因子分析数学模型
因子分析(因子评价)

因子分析一.因子分析原理因子分析是根据相关性大小把原始变量进行分组,使得同组内的变量之间相关性高,而不同组的变量之间的相关性低。
每组变量代表一个基本结构(即公共因子),并用一个不可观测的综合变量来表示。
对于所研究的某一具体问题,原始变量分解为两部分之和。
一部分是少数几个不可观测的公共因子的线性函数,另一部分是与公共因子无关的特殊因子。
从全部计算过程来看作R 型因子分析与作Q 型因子分析都是一样的,只不过出发点不同,R 型从相关系数矩阵出发,Q 型从相似系数阵出发都是对同一批观测数据,可以根据其所要求的目的决定用哪一类型的因子分析因子模型的性质:模型不受变量量纲的影响;因子载荷不是唯一的。
二.因子分析的数学模型设有p 个指标,则因子分析数学模型为:11111221221122221122p p p pp p p pp p X r Y r Y r Y X r Y r Y r Y X r Y r Y r Y=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 其中,12,,,p X X X 是已标准化的可观测的评价指标。
12,,,k F F F 出现在每个指标i X 的表达式中,称为公共因子,公共因子是不可观测的,其含义要根据具体问题来解释。
i ε是各个对应指标i X 所特有的因子,故称为特殊因子,它与公共因子之间彼此独立。
ij r 是指标i X 在公共因子j F 上的系数,称为因子载荷,因子载荷ij r 的统计含义是指标i X 在公共因子j F 上的相关系数,表示i X 与j F 线性相关程度。
用矩阵形式表示为:X AF ε=+其中12(,,,)p X X X X '=,12(,,,)k F F F F '=,12(,,,)p εεεε'=,111212122212m m p p pm r r r r r r A rr r ⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭,A 称为因子载荷矩阵。
其统计含义是:A 中的第i 行元素12,,,i i im r r r 说明了指标i X 依赖于各个公共因子的程度。
因子分析模型

因子分析模型 1.模型的定义.因子分析就是用少数因子来描述许多指标或因素之间的联系,以较少几个因子反映原资料的大部分信息的统计学方法.2. 因子分析的想法是将相互关联的较多变量的综合为相互独立的因子,它的数学模型表示如下,111112211122112222221122................m m m m p p p pm m p px a F a F a F a x a F a F a F a x a F a F a F a εεε=++++⎧⎪=++++⎪⎨⎪⎪=++++⎩其中123.......p x x x x 、、为p 个原有变量,是均值为0,方差为1的标准化变量,ij a 为因子载荷,就是第i 个原有变量和第j 个因子变量的相关系数,即i x 在第j 个公共因子变量上的相对重要性.因此,ij a 绝对值越大,则公共因子i F 和原有变量i x 关系越强.12,...,m F F F 、为m 个因子变量,m 小于p ,ε为特殊因子,表示了原有变量不能被因子变量所解释的部分.将其表示成矩阵形式为, X AF a ε=+其中F 为因子变量或公共因子.A 为因子载荷矩阵.3.因子分析的四个步骤.一、确定需要分析的大量变量是否适合进行因子分析.因子分析的想法是用较少的因子来代替具有大量数据的原始变量,因此,这里就需要一个要求,即原有变量之间的相关系数较大.因此在对原变量进行分析之前,需要考虑原变量之间的相关性.通常来说最简单的方法是计算变量之间的相关矩阵.如果大部分变量之间的相关系数都大于0.3则适合进行因子分析.二、构造因子变量.因子分析有多种确定因子变量的方法,其中常用的有主成分分析法,它是利用相关矩阵求特征值,然后根据特征值的大小对因子分析进行求解.对于如何确定因子个数,通常也有两种方法,一种是根据相关矩阵的特征值的大小来判断,通常来说取大于1的特征值,另一种是按照百分率来确定,最后确定出因子载荷矩阵.三、利用旋转后的因子载荷矩阵对因子命名.对因子变量进行命名解释时通常采用旋转后的载荷矩阵,旋转的方法有正交旋转、斜交旋转、方差极大法,其中最常用的是方差极大法.对于某个因子来说,若它对某个变量的因子载荷较大,且对其他的变量的载荷较小,则该因子可利用该变量命名.四、计算因子得分.因子分析的最后一步通常是求得因子得分表,当确定因子载荷矩阵后,对于每一个数据,我们都可以求得它们在每一个因子上的得分,它与原变量数值是对应的,计算出因子得分以后,我们就可以将对原数据的分析改为对因子得分的分析.。
