数学建模中权重的确定方法
多目标优化的权重确定方法

多目标优化的权重确定方法在多目标优化问题中,确定权重是一个关键的步骤。
权重决定了不同目标函数在优化过程中的重要性。
一个合理的权重分配可以有效地平衡不同目标之间的冲突,并找到一个全局最优解。
在本文中,我们将介绍一些常见的权重确定方法,并提供一些建议,以帮助您在实际问题中确定权重。
首先,我们介绍一种常见的权重确定方法,即主观赋值法。
这种方法基于直觉和经验,通过主观判断为每个目标赋予一个权重。
例如,在一个带有两个目标函数的问题中,假设我们认为第一个目标函数相对更重要,我们可以给它赋予较大的权重,而给第二个目标函数赋予较小的权重。
这种方法的优点是简单直观,容易理解和实施。
然而,它的缺点是受主观意见的影响较大,可能导致权重的不准确估计。
其次,我们介绍一种基于均衡点的权重确定方法。
这种方法通过寻找目标函数之间的均衡点来确定权重。
均衡点是指使得所有目标函数取得最佳值的一组权重。
均衡点的确定可以通过数学方法,如线性规划或二次规划来实现。
这种方法的优点是能够考虑目标之间的相互关系,避免了主观因素的干扰。
然而,它的缺点是对问题的数学建模要求较高,并且可能导致计算复杂度较高。
第三,我们介绍一种基于专家意见的权重确定方法。
这种方法通过专家的知识和经验来确定权重。
专家可以根据其领域知识和对问题的理解来为不同的目标函数赋予权重。
这种方法的优点是能够利用专家的经验,提高权重的准确性。
然而,它的缺点是可能受到专家主观意见的影响,并且需要花费一定的成本来获取专家的意见。
最后,我们提供一些建议,以帮助您在实际问题中确定权重。
首先,您可以对多个权重确定方法进行比较,选择最适合您问题的方法。
其次,您可以考虑使用多种方法结合的方式,以获得更准确的权重。
例如,结合主观赋值法和基于均衡点的方法,可以较好地平衡主观意见和客观分析。
最后,您可以进行敏感性分析,检验权重的稳定性和可靠性。
通过对权重进行多次调整和验证,可以逐渐得到一个较为准确的权重分配。
数学建模中权重的确定方法

权重
• 权重是一个相对的概念,是针对某一指标 而言。某一指标的权重是指该指标在整体 评价中的相对重要程度。
• 自重权数:以权数作为指标的分值(或分 数),或者以权数直接作为等级的分值。
• 加重权数:在各指标的已知分值(即自重 权数)前面设立的权数。
a. 专家咨询权数法(特尔斐法)
• 该法又分为平均型、极端型和缓和型。 主要根据专家对指标的重要性打分来 定权,重要性得分越高,权数越大。 优点是集中了众多专家的意见,缺点 是通过打分直接给出各指标权重而难 以保持权重的合理性。
d.独立性权数法
• 利用数理统计学中多元回归方法,计算复 相关系数来定权的,复相关系数越大,所 赋的权数越大。
• 计算每项指标与其它指标的复相关系数, 计算公式为,
R越大,重复信息越多,权重应越小。取复 相关系数的倒数作为得分,再经归一化处 理得权重系数。
e.主成分分析法
• 一种多元分析法。它从所研究的全部指标
该方法以三角模糊数判断
矩阵为基础,通过一系列的数学处理转换,得到模糊综合
评价因素权重,使确定因素权重过程中的主观判断更符合
人们的思维习惯与表达方式,在一定程度上改善了传统模
糊综合评价的某些缺陷,使该方法的准确性和有效性得到
一定的提高。
§1 专家评估统计法
1. 算术平均法
设因素集U {u1,u2,L ,un}
两比较矩阵A1中u1比u2明显的好,记7即a12 =7;
u 比u 1
3强一些,
但不多,
记为2,
a13
=2;
u 比u 当然 11
为1了;
类似,
u
比u
2
3
差一些(或u
3比u2好一些),
数学建模权重模型

数学建模权重模型全文共四篇示例,供读者参考第一篇示例:数学建模在实际生活和工作中发挥着重要的作用,它是将实际问题进行抽象和数学描述,进而求解和分析的一种方法。
在数学建模中,权重模型是一种常用的数学模型,它可以通过给不同的参数赋予不同的权重,从而实现对不同因素的定量分析和评估。
在本文中,我们将深入探讨数学建模权重模型的原理、应用和优势。
一、权重模型的原理权重模型是一种将不同因素按照其重要性进行赋权并进行计算的方法。
