人教版九年级数学上册同步练习:25.3 用频率估计概率1

合集下载

人教版九年级数学上册 第二十五章概率初步25.3 用频率估计概率 课后练习

人教版九年级数学上册 第二十五章概率初步25.3 用频率估计概率 课后练习

人教版九年级数学上册第二十五章概率初步25.3 用频率估计概率课后练习一、选择题1.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.游戏者配成紫色的概率为1 6D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同2.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率3.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③4.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.26m B.27m C.28m D.29m5.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A.16B.18C.20D.226.设a,b是两个任意独立的一位正整数, 则点(a,b)在抛物线y=ax2-bx上方的概率是( )A.1181B.1381C.1781D.19817.某中学初三年级四个班,四个数学老师分别任教不同的班.期末考试时,学校安排统一监考,要求同年级数学老师交换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8 B.9 C.10 D.128.现有6张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的二次函数y=x2﹣2x+a﹣2与x轴有交点,且关于x的分式方程11222axx x-+=--有解的概率为()A.12B.13C.56D.169.从﹣3,﹣2,﹣1,0,1这五个数中,随机取出一个数,记为a,若a使得关于x的不等式组53(2)x ax x-≤⎧⎨--⎩<无解,且关于x的分式方程1322x ax x--=--有整数解的概率为()A.15B.25C.35D.4510.从-3,1,-2这三个数中,任选两个数的积作为k的值,则使正比例函数y=kx的图象经过第二、四象限的概率是( )A.13B.12C.16D.23二、填空题11.去游泳馆游泳,要换拖鞋,如果鞋柜里只剩下尺码相同的4双红色的鞋和3双蓝色的鞋混合放在一起,闭上眼睛随意拿出2只,它们正好是一双的概率为_________.12.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使关于x的分式方程2322x m mx x++=--有正实数解的概率为________.13.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是_____.14.一种游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,无奖金,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是____.15.由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件(分别记为A,B),曾老师对他任教的学生做了一个调查,统计结果如下表所示:若曾老师所在学校有2 000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.三、解答题16.某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x ,y ,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:注“●”表示患者,“▲”表示非患者.根据以上信息,回答下列问题:(1)在这40名被调查者中,①指标y 低于0.4的有 人;②将20名患者的指标x 的平均数记作1x ,方差记作21s ,20名非患者的指标x 的平均数记作2x ,方差记作22s ,则1x 2x ,21s 22s (填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x 低于0.3的大约有 人;(3)若将“指标x低于0.3,且指标y低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率多少.17.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内划出了一个半径为1米的圆,在不远处向图形内掷石子,且记录如下:(1)随着次数的增多,小明发现m与n的比值在一个常数k附近波动,请你写出k的值.(2)请利用学过的知识求出封闭图形ABC的大致面积.18.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天需求量与当天本地最高气温有关.为了制定今年六月份的订购计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数),等数据统计如下:以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须力100的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶的利润最大?19.在不透明的袋子中有黑棋子10枚和白棋子若干枚(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中白棋子的数量.20.[概率中的方案设计]小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影部分时小红胜,否则小明胜,未掷入圈内(半径为3m的圆内)或掷在边界上重掷.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想:能否用频率估计概率的方法,来估算不规则图形的面积呢?请你设计一个方案,解决这一问题(要求画出图形,说明设计步骤、原理,并给出计算公式)21.小晶和小红玩掷骰子游戏,每人将一个各面分别标有1、2、3、4、5、6的正方体骰子掷一次,把两个人掷得的点数相加,并约定‘点数之和等于6,小晶赢,点数之和等于7,小红赢,点数之和是其他数,两人不分胜负’,问,他们两人谁获胜的概率大,请你用“画树形图”的方法加以说明。

25.3 用频率估计概率(1)

25.3 用频率估计概率(1)

课题:25.3用频率估计概率(1)姓名:学习目标:□理解用频率估计概率的条件及方法.□应用频率估计概率的方法解决问题.一、定向导入1、探究活动:随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?频率如何计算?活动二:1.对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的________,总在一个________的附近摆动,显示出一定的________.2、一般地,在大量重复试验中,如果事件A发生的频率m n稳定在某个常数p 附近,那么这个常数p 就叫做事件A的概率,记为P(A)= .3.在抛掷一枚硬币,考察出现正反的试验中,随着试验次数的增加,“出现正面”的频率将趋于稳定在______左右.二、合作探究例1:从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:(1(2)根据以上数据可以估计,该玉米种子发芽的概率约为_________.(结果用小数表示,精确到0.1)例2某射手在相同条件下进行射击训练,结果如下表所示:(1)计算并填写表中击中靶心的频率(结果保留小数点后两位);(2)试根据该表,估计这名射手射击一次,击中靶心的概率约为多少(结果保留小数点后一位)?并说明理由.【跟踪训练1】 做大量重复试验,抛掷同一枚啤酒瓶盖,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为( )A .0.22B .0.44C .0.5D .0.56三、点拨拓展1、一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有8个,黄、白色小球的数目相同.为了估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀……多次试验发现摸到红球的频率是16,则估计黄色小球的数目是( )A .2个B .20个C .40个D .48个2、抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为?3、在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是____.4、小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是_______.四、总结反馈(一)总结归纳1.对照学习目标看一看自己学习的情况,掌握的请在□内画“√”;2.本节课你学到了什么,同桌讲一讲.(二)达标反馈作业案。