因子分析数学模型

因子分析数学模型1、因子分析看基本思想因子分析是一种旨在寻找隐藏在多变量数据中,无法直接观察到却影响或支配可观测变量的潜在因子,并估计潜在因子对可观测变量的影响程度,以及潜在因子之间的相关性的一种多元统计分析方法。
其基本思想是从分析多变量数据的相关关系入手,找到支配这种相关关系的少数几个相关独立的潜在因子,并通过建立起这些潜在因子与原变量之间的数量关系来预测潜在因子的状态,帮助发现隐藏在原变量之间的某种客观规律性。
因子分析和主成分分析都能起到清理多个原始变量内在结构关系的作用,但主成分分子重在综合原始变量信息,而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法。
因子分析法就是这些潜在因子的数学模型方法,它是在主成分的基础上构筑若干个意义较为明确的潜在因子,以它们为框架分析原变量,以考察原变量间的联系与区别。
2、因子分析的基本原理3、因子分析的数学模型假设对n例样品观测了p个指标,即,,…,,得到观测数据。
我们的任务就是从一组观测数据出发,通过分析各指标,,…,之间的相关性,找出支配作用的潜在因子,使得这些因子可以解释各个指标之间的相关性。
因子分析模型描述如下:(1)X=(,,…,)是可观测随机变量,均值向量E(X)=0,协方差Cov(X)与相关矩阵R相等,(只要将变量标准化即可实现)。
(2)F=(,,…,)(m<=p)是不可测的向量,其均值E(F)=0,协方差矩阵Cov(F)=1,即向量的各分量是独立的。
(3)e=(,,…,)与F相互独立,且E(e)=0,e的协方差矩阵是对角矩阵,即各分量e之间是相互独立的。
则因子分析的数学模型如下:由于该模型是针对变量进行的,各因子是正交的,所以也称为R型正交因子模型。
其矩阵形式为:X=AF+e。
其中:X= A= F= ,e=对于因子分析,要求数据和模型满足以下假设条件:●是均值为0、方差为1的随机变量;●是均值为0 ,方差为常数的正太随机变量。
因子分析数学模型

因子分析数学模型因子分析是一种统计方法,用于研究多个变量间的关系,并将其通过线性组合的方式转化为少数几个影响变量的因子。
因子分析模型是一种数学模型,旨在解释变量之间的相关性,找出潜在的因子影响变量的变异程度。
因子分析的数学模型可以分为两个阶段。
第一阶段是提取因子,通过主成分分析的方法从原始变量中提取出少数几个因子。
主成分分析的核心是将原始变量进行线性组合,使得新的变量能够解释尽可能多的原始变量的变异。
主成分分析将提取的因子按照解释的变异程度排序,选择解释性较好的因子作为主成分。
第二阶段是因子旋转,通过变换因子的坐标轴方向,使得因子能够具有较好的解释性和可解释性。
因子旋转可以使用正交旋转或斜交旋转的方法进行。
正交旋转将因子的坐标轴变换为正交的坐标轴,使得因子之间没有相关性;斜交旋转将因子的坐标轴变换为斜交的坐标轴,使得因子之间可以存在相关性。
根据具体问题的需求,选择适当的旋转方法。
因子分析的数学模型可以表示为:Y=λ1F1+λ2F2+…+λnFn+e其中,Y是观测变量的向量,包括m个变量;F是因子的向量,包括n个因子;λ是因子载荷的矩阵,表示观测变量对因子的影响程度;e是误差项。
因子载荷矩阵λ可以用来衡量观测变量与因子之间的关系,越大表示对应观测变量越受该因子的影响。
因子分析的数学模型还可以进一步扩展为混合因子分析模型。
混合因子分析模型考虑了因子间的相关性和观测变量间的相关性,通过引入协方差矩阵和错误项协方差矩阵,对因子和观测变量的相关性进行建模。
混合因子分析模型可以更准确地描述变量之间的关系,并提供更可靠的因子载荷和因子得分。
