构件的承载能力。

一般来说,混凝土受弯构件承载能力较弱的部位通常是中央区域,而在两侧则相对较强。

因此,在设计时,需要充分考虑受力形态以及构件的受力分布情况,设计合理的构件优化结构。

4. 填充材料填充材料也是影响混凝土受弯构件承载能力的重要因素之一。

填充材料的性质、强度、粘结性等性能决定了其在混凝土受弯构件中所承受的力的大小和作用。

常见的填充材料主要包括混凝土、轻骨料混凝土、聚苯乙烯泡沫等材料,需要根据具体情况选择合适的填充材料。

混凝土结构设计原理-04章-受弯构件的正截面受弯承载力

混凝土结构设计原理-04章-受弯构件的正截面受弯承载力

fsd
即:
截面应力图
截面等效应力图
fcdb x k1 fcdb xc
x 2 xc yc 2 1 k2 xc
令:x xc ,可求出 21 k2 ,
k1
21 k2
对 C50 及以下混凝土, 1.0 , 0.8 ;C80时, 0.94
0.74 ,中间内插值。《公路桥规》直接取 1.0。
k2 xc
cu c c d c
0
式中k1、k2与混凝土的 强度等级有关,对C50 及以下混凝土,积分 可得 k1=0.797
k2=0.588
4.3 正截面受弯承载力计算原理
第4章 受弯构件的正截面受弯承载力
3.等效矩形应力图
fcd
等效原则:
合力大小C 相等
合力点位置 yc不变
fsd
4.3 正截面受弯承载力计算原理
第4章 受弯构件的正截面受弯承载力
4.适筋梁与超筋梁的界限及界限配筋率 (1)界限破坏
适筋破坏:受拉钢筋先屈服,
然后混凝土受压区边缘达到极限压
应变。
超筋破坏:受拉钢筋不屈服,
混凝土受压区边缘达到极限压应变。
界限破坏:受拉钢筋屈服的同 时混凝土受压区边缘达到极限压应
适筋、超筋、界限破坏时的截面应变
4.1 梁、板的一般构造
第4章 受弯构件的正截面受弯承载力
常用直径为8mm、10mm、12mm和14mm。 ■ 板内钢筋: 受力钢筋宜采用HPB300、HRB400和HRBF400钢筋。 常用直径为8mm、10mm、12mm和14mm。 分布钢筋宜采用HPB300、HRB335钢筋。 常用直径为6mm、8mm。 ■ 钢筋净距、保护层及有效高度 截面有效高度h0为受拉钢筋合力点至受压区边缘的距离。 h0 h as
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 3
n
)
y
h0 h
L/3
L/3
ct
L
c
s’ nh0
As
(1-n)h0
s
as
tb
b
t c
c
s'
s
nh0 y nh0 as ' (1n )h0
五、受弯构件正截面受力分析
1. 基本假定
混凝土受压时的应力-应 变关系
n
2
1 60
(
fcu
50),当n
2时,取n
2
当应力较小时,如 c 0.3 fc时,可取 c Ecc
t<ft
sAs
sAs t=ft(t =tu)
s<y
sAs
sAs
s <y
四、受弯构件的试验研究
2. 试验结果
超筋破坏
四、受弯构件的试验研究
2. 试验结果
当配筋很少时----少筋梁的破坏 过程
c
c
P
L/3
L/3
L
Mcr=
MI
My
t<ft
sAs
sAs t=ft(t =tu)
四、受弯构件的试验研究
2. 试验结果
第四章 受弯构件正截面受 力性能
一、工程实例
梁板结构
挡土墙板 梁式桥
一、工程实例
主要截面形式
箱形截面 T形截面 倒L形截面 I形截面
归纳为
多孔板截面
槽形板截面
T形截面
二、受弯构件的配筋形式
P
P
剪力引起的 斜裂缝
架立
箍筋
弯矩引起的 垂直裂缝
弯筋
三、截面尺寸和配筋构造
1. 梁
净距30mm 钢筋直径d
少筋破坏
四、受弯构件的试验研究
2. 试验结果
结论一
•适筋梁具有较好的变形能力,超 筋梁和少筋梁的破坏具有突然性,
设计时应予避免
M
II 少筋 I O
超筋 平衡
III
适筋
最小配筋率
P
L/3
L/3
L
P
超筋 平衡
III
适筋
II
少筋 I O
最小配筋率
四、受弯构件的试验研究
2. 试验结果
结论二
•在适筋和超筋破坏之间存在一种平衡破坏。其破坏特征是钢 筋屈服的同时,混凝土压碎,是区分适筋破坏和超筋破坏的 定量指标
M cr 0.292 (1 2.5 A ) ftbh2
五、受弯构件正截面受力分析
3. 开裂阶段的受力分析
压区混凝土处于弹性阶段
M较小时, c可以认为 是按线性分布,忽略拉
区混凝土的作用
ct
ct
xn=n
c
h0
A
h0 h
y
M
s
s
cb
yc C xn
sAs
c
Ec c
Ec
t c
y
n h0
t c
y n h0
净距30mm 钢筋直径d
c
c
h h0=h-60
c25mm d
c
b
净距25mm 钢筋直径d
h h0=h-35
b
h b
2 ~ 2.5
3.5(矩形截面) ~ 4.0(T形截面)
d 10 ~ 28mm(桥梁中14 ~ 40mm)
三、截面尺寸和配筋构造
1. 板
c15mm d
分布钢筋
h0
h
d 8 ~ 12mm
h0 h
M
s
s
t0
tb= tu
b
C xn=xc r
T
c
sAs
为了计算方便用矩形应力 分布代替原来的应力分布
ft
tu
t c
s
h xcr xcr h0 xcr
t c
Ec c
s Ess
t ft
t o t0 2t0
ft 0.5Ectu
五、受弯构件正截面受力分析
2. 弹性阶段的受力分析
X 0
b
X 0
0.5 ctbnh0
s As
Es s As
Es
(1n )h0 n h0
t c
As
E
1n n
t c
As
2 n
2 E
n
2E
0
五、受弯构件正截面受力分析
3. 开裂阶段的受力分析
压区混凝土处于弹性阶段
A
s
b
ct
xn=n
c
h0
h0 h
y
M
s
tb
ct yc
C xn
sAs
M 0
M
0.5 ctbnh02 (1
r
T
c
sAs
xcr 0.5h
五、受弯构件正截面受力分析
2. 弹性阶段的受力分析
ct
ct
M 0
xn=n
c
h0
A
h0 h
M
s
s
t0
tb= tu
b
C xn=xc r
T
c
sAs
M cr
f
t
b(h
xcr
)(
h
xcr 2
2 E
ft
As
(h0
xcr 3
)
2 xc r 3
)
设h0
0.92h,令 A
2E
As bh
A
s
0.5 ctbxcr 0.5Ectu (h xcr ) s As
ct
xn=n h0 h0 h
c
M
s
t0
tb= tu
b
设 E
Es Ec
, 近似认为 s
tu
xcr
1 2E As
bh
1 E As
h 2
bh
对一般钢筋混凝土梁 As / bh 0.5 ~ 2%,
E 6 ~ 7
ct C xn=xc
ct
c
h0 h
M
s
As
tb
b
xn
sAs
(E-1)As
s t
s
Es s