在数学建模中,我们通常会遇到多个因素对一个问题的影响,这些因素之间可能存在着不同的重要性和影响程度。
通过权重模型,我们可以对这些因素进行量化分析,从而更好地解决问题。
权重模型的具体原理是通过给每个因素赋予一个权重系数,然后将这些因素进行加权求和,得到最终的结果。
这里的权重系数通常由专家经验、实验数据或者统计分析得出。
通过调整不同因素的权重,我们可以体现出对问题的不同关注程度和重要性,进而得出更为准确的分析结果。
权重模型在实际中有着广泛的应用,例如在风险评估、决策优化、资源分配等方面都可以使用权重模型进行分析和预测。
下面我们以一个实际案例来具体说明权重模型的应用。
假设某公司需要选择一种新的市场营销策略来提升销售额,而这种策略涉及到不同的因素如价格、渠道、推广等。
通过权重模型,我们可以分析出这些因素对销售额的影响程度,并且可以通过调整不同因素的权重来从整体上优化市场营销策略。
如果价格对销售额的影响最大,那么我们可以适当调整价格的权重来实现销售额的最大化;如果渠道的选择也很关键,那么我们可以加大渠道因素的权重以提高销售额。
通过这种方式,权重模型可以帮助企业更好地把握问题的关键因素,从而做出更为准确的决策,提高企业的效益和竞争力。
权重模型相对于其他数学建模方法有着一些明显的优势。
权重模型能够体现出不同因素的重要性和影响程度,有助于分析和解决问题。
权重模型能够根据实际情况灵活调整不同因素的权重,实现个性化定制,满足不同需求。
可拓熵权法-概述说明以及解释

可拓熵权法-概述说明以及解释1.引言1.1 概述【概述】可拓熵权法是一种基于拓扑学和信息熵的权重确定方法,用于解决决策问题中的权重分配和评价。
它是一种综合考虑纵向和横向信息的新兴方法,能够有效解决传统方法在权重确定中存在的问题。
在许多决策问题中,权重的确定是十分重要且困难的任务。
传统的权重确定方法往往依赖于主观判断或经验性评估,缺乏客观性和科学性。
这样的方法容易导致权重分配的不准确和不合理,进而影响最终的决策结果。
而可拓熵权法通过引入拓扑学的理论和信息熵的概念,能够全面而准确地评估决策方案中各个参与因素的重要程度。
在该方法中,拓扑结构被用于刻画参与因素之间的相互关系,信息熵则用于度量信息的不确定性和随机性。
可拓熵权法的核心思想是基于信息熵的最大化原则。
通过对信息熵的定义和求解,能够得到一个能够最大化决策中信息传递和信息流动的权重分配方案。
这样的方法能够保证权重的客观性和科学性,提高决策的准确性和可靠性。
可拓熵权法在实际应用领域中具有广泛的应用前景。
它可以应用于多个领域,如工程管理、金融投资、环境评价等。
在这些领域中,权重的确定对于决策结果的影响非常重要,而可拓熵权法能够提供一种有效的解决方案。
然而,可拓熵权法也存在一定的局限性。
首先,可拓熵权法在应用过程中需要大量的数据支持,对于数据的收集和处理要求较高。
其次,方法的求解过程比较复杂,需要一定的专业知识和技能。
此外,方法在某些问题上可能存在不稳定性,需要进一步的改进和优化。
总之,可拓熵权法是一种新颖而有效的权重确定方法,具有广泛的应用前景。
通过综合考虑信息熵和拓扑结构,该方法能够提供客观、科学的权重分配方案,为决策问题的解决提供有力支持。
尽管存在一些局限性,但随着应用经验的积累和方法的改进,可拓熵权法在未来会有更加广泛的发展和应用。
1.2 文章结构本文主要探讨可拓熵权法的原理、应用领域以及其优势和局限性。
为了更好地呈现可拓熵权法的相关知识,本文将按照以下结构进行组织:第一部分是引言,对本文的主题进行概述,介绍可拓熵权法的背景和意义。
高校数学建模竞赛模型评价指标权重确定分析

高校数学建模竞赛模型评价指标权重确定分析随着现代社会对数据分析和决策能力的要求日益增加,高校数学建模竞赛正逐渐成为培养学生创新思维和解决实际问题能力的重要途径。
在高校数学建模竞赛中,模型评价指标的权重确定是确保评价结果准确可靠的关键步骤。
在本文中,将对高校数学建模竞赛模型评价指标权重确定的分析方法进行探讨。
一、确定评价指标在进行模型评价指标权重确定之前,首先需要确定评价指标。