总之,因子分析是一种通过线性组合的方式转化变量间关系的统计方法,其数学模型可以用来解释变量之间的相关性,并提取出影响变量的少数几个因子。
因子分析的数学模型在社会科学、市场调研等领域具有广泛的应用价值。
因子分析 数学模型

因子旋转分为两种:正交旋转和斜交旋转 特点: 正交旋转:由因子载荷矩阵A左乘一正交阵而得到,经过 旋转后的新的公因子仍然保持彼此独立的性质。正交变化 主要包括方差最大旋转法、四次最大正交旋转、平均正交 旋转。 斜交旋转:放弃了因子之间彼此独立这个限制,可达到更 简洁的形式,实际意义也更容易解释。 不论是正交旋转还是斜交旋转,都应该在因子旋转后,使 每个因子上的载荷尽可能拉开距离,一部分趋近1,一部 分趋近0,使各个因子的实际意义能更清楚地表现出来。
因子的相关系数。用统计学术语叫权重,表示Xi 依赖Fj 的份量(比重)。
cov( X i , Fj ) aij
变量共同度的统计意义
因子载荷阵A中第i行元素的平方和,即
h a 2ij
2 i j 1 m
称为变量Xi 的共同度。 为了说明它的统计学意义,对Xi的表达式两边求方差,即
var( X i ) var( ait Ft )
a11 a 21 A a p1 a12 a22 ap2 cos C sin sin cos a11 sin a12 cos a p1 sin a p 2 cos
b 1 b 1 V p i 1 h p i 1 h G V1 V2 max
A即为因子协方差阵。 当X的协方差阵未知,可以用样本协方差阵S去代替。
因子旋转
• 不管用何种方法确定因子载荷矩阵A,它们都不 是唯一的,我们可以由任意一组初始公共因子做 线性组合,得到新的一组公共因子,使得新的公 共因子彼此之间相互独立,同时也能很好的解释 原始变量之间的相关关系。 • 这样的线性组合可以找到无数组,这样就引出了 因子旋转。 • 因子旋转的目的是为了找到意义更为明确,实际 意义更明显的公因子。 • 因子旋转不改变变量共同度,只改变公因子的方 差贡献。
因 子 分 析

应用举例
利用SPSS软件进行因子分析
从表3可以看出,第一个主因子在 X1、X8、X9上有较大载荷,因 此可以命名为盈利和现金获取能力 ;第二个因子主要由X6、X7、 X2、X5决定,可命名为成长因子 ;第三个因子主要由X3、X4决定 ,命名为偿债因子。 为了考查上市公司的竞争力状况, 并对其进行分析和综合评价,采用 回归方法求出因子得分矩阵,得到 3个主因子的得分F1,F2,F3,以 贡献率为权数,构建综合评价函数 综合得分 =(0.36064xF1+0.23066x F2+0.22132x F3)/0.81262 ,经计算得到样本17家上市公司 的综合因子总得分。(见表4)
谢
谢
因子模型的参数估计
因子载荷矩阵 A (aij ) pm 与特殊因子方差 i2 (i=1,...,p)的估计, 常采用的估计方法有以下三种:主成分法、主因子解和最大似然法。 主成分法: A ( l , , l ), 1 1 m m m 2 2 i 1, , p. i sii aij , j 1
Fj b j 0 b j1 X1 b jp X p , j 1, , m
^
F A' R 1 X
其中R是X的相关系数矩阵。 最后以每个公共因子的贡献率来求出各因子权重,求得综合得分。
^
因子分析与主成分分析的异同比较
相同点:主成分分析法和因子分析法都是从变量的方差-协 方差结构入手,在尽可能多的保留原始信息的基础上,用 少数新变量来解释原始变量的多元统计分析方法。 区别:因子分析是把变量表示成各公因子的线性组合;而 主成分分析中则是把主成分表示成各变量的线性组合。主 成分的数量是一定的,一般有几个变量就有几个主成分; 因子个数需要分析者指定,指定的因子数量不同而结果也 不同。主成分分析重点在于解释个变量的总方差;因子分 析则把重点放在解释各变量之间的协方差。主成分分析法 是求出少数几个主成分,使它们尽可能多的保留原始变量 的信息;因子分析法是对原始变量进行分解,用最少个数 的不可测的所谓公共因子的线性函数与特殊因子之和来描 述原来观测的每一分量。
第六讲因子分析