Es Ec
t
E t
用材料力学的方法求解
T s As E As t
将钢筋等效成混凝土
五、受弯构件正截面受力分析
2. 弹性阶段的受力分析
当tb =tu时,认为拉区混凝土开裂并退出工作(约束受拉)
ct
ct
xn=n
c
h0
A
h0 h 20
板厚的模数为10mm
四、受弯构件的试验研究
1. 试验装置
试验 梁
荷载分 配梁 P
外加荷 载
应变 计
位移
L/3

L/3
L
As
bh0
数据采集 系统
h0 h
As b
四、受弯构件的试验研究
2. 试验结果
当配筋适中时----适筋梁的破坏 过程
P
L/3
L/3
L
c
c
c
c
(c=cu) c
MI
Mcr
MII
My
(Mu) MIII
t<ft
sAs
sAs t=ft(t =tu)
s<y
sAs
s= fyAs
y
fyAs s>y
四、受弯构件的试验研究
2. 试验结果
适筋破坏
四、受弯构件的试验研究
2. 试验结果
当配筋很多时----超筋梁的破坏 过程
P
L/3
L/3
L
c
c
c
(c=cu) c
MI
Mcr
MII
Mu
c fc
c
f
c
1
1
c 0
n
o
0
0 0.002 0.5 fcu 50105
0 0.002时,取0 0.002
c u
u 0.0033 fcu 50105
u 0.0033时,取u 0.0033
五、受弯构件正截面受力分析
1. 基本假定
混凝土受拉时的应力-应变关系
t ft
t=Ect
平衡破坏(界限破坏,界 限配筋率)
四、受弯构件的试验研究
2. 试验结果 结论三 •在适筋和少筋破坏之间也存在一种“界限”破坏。其破坏特
征是屈服弯矩和开裂弯矩相等,是区分适筋破坏和少筋破坏 的定量指标
最小配筋率
五、受弯构件正截面受力分析
1. 基本假定
P
平截面假定----平均应变意义上
As’
as’
dy
t
o t0
tu
五、受弯构件正截面受力分析
1. 基本假定
钢筋的应力-应变关系
s
fy
s=Ess
y
s su
五、受弯构件正截面受力分析
2. 弹性阶段的受力分析
ct
h0 h
M
s
As
tb
b
采用线形的物理关系
c c Ec
t t Ec
c xn sAs
s s Es
五、受弯构件正截面受力分析
2. 弹性阶段的受力分析
相关文档
最新文档