人教版九年级数学上册《25.3 用频率估计概率》练习题及答案

人教版九年级数学上册《25.3 用频率估计概率》练习题及答案

人教版九年级数学上册《25.3 用频率估计概率》练习题及答案班级: 姓名: 学号: 分数:一、选择题1.下列说法正确的是( )A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法2.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A.16B.13C.12D.233.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到的卡片上算式正确的概率是( )A.14B.12C.34D.1 4.甲、乙两名同学在一次大量重复试验中,统计了某一结果出现的频率,绘制出的统计图如图所示,符合这一结果的试验可能是( )A.掷一枚质地均匀的骰子,出现1点朝上的频率B.任意写一个正整数,它能被3整除的频率C.抛一枚硬币,出现正面朝上的频率D.从一个装有2个白球和1个红球的袋子中任取一球,取到白球的频率5.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是( )A.0.1B.0.2C.0.3D.0.46.从一批电视机中随机抽取10台进行质检,其中一台是次品,下列说法正确的是( )A.次品率小于10%B.次品率大于10%C.次品率接近10%D.次品率等于10%7.在一个不透明的盒子里装着若干个白球,小明想估计其中的白球数,于是他放入10个黑球,搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,得到如下数据:摸球的次数n 20 40 60 80 120 160 200摸到白球的次数m 15 33 49 63 97 128 158摸到白球的频率0.75 0.83 0.82 0.79 0.81 0.80 0.79m/n估计盒子里白球的个数为( )A.8B.40C.80D.无法估计8.绿豆在相同条件下的发芽试验,结果如下表所示:则绿豆发芽的概率估计值是( )A.0.96B.0.95C.0.94D.0.909.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是( )试验种子数50 200 500 1000 3000(粒)发芽频数m 45 188 476 951 2850发芽频率m/n 0.9 0.94 0.952 0.951 0.95A.0.8B.0.9C.0.95D.110.小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次20 16 9 5数)则通话时间不超过15 min的频率为( )A.0.1B.0.4C.0.5D.0.9二、填空题11.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有个.12.某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.13.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.14.下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1).15.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n) 50 100 150 200 250 300 500投中次数(m) 28 60 78 104 123 152 251投中频率(m/n) 0.56 0.60 0.52 0.52 0.49 0.51 0.5016.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的1000 1500 2500 4000 8000 15000 20000 30000 棵数n成活的865 1356 2220 3500 7056 13170 17580 26430 棵数m成活的0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881 频率m/n估计该种幼树在此条件下移植成活的概率为_________.三、解答题17.研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:(1)请你估计第一小组和第二小组所得的概率分别是多少?(2)你认为哪一个小组的结果更准确?为什么?18.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球.怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次随机摸出一个球,放回盒中,再继续.活动结果:摸球试验一共做了50次,统计结果如下表:球的颜色无记号有记号红色黄色红色黄色摸到的次数18 28 2 2推测计算.由上述的摸球试验可推算:(1)盒中红球、黄球各占总球数的百分比是多少?(2)盒中有红球多少个?19.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(如图所示).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1 000落在“铅笔”区域的次数m 68 111 136 345 564 701落在“铅笔”区域的频率(1)计算并完成表格.(2)请估计,当n很大时,落在“铅笔”区域的频率将会接近多少?(3)假如你去转动该转盘一次,你获得哪种奖品的机会大?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?20.小颖和小红两名同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验.(1)她们在一次试验中共掷骰子60次,试验的结果如下:①填空:此次试验中“5点朝上”的频率为________;②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或画树状图法加以说明,并求出其概率.21.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。

【初中数学】人教版九年级上册25.3 用频率估计概率(练习题)

【初中数学】人教版九年级上册25.3 用频率估计概率(练习题)