评价指标的选择应充分考虑到模型的特点和应用领域,同时需要具备客观性、权威性和可操作性。
常见的评价指标包括模型的准确度、稳定性、鲁棒性、适应性等。
通过对问题的分析和对模型的理解,结合实际需求,选择合适的评价指标。
二、层次分析法确定权重层次分析法是一种常用的确定评价指标权重的方法。
该方法将评价指标的层次结构划分为若干层次,通过专家评价和层次结构的比较,确定各层次之间的权重关系,从而得到最终的权重分配。
1. 建立层次结构首先,建立评价指标的层次结构。
以模型的准确度、稳定性、鲁棒性、适应性为评价指标,可以将其划分为一级层次。
在一级层次下,可以再划分为二级层次,如模型的数学基础、数据质量、算法选择等。
不同的问题可能有不同的层次划分,根据实际情况进行调整。
2. 两两比较接下来,对于同一层次下的评价指标进行两两比较,得到它们之间的相对重要性。
以准确度和稳定性为例,可以构建一个判断矩阵,由专家根据其专业知识和经验,填写各个评价指标之间的重要程度。
3. 计算权重通过计算判断矩阵的最大特征值和对应的特征向量,可以得到各个评价指标之间的权重。
最大特征值表示相对重要性的大小,特征向量表示每个指标对应的权重值。
通过对所有层次的两两比较和计算,可以得到最终的权重分配结果。
三、灰色关联度法确定权重灰色关联度法是另一种确定评价指标权重的常用方法。
该方法基于灰色数学理论,通过构建评价矩阵,计算各个指标之间的关联度,从而确定权重值。
1. 构建评价矩阵首先,构建评价矩阵,其中每一行表示一个评价指标,每一列表示一个模型样本。
权重确定方法归纳

权重确定方法归纳多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。
按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。
客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。
两种赋权方法特点不同,其中主观赋权评价法依据专家经验衡量各指标的相对重要性,有一定的主观随意性,受人为因素的干扰较大,在评价指标较多时难以得到准确的评价。
客观赋权评价法综合考虑各指标间的相互关系,根据各指标所提供的初始信息量来确定权数,能够达到评价结果的精确但是当指标较多时,计算量非常大。
下面就对当前应用较多的评价方法进行阐述。
一、变异系数法(一)变异系数法简介变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。
是一种客观赋权的方法。
此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。
例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。
如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。
由于评价指标体系中的各项指标的量纲不同,不宜直接比较其差别程度。
为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。
熵值法确定权重公式

在信息论中,熵是对不确定性或随机性的一种度量,不确定性越大,熵值就越大,不确定性越小,熵值就越小。
不确定性越大,表明随机性越大,数据越离散,则包含的信息就越大,在确定权重的时候往往就越小。
熵值法确定权重只是考虑了数据本身的离散程度,并没有考虑数据在实际应用中的信息。
假设数据中有n个样本m个指标,其中xij表示第i个样本第j个指标(1≤i≤n,1≤j≤m)
熵值法确定权重步骤:
1、数据标准化
通常应用最大最小标准化方法对数据进行标准化的操作,将各指标由绝对值变为相对值且消除量纲对结果的影响。
xij′=xij−min(xi)max(xi)−min(xi)
注:有时指标的正负向采用不同的最大最小的标准化方法。
2、确定各指标的信息熵
计算各个指标信息熵:
Ej=−1lnn∑i=1Npijlnpij
其中pij=xij′∑i=1nxij′ (如果pij=0则定义limpij→0pijlnpij=0 )