第六讲因⼦分析第五讲因⼦分析在许多实际问题中,涉及的变量众多,各变量间还存在错综复杂的相关关系,这时最好能从中提取少数综合变量,这些综合变量彼此不相关,⽽且包含原变量提供的⼤部分信息。
因⼦分析就是为解决这⼀问题提供的统计分析⽅法。
以后,如⽆特别说明,都假定总体是⼀个p维变量:它的均值向量,协⽅差矩阵V=(ij)pp都存在。
第⼀节正交因⼦模型1.1 公共因⼦与特殊因⼦从总体中提取的综合变量:F1, F2, … , F m(m于是,我们有:变量X i的信息=公共因⼦可以表达部分公共因⼦不可表达部分这就是所谓因⼦模型。
⽬前,公共因⼦可以表达的部分由公共因⼦的线性组合表⽰。
即上⾯的因⼦模型可以写成以下的形式:1.2 正交因⼦模型设总体,均值向量,协⽅差矩阵。
因⼦模型有形式:其中m如果引⼊以下向量与矩阵:则因⼦模型的矩阵形式为:对于正交的因⼦模型,还要进⼀步要求:z1. 。
即有:公共因⼦是互相不相关的。
z2. 。
即:特殊因⼦和公共因⼦不相关。
1.3 因⼦载荷矩阵1.矩阵A称为因⼦载荷矩阵(component matrix),系数a ij称为变量X i在因⼦F j上的载荷(loading)。
由于特别,如果总体是标准化的,则有Var(X i)=1,从⽽有:于是:即变量X i在公共因⼦F j上的载荷a ij就是X i与F j的相关系数。
2.载荷矩阵的估计:主成分法。
主成分法是估计载荷矩阵的⼀种⽅法,由于其估计结果和变量的主成分仅相差⼀个常数倍,因此就冠以主成分法的名称。
在学到这⾥的时候,不要和主成分分析混为⼀谈。
主成分法是SPSS系统默认的⽅法,在⼀般情况下,这是⽐较好的⽅法。
以数据“应征⼈员”为例,按特征值⼤于1提取公共因⼦。
在⽤不同⽅法获得因⼦载荷时,公共因⼦对总体⽅差的贡献率以主成分法为最⾼:⽅法贡献率 %Principle components 81.476Maximum likelihood74.304Unweighted least squares74.485Principal axis factoring74.462Alpha factoring74.540Image factoring69.365关于主成分法的内容可参看任何⼀本多元统计分析书,例如:《应⽤多元统计分析》,⾼惠璇著,北京⼤学出版社,p301。
数学模型中的因子分析法

数学模型中的因子分析法因子分析是一种常用的数学模型,用于解释多个变量之间的关系和发现潜在的因素。
它是一种降维技术,旨在将众多变量转化为较少数量的无关因子。
因子分析在统计学、心理学和市场研究等领域广泛应用,可用于数据降维、消除多重共线性、提取潜在特征、构建模型等等。
在因子分析中,有两种主要类型:探索性因子分析(Exploratory Factor Analysis,EFA)和验证性因子分析(Confirmatory Factor Analysis,CFA)。
探索性因子分析用于发现数据中的潜在因素,而验证性因子分析则用于验证已经提出的因素模型是否符合实际数据。
探索性因子分析的步骤如下:1.提出假设:确定为什么要进行因子分析以及预期结果,用于指导后续的数据分析。
2.数据准备:收集和整理要进行因子分析的数据,确保数据的可用性和准确性。
3.因子提取:通过主成分分析或最大似然法等方法,提取出能够解释数据变异最大的因子。
4.因子旋转:因子旋转是为了使提取出的因子更易于解释和理解。
常用的旋转方法有正交旋转和斜交旋转等。
5.因子解释和命名:对于每个提取出的因子,需要根据变量的载荷矩阵和旋转后的载荷矩阵进行解释和命名。
载荷矩阵表示每个因子与每个变量之间的关系。
6.结果评估:对于提取出的因子,需要进行信度和效度的评估。
信度评估包括内部一致性和稳定性等指标;效度评估包括构造效度和相关效度等指标。
验证性因子分析通常用于验证已经提出的因子模型是否符合实际数据。
其步骤包括:1.提出假设:确定已存在的因子模型,并对其进行理论和实际的验证。
2.选择分析方法:确定适合验证性因子分析的模型拟合方法,如最大似然法或广义最小二乘法等。
3.构建模型:将因子模型转化为测量模型,并建立测量方程。
4.模型拟合:对构建的测量模型进行拟合,评估模型的拟合度,如χ²检验、准则拟合指数(CFI)等。