人教版九年级上册25.3 用频率估计概率(153) 1.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上一面的点数是42.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验.(1)她们在一次试验中共掷骰子60次,试验的结果如下:①填空:此次试验中“5点朝上”的频率为;②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或画树状图的方法加以说明,并求出其概率.3.为了了解初中生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了如图所示的尚不完整的统计图,请根据相关信息,解答下列问题:(1)本次活动共调查了多少名学生?(2)补全图①,并求出图②中B区域的圆心角的度数;(3)若该校八、九年级的学生共有2800名,请估计该校八、九年级学生中只愿意就读中等职业技术学校的人数.4.某种油菜籽在相同条件下发芽试验的结果如下表:那么估计这种油菜籽发芽的概率是(结果精确到0.01).5.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.6.儿童节期间,某公园游乐场举行一场活动.有一种游戏规则是在一个装有8个红球和若干个白球(每个球除颜色不同外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个玩具.已知参加这种游戏的儿童有40000人,公园游乐场发放玩具8000个.(1)求参加此次活动得到玩具的频率;(2)请你估计袋中白球的数量接近多少.7.为了估计水塘中鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放回鱼塘,再从鱼塘中打捞200条鱼.若在这200条鱼中有5条鱼是有记号的,则鱼塘中的鱼可估计为()A.3000条B.2200条C.1200条D.600条8.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率9.某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:根据上表可知该队员一次投篮命中的概率大约是()A.0.9B.0.8C.0.7D.0.7210.在一个不透明的盒子中装有a个除颜色不同外其余完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为()A.12B.15C.18D.2111.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个参考答案1.【答案】:D【解析】:A项中,小明随机出的是“剪刀”的概率是13≈0.33.B项中,从中任抽一张牌的花色是红桃的概率是1352=14=0.25.C项中,从中任取一球是黄球的概率是23≈0.67.D项中,向上一面的点数是4的概率是16≈0.17.而折线统计图中试验的频率稳定在0.17左右,与D项中概率接近.故选 D2(1)【答案】①∵试验中“5点朝上”的次数为20,总次数为60,∴此次试验中“5点朝上”的频率为2060=13.②小红的说法不正确.理由:∵利用频率估计概率的试验次数必须比较多,重复试验,频率才慢慢接近概率.而她们的试验次数太少,没有代表性,∴小红的说法不正确(2)【答案】列表如下:由表格可以看出,共有36种等可能的结果,其中点数之和为7的结果数最多,有6种,∴两枚骰子朝上的点数之和为7时的概率最大,最大概率为636=163×100%=10%,故本次活动共调查了80÷(1)【答案】C部分所占的百分比为3636010%=800(名)学生(2)【答案】只愿意就读中等职业技术学校的学生人数为800−480−80=240,×360∘=108∘.补全图形如下图所示.图②中B区域的圆心角的度数是240800(3)【答案】估计该校八、九年级学生中只愿意就读中等职业技术学校的人×2800=840数为2408004.【答案】:0.95【解析】:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则估计这种油菜籽发芽的概率是0.955.【答案】:20=0.2,解得n=20.经检【解析】:设暗箱里白球的数量是n,则根据题意,得5n+5验,n=20是原方程的根,且符合题意6=0.2.(1)【答案】解:参加此次活动得到玩具的频率为800040000(2)【答案】设袋中共有m个球,,则P(摸到一个球是红球)=8m=0.2,解得m=40,∴8m经检验,m=40是原方程的根,且符合题意.∴袋中白球的数量接近40−8=32(个).7.【答案】:C【解析】:∵5÷200=0.025,∴30÷0.025=1200.故选 C8.【答案】:D【解析】:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴A,B,C错误,D正确.故选D.9.【答案】:D【解析】:试验次数越大,频率越稳定,越接近事件发生的概率,故该队员一次投篮命中的概率大约是0.7210.【答案】:B【解析】:因为大量重复摸球试验后,摸到红球的频率逐渐稳定在20%,说明摸到红球的概率为20%,所以球的总数为3÷20%=15.故选 B11.【答案】:C【解析】:因为小亮共摸了1000次,其中有200次摸到白球,则有800次摸到红球,所以白球与红球的数量之比为1∶4.因为白球有10个,所以红球有4×10=40(个).。

人教版九年级数学上册用频率估计概率同步练习含答案【优选范本】

人教版九年级数学上册用频率估计概率同步练习含答案【优选范本】

25.3《用频率估计概率》同步练习及答案 (1)◆随堂检测1.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中只有3个红球.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.32.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A.12B.36π C.39π D.33π3.某同学抛掷两枚硬币,分10组实验,每组20次,下面是共计200次实验中记录下的结果.根据下列表格内容填空:实验组别两个正面一个正面没有正面第1组 6 11 3第2组 2 10 8第3组 6 12 2第4组7 10 3第5组 6 10 4第6组7 12 1第7组9 10 1第8组 5 6 9第9组 1 9 10第10组 4 14 2①在他的10②在他的第1组实验中抛出“两个正面”的频数是_____,在他的前两组(第1组和第2组)实验中抛出“两个正面”的频数是_____.③在他的10组实验中,抛出“两个正面”的频率是_____,抛出“一个正面”的频率是_____,“没有正面”的频率是_____,这三个频率之和是_____.④根据该实验结果估计抛掷两枚硬币,抛出“两个正面”的概率是____.◆典例分析小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?分析:概率是描述随机现象的数学模型,它不能等同于频率.只有在一定的条件下,大量重复试验时,随机事件的频率所逐渐稳定到的常数,才可估计此事件的概率. 解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=. (2)小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的说法也是错误的.因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次. ◆课下作业 ●拓展提高1.在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( ) A .161 B .41 C .16π D .4π2.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有_____个. 4.某篮球运动员在最近的几场大赛中罚球投篮的结果如下:(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?5.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?●体验中考1.(湖南长沙)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:2.(邵阳市)小芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为______. 3.(江西)某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个. (1)用“列表法”或“树状图法”表示所有可能出现的结果; (2)小刚抽到物理实验B 和化学实验F (记作事件M )的概率是多少? 参考答案: ◆随堂检测 1.A. 2.C .3.解:①9;②6,8;③0.2,0.7,0.1,1;④约0.265. ◆课下作业 ●拓展提高 1.C. 2.21. 3.6.4.解:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75. 5.根据概率的意义,可以认为其概率大约等于250/2000=0.125. 该镇约有100000×0.125=12500人看中央电视台的早间新闻. ●体验中考 1.0.8.2.12.3.解:(1)方法一:列表格如下:方法二:画树状图如下:所有可能出现的结果AD、AE、AF、BD、BE、BF、CD、CE、CF.(2)从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M出现了一次,所以P(M)=19. AD E FBD E FCD E F。