3、确定各指标的权重
通过步骤2计算出各个指标的熵值:E1,E2,....Em,则由熵值法计算的各个指标的权重为:
Wj=1−Ejm−∑Ej(0≤j≤m)
总结:从整理来看熵值法确定权重只是考虑数据各个指标的离散程度,即数据取值越多其权重就越大,并没有结合具体的实际问题,因此在应用熵值法确定权重时需要结合具体的问题才能使用。
高校数学建模竞赛模型评价指标权重确定思路解析

高校数学建模竞赛模型评价指标权重确定思路解析在高校数学建模竞赛中,模型评价指标的权重确定是一个至关重要的环节。
合理的指标权重确定可以全面衡量模型的优劣,并为评委和参赛者提供客观的评判标准。
本文将从数据分析、问题分类和专家评价三方面来解析高校数学建模竞赛模型评价指标权重的确定思路。
一、数据分析在模型评价指标权重的确定过程中,数据分析是必不可少的一环。
通过对已有数据的统计和分析,可以得出一些关键性的结论,从而确定指标权重。
首先,我们可以对问题的数据进行整理和处理。
对于定量数据,可以进行统计分析,如平均值、方差等。
对于定性数据,可以使用频次分析等方法得出相应的结果。
其次,可以利用数据挖掘的方法,发现隐藏在数据背后的规律。
可以使用聚类分析、关联规则挖掘等方法,找出相关的指标和权重。
最后,还可以通过构建数学模型,对数据进行建模和预测。
可以利用回归分析、时间序列等方法,得出模型的参数和误差。
二、问题分类在高校数学建模竞赛中,问题通常分为单目标问题和多目标问题。
对于单目标问题,可以使用层次分析法(AHP)来确定指标权重。
AHP是一种定性与定量相结合的分析方法,可以根据问题的重要性进行层次划分,然后通过一系列的判断矩阵来获得指标权重。
对于多目标问题,可以使用权衡法(TOPSIS)来确定指标权重。
TOPSIS方法通过计算指标与最优解和最劣解之间的距离,得出指标的权重。
三、专家评价除了数据分析和问题分类,专家评价也是确定指标权重的一种重要方法。
通过邀请相关领域的专家,利用专家判断来确定指标权重。
专家可以根据自己的经验和专业知识,对问题的关键指标进行评分和排序,从而确定指标权重。
在专家评价中,可以采用德尔菲法或模糊综合评价法。
德尔菲法通过多轮的专家意见征询和汇总,最终得出权威性意见。
模糊综合评价法则是基于模糊逻辑的数学方法,通过设定指标的隶属函数和权重,进行模糊计算得出指标权重。
综上所述,高校数学建模竞赛模型评价指标权重的确定思路可以从数据分析、问题分类和专家评价三个方面入手。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 某家庭预备 “五· 一”出游,手上有三个旅游点的资
料。u1点景色优美,但u1是一个旅游热点,住宿条件不十
分好, 费用也较高;u2点交通旅游景点不错, 住宿、
花费都挺好,就是交通不方便。究竟选择哪一个更好呢? 在这个问题中,首先有一个目标——旅游选择;其次 是选择方案的标准——景点好坏、交通是否方便、费用高 低、住宿条件等;第三个是可供选择的方案。
旅游 景点 u1 住宿 费用 u2 交通 u3
如果我们通过判断矩阵A1, 可以准确的确定 u1 ,u2 ,u3 相对“景点”的权重, 就可以通过对“景 点”“住宿”“费用”“交通”等所有考虑到的 因素权重, 再通过这些因素相对目标的权重, 最后 确定出各方案对目标的权重。
三、由判断矩阵计算元素对于上层支配元素的权重(或 排序) 用判断矩阵求权重的方法有很多种, 下面介绍三种方法: 1. 和法 2. 最小夹角法
d.独立性权数法
• 利用数理统计学中多元回归方法,计算复 相关系数来定权的,复相关系数越大,所 赋的权数越大。 • 计算每项指标与其它指标的复相关系数, 计算公式为, R越大,重复信息越多,权重应越小。取复 相关系数的倒数作为得分,再经归一化处 理得权重系数。
e.主成分分析法
• 一种多元分析法。它从所研究的全部指标 中,通过探讨相关的内部依赖结构,将有 关主要信息集中在几个主成分上,再现指 标与主成分的关系,指标Xj的权数 为: wj=dj·bij∑mj=1dj·bij 其中bij为第i个主成分与第j个因素间的 系数,di=λi/Σλk为贡献率。