5.修正模型:根据拟合域冒去改进模型的拟合,如剔除不显著的路径、修正测量方程等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因子分析数学模型
1、因子分析看基本思想
因子分析是一种旨在寻找隐藏在多变量数据中,无法直接观察到却影响或支配可观测变量的潜在因子,并估计潜在因子对可观测变量的影响程度,以及潜在因子之间的相关性的一种多元统计分析方法。
其基本思想是从分析多变量数据的相关关系入手,找到支配这种相关关系的少数几个相关独立的潜在因子,并通过建立起这些潜在因子与原变量之间的数量关系来预测潜在因子的状态,帮助发现隐藏在原变量之间的某种客观规律性。
因子分析和主成分分析都能起到清理多个原始变量内在结构关系的作用,但主成分分子重在综合原始变量信息,而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法。
因子分析法就是这些潜在因子的数学模型方法,它是在主成分的基础上构筑若干个意义较为明确的潜在因子,以它们为框架分析原变量,以考察原变量间的联系与区别。
2、因子分析的基本原理
3、因子分析的数学模型
假设对n例样品观测了p个指标,即X1,X2,…,X p,得到观测数据。
我们的任务就是从一组观测数据出发,通过分析各指标X1,X2,…,X p之间的相关性,找出支配作用的潜在因子,使得这些因子可以解释各个指标之间的相关性。
因子分析模型描述如下:
(1)X=(X1,X2,…,X p)是可观测随机变量,均值向量E(X)=0,协方差Cov(X)与相关矩阵R相等,(只要将变量标准化即可实现)。
(2)F=(F1, F2,…,F m)(m<=p)是不可测的向量,其均值E(F)=0,协方差矩阵Cov(F)=1,即向量的各分量是独立的。
(3)e=(e1,e2,…,e p)与F相互独立,且E(e)=0,e的协方差矩阵是对角矩阵,即各分量e之间是相互独立的。
则因子分析的数学模型如下:
{X1=a11F1+a12F2+⋯+a1m F m+e1 X2=a21F1+a22F2+⋯+a2m F m+e2
⋮
X p=a p1F1+a p2F2+⋯+a pm F m+e p
由于该模型是针对变量进行的,各因子是正交的,所以也称为R型正交因子模型。
其矩阵形式为:X=AF+e。
其中:
X={X1
X2
⋮
X p
A=[
a11a12
a21a22
…
…
a1m
a2m
⋮⋱⋮
a p1a p2⋯a
pm
]F= {
F1
F2
⋮
F m
,e= {
e1
e2
⋮
e p
对于因子分析,要求数据和模型满足以下假设条件:
●X i是均值为0、方差为1的随机变量;
●e i是均值为0 ,方差为常数的正太随机变量。
●e1,e2,…,e p不相关,且方差不同。
● Cov(F,e)=0,即F和e是相互独立的;
● D(F)=I,即F1, F2,…,F m不相关、均值为0方差为1.
我们把F称为X的公共因子或潜在因子,矩阵A称为因子载荷矩阵,e称为X的特殊因子,
它们是在各个变量中都出现的因子,我们可以把它们看做高维空间中所张起的相互垂直的m 个坐标轴。
e i (i=1,2,…,p )表示影响X i 的独特因子。
a ij 做因子载荷,它是第i 个变量在第j 个主因子上的负荷,或者叫做第i 个变量在第j 个主因子上的权,它反映了第i 个变量在第j 个主因子上的相对重要性。
(4)因子模型的性质
X 的协方差矩阵如下:
∑x =E (AF+e )(AF+e )'=AA'+∑e
为了得到因子分析结果的合理解释,因子载荷矩阵A 中有两个统计量十分重要,即变量公共度和潜在因子的方差贡献。
我们现在看看矩阵A 的统计意义。
由因子分析数学模型的假设条件知:
{X i =∑a ik F k +e i m k=1I =VAR (X i )=∑a ik 2+σi
2m k=1 i=1,2,…,m 因子载荷矩阵A 中第i 行元素之间平方和记为ℎi 2,称为变量X i 的公共度。
即
ℎi 2=∑a ik 2m k=1,则有ℎi 2+σi 2=I ,i=1,2,…,m
ℎi 2是全部潜在因子对原始指标X i 的方差所作出的贡献反映了全部潜在因子对变量X i 的影响。