人教版九年级数学上册第二十五章《用频率估计概率》课时练习题(含答案)

人教版九年级数学上册第二十五章《用频率估计概率》课时练习题(含答案)

人教版九年级数学上册第二十五章《25.3用频率估计概率》课时练习题(含答案)一、单选题1.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.242.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是()A.14B.13C.12D.233.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个4.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个5.如图,电路连接完好,且各元件工作正常.随机闭合开关1S,2S,3S中的两个,能让两个小灯泡同时发光的概率为()A.16B.12C.23D.136.王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为()随机抽取的零件个数n20 50 100 500 1000合格的零件个数m18 46 91 450 900零件的合格率mn0.9 0.92 0.91 0.9 0.9A.0.9 B.0.8 C.0.5 D.0.17.某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的点数之和是78.数学社团的同学做了估算π的实验.方法如下:第一步:请全校同学随意写出两个实数x、y(x、y可以相等),且它们满足:0<x<1,0<y<1;第二步:统计收集上来的有效数据,设“以x,y,1为三条边长能构成锐角三角形”为事件A;第三步:计算事件A发生的概率,及收集的本校有效数据中事件A出现的频率;第四步:估算出π的值.为了计算事件A的概率,同学们通过查阅资料得到以下两条信息:①如果一次试验中,结果落在区域D中每一个点都是等可能的,用A表示“试验结果落在区域D中一个小区域M中”这个事件,那么事件A发生的概率为P(A)=MD;②若x,y,1三个数据能构成锐角三角形,则需满足x2+y2>1.根据上述材料,社团的同学们画出图,若共搜集上来的m份数据中能和“1”成锐角三角形的数据有n份,则可以估计π的值为()A.42n mm+B.2nmC.4nmD.44m nm-二、填空题9.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有____个.10.如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为__cm2.11.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.12.社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).三、解答题(共0分)13.某种油菜籽在相同条件下的发芽试验的结果如下:试验的粒数n20 80 100 200 400 800 1000 1500 发芽的粒数m14 54 67 132 264 532 670 1000发芽的频率mn0.7 0.675 0.67 0.66 0.66 0.665 a0.667(1)填空:上表中a=_________;(2)根据上表,请估计,当n很大时,发芽的频率将会接近多少?(结果保留两位小数)(3)根据上表,这种油菜籽发芽的概率的估计值是多少?(结果保留两位小数)14.一工厂生产某种型号的节能灯的质量抽检结果如表:抽检个数50 100 200 300 400 500次品个数 1 3 5 6 7 9(1)根据表格中的数据求任抽1件是次品的概率;(2)厂家承诺:顾客买到次品包换.如果卖出这批节能灯800个,那么要准备多少个兑换的节能灯?15.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:a________;b=________;(1)按表格数据,表中的=(2)请估计:当次数s很大时,摸到白球的频率将会接近________(精确到0.1);(3)试估算:这一个不透明的口袋中红球有多少个?16.对一批衬衣进行抽检,统计合格衬衣的件数,获得如下频数表.(1)完成上表.(2)估计任意抽一件衬衣是合格品的概率.(3)估计出售1200件衬衣,其中次品大约有几件.17.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是13.(1)求盒子中球的个数;(2)求任意摸出一个球是黑球的概率;(3)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率为14.若能,请写出如何调整白球数量;若不能,请说明理由.18.据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率。