§1 专家评估统计法
1. 算术平均法
设因素集U {u1 , u2 , , un } k 个专家,每个专家独立给出的因素u j的权重
a1 j a 2j a kj
k 个专家给出所有因素的权重排成矩阵 a11 a12 a a 21 22 ak1 ak1 a1n a2 n akn
一、建立递阶层次结构
层次分析一般把问题分为三层,各层间关系用线 连接。第一层称为目标层,第二层为准则层,第三层 叫做方案层。如果有次级标准还可以增加次准则层等。
例如,上面例子的递阶层次结构为:
旅游
———— 目标层
景点
住宿
费用
交通
———— 准则层
u1
u2
u3
———— 方案层
二、构造两两比较判断矩阵
(3)计算落在每组内的权重的频数和频率;
(4)取最大频率所在的组的组中值作为因素 u j的权重a j ,得到权重集: A (a1 , a2 , , an )
3. 加权统计法
加权统计法的前两步(1),(2)同频数统 计法。
(3)设第i组的组中值为xi,频数为N i , 频率为 Ni w ( ),以每一组的频率作为组中 i wi k 值的权数,求加权平均值: a j xi wi
j.CRITIC法
该法的基本思路是确定指标的客观权数以评价指 标间的对比强度和冲突性为基础。对比强度以标 准差的形式来表现,即标准差的大小表明在同一 指标内,各方案取值差距的大小。标准差越大, 各方案之间取值差距越大。而各指标间的冲突性 是以指标之间的相关性为基础。若两个指标之间 具有较强的正相关,说明两个指标冲突性较低。 第j个指标与其它指标冲突性的量化指标为 ∑nt=1(1-rij)其中rij为评价指标t和j之间的相关系数。 设Cj表示第j各指标所包含的信息量,则Cj可表示 为:
• 这种判断通过引入1~9比率标度进行 定量化。该法的优点是综合考虑评价 指标体系中各层因素的重要程度而使 各指标权重趋于合理;缺点是在构造 各层因素的权重判断矩阵时,一般采 用分级定量法赋值,容易造成同一系 统中一因素是另一因素的5倍、7倍, 甚至9倍,从而影响权重的合理性。
g.优序图法
• 设n为比较对象(如方案、目标、指标)的数目, 优序图是一个棋盘格的图式共有n×n个空格,在 进行两两比较时可选择1,0两个基本数字来表示 何者为大、为优。“1”表示两两相比中相对“大 的”、“优的”、“重要的”,而用“0”表示相 对“小的”、“劣的”、“不重要的”。以优序 图中黑字方格为对角线,把这对角线两边对称的 空格数字对照一番,如果对称的两栏数字正好一 边是1,而另一边是0形成互补或者两边都为0.5, 则表示填表数字无误,即完成互补检验。满足互 补检验的优序图的各行所填的各格数字横向相加, 分别与总数T(T=n(n-1)/2)相除就得到了各指标 的权重。
3. 特征向量法
1. 和法 (1) 将矩阵A的列向量归一化; (2)计算归一化后的矩阵的各列的算术平均, 得到权重(排序)向量: W ( w1 , w2 , , wn ) 其中 1 n aij wi = n ( i 1, 2, , n) n j 1 alj
为了把这种定性分析的结果量化,20世纪70年代,美
国数学家 Saaty等人首先在层次分析中引入了九级比例标
度和两两比较矩阵。 两个元素相互比较时,以其中一个元素作为1(如ui), 如果相对上一层,ui与uj比较,好坏相同,则uj记为1;uj比 ui较好, uj记为3;uj比ui好,uj记为5;uj比ui明显好,uj记为7;
i.标准离差法
• 标准离差法的思路与熵权法相似。通常, 某个指标的标准差越大,表明指标值的变 异程度越大,提供的信息量越多,在综合 评价中所起的作用越大,其权重也越大。 相反,某个指标的标准差越小,表明指标 值的变异程度越小,提供的信息量越少, 在综合评价中所起的作用越小,其权重也 应越小。其计算权重的公式为: • wj=σj∑nj, j=1,2,3,……n
如果uj比ui好的多,则uj记为9; 2, 4, 6, 8则是介于1,3,5,7,9
之间的情况。
把与上层某元素有关系的所有下层元素逐一 比较,且每一个元素与各元素比较的结果排成一
行则可得到一个方阵A=(aij)n×n,称为两两比较矩