人教版九年级数学上册25.3用频率估计概率同步测试及答案【高分必备】

用频率估计概率第1课时 用频率估计概率 [见A 本P58]1.“兰州市明天降水概率是30%”,对此消息下列说法中正确的是( C )A .兰州市明天将有30%的地区降水B .兰州市明天将有30%的时间降水C .兰州市明天降水的可能性较小D .兰州市明天肯定不降水2.2012-2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%.下列说法错误的是( A )A .科比罚球投篮2次,一定全部命中B .科比罚球投篮2次,不一定全部命中C .科比罚球投篮1次,命中的可能性较大D .科比罚球投篮1次,不命中的可能性较小3.投掷一枚普通的正方体骰子,四位同学各自发表了以下见解:①出现“点数为奇数”的概率等于出现“点数为偶数”的概率;②只要连掷6次,一定会“出现1点”;③投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大;④连续投掷3次,出现的点数之和不可能等于19.其中正确的个数为( B )A .1个B .2个C .3个D .4个4.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是__0.88__.5.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n 100 300 400 600 1 000 2 000 3 000 发芽的粒数m 96 282 382 570 948 1 912 2 850发芽的频率m n0.960 0.940 0.955 0.950 0.948 0.956 0.950 A .0.96 B .0.95 C .0.94 D .0.906.一个不透明的盒子里有n 个除颜色外其他都相同的小球,其中有6个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n 大约是( D )A .6B .10C .18D .20【解析】 由题意可得6n×100%=30%,解得n =20,故估计n 大约是20. 7.在英语句子“wish you success !”(祝你成功!)中任选一个字母,这个字母为“s ”的概率为__27__. 【解析】 英语句子“wish you success !”中共有14个字母,其中“s ”有4个,故任选一个字母选中“s ”的概率为414=27. 8.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数 100 400 800 1 000 2 000 5 000发芽种子粒数85 298 652 793 1 604 4 005 发芽频率 0.850 0.745 0.815 0.793 0.802 0.801__0.8__(【解析】 频率的稳定值为0.8,故用这个数作为玉米种子发芽的概率.9.有一箱规格相同的红、黄两种颜色的小塑料球共1 000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为__600__.【解析】 设红球的个数为x ,则x 1 000=0.6,解得x =600. 10(1)填出“(2)这些频率具有怎样的稳定性?(3)依据频率的稳定性,估计该足球队射中球门的概率.解:(1)0.800,0.760,0.763,0.740,0.775,0.780,0.751,0.750;(2)随着试验(射门)的次数越来越大,射中的频率会逐渐趋于稳定,且稳定在0.75左右;(3)估计该足球队射中球门的概率为0.75.11.投掷一枚普通的正方体骰子24次.(1)你认为下列四种说法哪几种是正确的?①出现1点的概率等于出现3点的概率;②投掷24次,2点一定会出现4次;③投掷前默念几次“出现4点”,投掷结果出现4点的可能性就会加大;④连续投掷6次,出现的点数之和不可能等于37.(2)求出现5点的概率.(3)出现6点大约有多少次?解:(1)①④正确;(2)出现5点的概率为16; (3)因为每次投掷骰子出现6点的概率为16,故投掷骰子24次出现6点大约有24×16=4(次). 12.研究“掷一个图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:(1)(2)你认为哪一个小组的结果更准确?为什么?解:(1)第一小组所得的概率是0.4,第二小组所得的概率是0.41;(2)不知道哪个更准确,因为试验数据可能有误差,不能确定误差偏向(这两个小组的试验条件可能不一致).13.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中再继续.(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?解:(1)由题意可知:50次摸球试验活动中,出现红球20次,黄球30次,所以盒中红球占总球数的百分比为2050×100%=40%, 盒中黄球占总球数的百分比为3050×100%=60%. (2)由题意可知,50次摸球试验活动中,出现有记号的球4次,所以盒中的总球数为504×8=100(个),所以盒中的红球有100×40%=40(个).14.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有________人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).图25-3-1解:(1)200(2)C:60人图略(3)甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)∴P(恰好选中甲、乙)=212=1 6.第2课时 用频率估计概率在实际生活中的应用[见B 本P58]1.某市民政部门“五一”期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),奖金(元) 1 000 500 100 50 10 2数量(张) 10 40 150 400 1 000 10 000如果花2A.12 000 B.1500C.3500D.1200【解析】 P (奖金不少于50元)=10+40+150+400100 000=600100 000=3500,故选C. 2.下列说法正确的是( D )A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨B .“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上 C .“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D .“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在16附近 3.甲、乙两名同学在一次用频率去估计概率的试验中统计了某一结果出现的频率,给出的统计图如图25-3-2所示,则符合这一结果的试验可能是( B )图25-3-2A .掷一枚正六面体的骰子,出现1点的概率B .从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C .掷一枚硬币,出现正面的概率D .任意写一个整数,它能被2整除的概率【解析】 由统计图知,当次数越多时,频率越接近34%≈13,故找出A ,B ,C ,D 中概率是13的一项.因为P (A)=16,P (B)=13,P (C)=12,P (D)=12,故选B. 4.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,……如此大量的摸球试验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此试验,他总结出下列结论:①若进行大量的摸球试验,摸出白球的频率应稳定于30%;②若从布袋中随机摸出一球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A .①②③B .①②C .①③D .②③5.[2013·资阳]在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( A )A .12个B .16个C .20个D .30个6.在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒子中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是__10__.7.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有__1__200__条鱼.8.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x .甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表:摸球总次数 10 20 30 60 90 120 180 240 330 450 “和为8”出现的频数2 10 13 24 30 37 58 82 110 150 “和为8” 出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33 (1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.解:(1)0.33.,画树状图法说明如下:从图中可知,数字和为9的概率为212=16, ∴x 的值不可以取7. 当x =4时,摸出的两个小球上数字之和为8的概率为13,数字之和为9的概率也为13(答案不唯一). 9.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次朝上的点数 1 2 3 4 5 6出现的次数 7 9 6 8 20 10(1)计算“3点朝上”(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.【解析】 (1)点数朝上的频率=朝上次数试验总次数. (2)一次试验的结果并不能反映某次事件的概率.随机事件的发生具有很大的随机性.(3)列表求出点数之和为3的倍数的概率.解: (1)“3点朝上”出现的频率是660=110,“5点朝上”出现的频率是2060=13. (2)小颖的说法是错误的,这是因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够大时,该事件发生的频率才稳定在该事件发生的概率附近;小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次.(3)列表如下:小红投掷的点数 小颖投掷的点数1 2 3 4 5 6 1 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12P (点数之和为3的倍数)=1236=13. 10.“中国梦”关乎每个人的幸福生活.为进一步感知我们身边的幸福,展现成都人追梦的风采.我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(等级 成绩(用s 表示) 频数 频率A 90≤s ≤100 x 0.08B 80≤s <90 35 yC s <80 11 0.22合计 50 1(1)表中x 的值为________,y 的值为________;(2)将本次参赛作品获得A 等级的学生依次用A 1,A 2,A 3,…表示,现该校决定从本次参赛作品获得A 等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用画树状图或列表法求恰好抽到学生A 1和A 2的概率.解: (1)4,0.7;(2)画树状图如下:或列表如下:A 1 A 2 A 3 A 4A 1 A 1A 2 A 1A 3 A 1A 4A 2 A 2A 1 A 2A 3 A 2A 4A 3 A 3A 1 A 3A 2 A 3A 4A 4 A 4A 1 A 4A 2 A 4A 3由树状图或列表可知,在A A 1和A 2的情况共有2种,所以所求概率P =212=16。

人教版九年级数学上册《25-3 用频率估计概率》作业同步练习题及参考答案

25.3 用频率估计概率1.下面说法合理的是( )A.小明在10 次抛图钉的试验中发现3 次钉尖朝上,由此他说钉尖朝上的概率是310B.抛掷一枚均匀的正方体骰子,“掷得6”1的概率是的意思是每66 次就有1 次掷得6C.某彩票的中奖机会是2%,则买100 张彩票一定会有2 张中奖D.在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48 和0.512.甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A.掷一枚均匀的正方体的骰子,出现1 点的概率B.从一个装有2 个白球和1 个红球的袋子中任取一球,这3 个球除颜色外无其他差异,取到红球的概率C.抛一枚均匀硬币,出现正面的概率D.任意写一个整数,它能被2 整除的概率3.在一次质检抽测中,随机抽取某摊位20 袋食盐,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5 ~501.5 g 之间的概率为( )A.15 B.14C.310D.7204.一个口袋中有红球、白球共10 个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100 次球,发现有71 次摸到红球.请你估计口袋中红球的数量为个.5.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30 条鱼做上标记,然后放归鱼塘,经过一段时间, 等有标记的鱼完全混合于鱼群中,再打捞200 条鱼,发现其中带标记的鱼有5 条,则鱼塘中估计有条鱼.6.在“抛掷质地均匀的正六面体”的试验中,已知正六面体的六个面上分别标有数字1,2,3,4,5,6,随着试验次数的增多,出现数字“1”的频率的变化趋势是接近.7.为了解学生的体能情况,随机选取了1 000 名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率.(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率.(3)如果某同学喜欢长跑,那么该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?8.在一次大规模的统计中发现英文文献中字母E 的使用频率在0.105 附近,而字母J 的使用频率大约在0.001 附近,如果这次统计是可信的,那么下列说法可信吗?试说明理由.(1)在英文文献中字母E 出现的频率在10.5%左右,字母J 出现的频率在0.1%左右;(2)如果再去统计一篇约含200 个字母的英文文章时,那么字母E 出现的频率一定非常接近10.5%.9.一个袋子中装有12 个完全相同的小球,每个球上分别写有数字1~12.现在用摸球试验来模拟6 人中有2 人生肖相同的概率,在此过程中,下面有几种不同的观点,其中正确的是( )A.摸出的球一定不能放回B.摸出的球必须要放回C.由于袋子中的球多于6 个,因此摸出的球是否放回无所谓D.不能用摸球试验来模拟此事件10.一个不透明的袋中装有除颜色外均相同的8 个黑球、4 个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中.通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中有红球个.11.儿童节期间,某公园游戏场举行一场活动.有一种游戏规则是:在一个装有8 个红球和若干个白球(每个球除颜色外,其他都相同)的袋中,随机摸1 个球,摸到1 个红球就得到一个玩具.已知参加这种游戏的儿童有40000 人,公园游戏场发放玩具8000 个.(1)求参加此次活动得到玩具的频率. (2)请你估计袋中白球的数量接近多少?★12.小颖和小红两位同学在学习“概率”时,做抛掷骰子(质地均匀的正方体)试验,她们共做了60 次试验,试验的结果如下:朝上的点数123456出现的次数796820 10(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据试验,一次试验中出现5 点朝上的概率最大”;小红说:“如果抛掷600 次,那么出现6 点朝上的次数正好是100 次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各抛掷一枚骰子,用列表的方法求出两枚骰子朝上的点数之和为3 的倍数的概率.★13. 小红和小明在操场做游戏,他们先在地上画了半径分别为2 m 和3 m 的同心圆(如图),蒙上眼在一定距离外向大圆内掷小石子,掷中阴影部分小红胜,否则小明胜,未掷入大圆内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)20参考答案夯基达标1.D2.B3.B 在随机抽取的 20 袋食盐中,质量在 497.5 ~501.5 g 之间的有 5 袋,由此可以估计任买一袋该摊位的食盐,质量在 497.5 ~501.5 g 之间的概率为 5= 1.44.75.1 2006.1 67.解 (1)同时喜欢短跑和跳绳的概率为 3001 000= 3 .10(2)同时喜欢三个项目的概率为200+150 = 7.1 000 20(3) 同时喜欢短跑的概率为150= 3,同时喜欢跳绳的概率为200+150+200= 11,同时喜欢跳远的概率为200 1 000= 1. 51 000201 0002011 > 1 > 3 , 20520∴该同学同时喜欢跳绳的可能性大.8.分析 根据试验频率近似地等于概率的前提条件进行判断.解 (1)正确.理由:本次大规模的统计是可信的,故试验频率近似地等于概率.(2)不正确.理由:含 200 个字母的英文文章中的字母 E 的使用频率与英文文献中字母 E 的使用频率不是等价的,只能用试验的方法去求得. 培优促能 9.B10.8 设袋中有红球 x 个,则袋中三种颜色的球共计(x+8+4)个, 根据题意可得� =0.4,解这个方程得 x=8,�+8+4经检验,x=8 是方程的解,且符合题意.11. 解 (1)参加此项游戏得到玩具的频率�= 8 000 ,即� = 1.�40 000�5∵(2)设袋中共有x 个球,则摸到红球的概率P(红球)=8.从而8 = 1,解得x=40,�� 5故白球接近40-8=32(个).12.解(1)“3点朝上”出现的频率是6 = 1 ;“5点朝上”出现的频率是20 = 1.60 10 60 3(2)小颖的说法是错误的.这是因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近.小红的说法也是错误的,因为事件发生具有随机性,故“6 点朝上”的次数不一定是100 次.(3)列表如下:P(点数之和为3 的倍数)=12 = 1.36 3创新应用13.解(1)不公平.因为P =9π-4π = 5,阴影9π9即小红胜的概率为5,小明胜的概率为4,9 9故游戏对双方不公平.(2)能利用频率估计概率的试验方法估算非规则图形的面积.设计方案:①设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为S),如图;②往图形中掷点(如蒙上眼往图形中随意掷石子,掷在图外不做记录);③当掷点次数充分大(如 1 万次),记录并统计结果,设掷入正方形内n 次,其中m 次掷入非规则图形内;④设非规则图形的面积为S1,用频率估计概率,即掷入非规则图形内的频率为�≈P(掷入非规则图形�内)=�1,�≈�1 ���故��⇒S1≈�.。