阵。设ui与uj比为aij,则uj与ui比应为aji=1/aij ,
权重
• 权重是一个相对的概念,是针对某一指标 而言。某一指标的权重是指该指标在整体 评价中的相对重要程度。 • 自重权数:以权数作为指标的分值(或分 数),或者以权数直接作为等级的分值。 • 加重权数:在各指标的已知分值(即自重 权数)前面设立的权数。
a. 专家咨询权数法(特尔斐法)
• 该法又分为平均型、极端型和缓和型。 主要根据专家对指标的重要性打分来 定权,重要性得分越高,权数越大。 优点是集中了众多专家的意见,缺点 是通过打分直接给出各指标权重而难 以保持权重的合理性。
权重的确定方法
标准化(归一化)
• 极值线形模式:新数据=(原数据-极小值) /(极大值-极小值) • 均值标准差模式:新数据=(原数据-均值) /标准差 • 对数Logistic模式:新数据=1/(1+e^(-原 数据)) • 模糊量化模式:新数据= 1/2+1/2sin[派 3.1415/(极大值-极小值)*(X-(极大值极小值)/2) ] X为原数据
• Cj=σj∑nt=1(1-rij) j= 1,2, 3,……n • Cj越大,第j个评价指标所包含的信息 量越大,该指标的相对重要性就越大。 第j个指标的客观权重Wj应 为: wj=Cj∑nj=1Cj j= 1,2, 3,……n
k.非模糊数判断矩阵法
• 非模糊数判断矩阵法是通过把三角模糊数判断矩阵转化为 非模糊数,将新矩阵调整为互反矩阵,同时对其一致性进 行检验,再利用AHP法来确定权重的一种方 法。 设三角模糊数M1=(l1,m1,u1), M2=(l2,m2,u2) →建立单位模糊判断矩阵→集结单位模 糊判断矩阵建立三角模糊判断矩阵→将三角模糊数转化为 非模糊数→对互反性进行调整运用AHP法计算即可得到评 价因素的权重集。 该方法以三角模糊数判断 矩阵为基础,通过一系列的数学处理转换,得到模糊综合 评价因素权重,使确定因素权重过程中的主观判断更符合 人们的思维习惯与表达方式,在一定程度上改善了传统模 糊综合评价的某些缺陷,使该方法的准确性和有效性得到 一定的提高。
b.因子分析权数法
• 根据数理统计中因子分析方法,对每 个指标计算共性因子的累积贡献率来 定权。累积贡献率越大,说明该指标 对共性因子的作用越大,所定权数也 越大。
c.信息量权数法
• 根据各评价指标包含的分辨信息来确定权 数。采用变异系数法,变异系数越大,所 赋的权数也越大。 计算各指标的变异系数, 将CV作为权重分值,再经归一化处理,得 信息量权重系数。
中进行选择问题。例如假日旅游可以有多个旅游点供选
择;毕业生要选择工作单位;工作单位选拔人才;政府
机构要作出未来发展规划;厂长要选择未来产品发展方
向;科研人员要选择科研课题……
人们在选择时,最困难的就是在众多方案中都不
是十全十美的,往往这方面很好,其它方面就不十分满
意,这时,比较各方案哪一个更好些,就成为首要问
作单因素u j的权重统计: (1) 在每个专家所给出的u j的权重
a1 j a 2j a kj 中找出最大值M j 和最小值m ( j j 1, 2, n); M j mj (2)适当选择正整数p,由公式 计算出组距, p
将权重由小到大分为p组;
所以两两比较矩阵A也称为正互反矩阵。如例1 建
立层次分析模型:
第三层相对第二层元素“景点”的两 两比较矩阵A1中u1比u 2明显的好, 记7即a12 =7; u1比u 3强一些, 但不多, 记为2, a13 =2; u1比u1当然 为1了; 类似, u 2比u 3 差一些(或u 3比u 2 好一些), 记 为1 / 4,于是得到矩阵: 1 7 2 A1 1 / 7 1 1 / 4 1 / 2 4 1
f.层次分析法(AHP法)
• 层次分析法是一种多目标多准则的决策方 法,是美国运筹学家萨迪教授基于在决策 中大量因素无法定量地表达出来而又无法 回避决策过程中决策者的选择和判断所起 的决定作用,于20世纪70年代初提出的。 此法必须将评估目标分解成一个多级指标, 对于每一层中各因素的相对重要性给出判 断。它的信息主要是基于人们对于每一层 次中各因素相对重要性作出判断。