利用频率估计概率同步练习2024-2025学年人教版数学九年级上册

25.3 利用频率估计概率学习目标会根据一个随机事件发生的频率估计这个事件发生的概率,学会用试验估计某事件出现的概率的操作过程.课堂学习检测一、选择题1. 投掷一枚质地均匀的硬币m 次,正面向上n 次. 下列表述正确的是( ). (A) m 的值一定 12 (B)m的值一定不 12 (C) m 越大,π的值越接 12(D) 随着m 的增加,m 的值会 12附近摆动,呈现出一定的稳定 2. 下表显示的是某种大豆在相同条件下进行发芽试验的结果:每批粒数n 100 300 400 600 1000 2000 3000 发芽的粒数m 9628238257094819042850发芽的频率m0.960 0.940 0.955 0.950 0.948 0.952 0.950①当大豆粒数 n 为 400时,发芽大豆的粒数为 382,大豆发芽的频率为0.955, 所以大豆发芽的概率是0.955;②随着试验大豆粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;③大豆粒数n 为4000时,估计发芽大豆的粒数大约为3800粒. 其中推断合理的是 ( ).(A) ①②③ (B) ② (C) ①③ (D) ②③ 二、填空题3. 在同样条件下,大量重复试验时,同一事件发生的频率将逐渐在一个固定的 附近摆动,显示出一定的稳定性,所以我们可以通过多次试验,用同一个事件发生的 来估计这个事件发生的概率.4. 小明同学把一个二维码用黑白打印机打印于边长为2cm 的正方形区域内,为了估计二维码中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积为 cm².5. 如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中所有合理推断的序号是 .6. 某公司购进10000kg 苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:苹果总质量n/ kg 100 200 300 400 500 1000 损坏苹果质量m/ kg10.5019.4230.6339.2449.54101.10估计这批苹果的损坏率约为 (7. 某灯泡厂在一次质量检查中,从2000个灯泡中随机抽查了100个,其中有10个不合格,则出现不合格灯泡的频率为 ,在这2000个灯泡中,估计约有 个为不合格产品.8. 一般地,如果在一次实验中,结果落在区域 D 中的每一点都是等可能的,用A 表示“实验结果落在区域D 中的一个小区域M”这个事件,那么事件 A 发生的概率为P(A)=M .的面.积.,右图是一个.正方形及其内切圆,随机向正方形内D 的面积..,投一粒米,其落在圆内的概率为 .9. 某科研小组为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼条.三、解答题10. 为了解某品种小麦的发芽率,某农业合作小组在相同条件下对该小麦做发芽试验,试验数据如下表:种子个数n550100200500100020003000发芽种子个数m4449218947695118982851发芽种子频率²m0.8000.8800.9200.9450.9520.9510.9490.950估计该品种小麦在相同条件下发芽的概率为 ((2) 若在相同条件下播种该品种小麦10000个,则约有个能发芽.11. 某商场有一个可以自由转动的圆形转盘 (如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品 (指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m0.680.740.680.690.680.70估计转动该转盘一次获得铅笔的概率约为 ((2) 铅笔每支0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,计算该商场每天大约需要支出的奖品费用;(3) 在(2) 的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为约°.综合·运用·诊断一、填空题12. 一个不透明的箱子里放有a个白球和3个红球,它们除颜色外完全相同.每次将球搅匀后,任意摸出一个球记下颜色再放回这个箱子里. 通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a 的值大约是 .二、解答题13. 在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复. 下表是该试验的统计数据:摸球的次数 n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率m0.580.640.580.590.6050.601很大时,摸到白球的频率将会接近;(2) 试估算口袋中黑、白两种颜色的球各有多少个?(3) 结合以上问题的解决过程,请你应用统计与概率的思想和方法解决下面这个问题:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?写出解决这个问题的主要步骤及估算方法.。

新人教版九年级上册25.3用频率估计概率


(1)请计算出现向上点数为3的频率及出现向上点数为5的频 率. (2)王强说:“根据试验,一次试验中出现向上点数为5的概 率最大.” 李刚说:“如果抛540次,那么出现向上点数为6的次数正好 是100次.”请判断王强和李刚说法的对错. (3)如果王强与李刚各抛一枚骰子.求出现向上点数之和为5
的倍数的概率.
变化(集中)趋势,即观察各数值主要集中在哪个常数附近,
这个常数就是所求概率的估计值.同时要明确,频率只是一
个估计值,不同的试验受试验次数及试验条件的影响,所得 到的结果可能有所不同.
Байду номын сангаас
1.(2010 ·南充中考)在“抛掷正六面体”的试验中,如果正 六面体的六个面分别标有数字“1”、“2”、“3”、“4”、
(1)求参加此次活动得到海宝玩具的频率?
(2)请你估计袋中白球的数量接近多少?
【思路点拨】应用频率估计概率与生产生活实际联系密切, 是数学生活化的重要体现,解题关键是理解概率的意义、频 率与概率的关系,结合方程的思想解决问题 .
【自主解答】(1)参加此项游戏得到海宝玩具的频率
m 8 000 m 1 ,即 n 40 000 n 5
【解析】(1)根据频率与概率的关系,此次统计是大规模的, 所以可以用字母出现的频率估计其概率; (2)不可以,一篇只有200个字母的文献,出现E的频率就有 不确定性,因其数量太少.
用频率估计概率时一定要注意试验的次数及
试验条件对试验结果的影响.用试验估计概率时,必须经过
大量的试验,再用频率的稳定值估计概率 .同时理解概率只
(2)设袋中共有m个球,则摸到红球的概率P(红球)= 8 . 8 1
m m
5
解得m=40,∴白球接近40-8=32(个)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.3 用频率估计概率
1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”)
2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张.
3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.
4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.
5.如果手头没有硬币,用来模拟实验的替代物可用( ).
A.汽水瓶盖B.骰子C.锥体D.两个红球
6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是( ).A.确定的B.可能的C.不可能的D.不太可能的
7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:
(1)计算各次检查中“优等品”的频率,填入表中;
8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.
9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.
10.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.
11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.
12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?
13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,
(2)请设计另一种标记的方法,使得估计更加精准.
14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?
15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?
16.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.
参考答案
1.概率,频率. 2.8,12,4,26. 3.2.
4.200. 5.A. 6.B.
7.(1)频率依次为0.90,0.92,0.91,0.89,0.90;(2)概率是0.9.
8.可估计三色球总数为
100%
2525
=个,则黄球约为40个,红球约为100-40-25=35个. 9.9. 10.⋅154
;41
11.可能性是
;10
1
可取3个白球和两个红球,用红球代表过了保质期的饮料,从这5个球中任取两个,这两个均为红球的概率即为所求. 12.(1)100100
5
2000=⨯
(支),估计箱子里有100支不合格产品; (2)0.5×(2000-100)-1×100=850(元),这箱笔芯能赚钱,赚了850元.
13.(1)先求有标记数与总条数的比
,67928
得池塘鱼数2425679
28100=÷=条,估计可能不太准确,因为实验次数太少.
(2)可以先捞出一定数目的鱼(比如30条),做上标记再放回,一天后,在池塘里随机捞取,每次捞50条,求带有标记和不带有标记鱼的数目比.重复实验100次,求出平均值,然后用30除以平均比值,即可估计池塘里的鱼数.
14.从袋中随机摸取一球,记下颜色放回摇匀,摸20次为一次实验,若摸出n 个橙球,则摸到橙
球的频率为
;20n 重复多次实验,用实验频率估计理论概率;用20
30n
÷
求出袋中球的总数,再用总数减去30个橙球数,就得出放进去的白球数.
15.首先统计出联通用户数量m ,然后随机调查1000名手机用户,如果其中有n 名中国联通用户,
则可估计对手的市场占有率为,10001n
-
对手用户数量为
m n
m -1000名. 16.方案一:从口袋中摸出10粒棋子做上标记,然后放回口袋.拌匀后从中摸出20粒棋子,求出
标记的棋子与20的比值,不断重复上述过程30次,有标记的棋子与20的比值的平均
数为
,1
m
则估计袋中棋子有10m 粒. 方案二:另拿10粒黑色棋子放到袋中,拌匀后,重复方案一中的过程.黑棋子与20的比值平
均数为,1
n
估计袋中原有白棋子(10n -10)粒.。

相关文档
最新文档