中考数学试题解析9分母有理化二次根式化简(含答案)
初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.计算:=.【答案】【解析】=2﹣=.【考点】二次根式的加减法.2.下列实数是无理数的是()A.B.C.D.【答案】A.【解析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是无理数,选项正确;B、C、D、都是整数,是有理数,选项错误. 故选A.【考点】无理数.3.若式子有意义,则实数x的取值范围是【答案】x≥1.【解析】根据二次根式的性质可以得到x-1是非负数,由此即可求解.试题解析:依题意得x-1≥0,∴x≥1.【考点】二次根式有意义的条件.4.方程的解为 .【答案】x=1【解析】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.【考点】无理方程.5.函数y中,自变量x的取值范围是【答案】x≥.【解析】根据二次根式的意义,2x﹣1≥0,解得x≥.故答案是x≥.【考点】函数自变量的取值范围.6.计算:-12003+()-2-|3-|+3tan60°。
【答案】6【解析】首先计算乘方,化简二次根式,去掉绝对值符号,然后进行乘法,加减即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值.解:原式=﹣1+4﹣3+3+3×,=﹣1+4+3,=6.7.计算:·-=________.【答案】2【解析】原式=-=3-=2.8.使二次根式有意义的x的取值范围是 .【答案】x≤2.【解析】根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.【考点】二次根式的性质.9.与的大小关系是()A.>B.<C.=D.不能比较【答案】A.【解析】∵,∴,∴.故选A.【考点】实数大小比较.10.计算:.【答案】.【解析】先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:==.【考点】二次根式的化简.11.【答案】.【解析】根据分母有理化、二次根式、非零数的零次幂的意义进行计算即可得出答案.试题解析:考点: 实数的混合运算.12.计算: .【答案】.【解析】把括号展开即可求值.试题解析:故答案为:.考点: 二次根式的运算.13.下列计算中,正确的是()A.B.C.D.【答案】D.【解析】A.已经是最简的,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确.故选D.【考点】二次根式化简.14.实数范围内有意义,则x的取值范围是()A.x>1B.x≥l C.x<1D.x≤1【答案】B.【解析】根据根式有意义的条件,根号下面的数或者式子要大于等于0,即解得:x≥l.【考点】根式有意义的条件.15.计算:【答案】.【解析】根据二次根式的混合运算顺序和运算法则计算即可.试题解析:【考点】二次根式的混合运算.16.是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】C.【解析】∵,∴当时,,∴原式=,∴n的最小值为6.故选C.考点: 二次根式的化简.17.实数4的平方根是.【答案】±2.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴16的平方根是±2.【考点】平方根.18.要使式子在实数范围内有意义,字母a的取值必须满足()A.a≥2B.a≤2C.a≠2D.a≠0【答案】A【解析】使式子在实数范围内有意义,必须有a-2≥0,解得a≥2,故选A【考点】二次根式成立的条件.19.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.20.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.21.下列运算正确的是()A.B.C.D.【答案】D【解析】二次根式的性质:当时,,当时,.A、,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算22.要使式子有意义,则x的取值范围是 .【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
2020年中考数学必考专题04 二次根式的运算(解析版)

专题04 二次根式的运算1.二次根式:形如式子a (a ≥0)叫做二次根式。
(或是说,表示非负数的算术平方根的式子,叫做二次根式)。
2.二次根式有意义的条件:被开方数≥0 3.二次根式的性质: (1)是非负数;(2)(a )2=a (a ≥0);(3)==a a 2(4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即=·(a ≥0,b ≥0)。
(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a ≥0,b>0)。
反之,4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。
7.分母有理化的方法:分子分母同乘以分母的有理化因式。
8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
())0,0(0,0>≥=≥≥=⨯b a b ab a b a ab b a 专题知识回顾(>0)(<0)0 (=0);9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。
如:①的有理化因式为,②的有理化因式为。
(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。
即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。
一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
中考数学专题《二次根式》复习试卷含答案解析

2018年中考数学专题复习卷: 二次根式一、选择题1.下列计算正确的是()A. B. C. D.2.下列四个数中,是负数的是( )A. B. C. D.3.函数y= 中自变量x的取值范围是()A. x≥-1且x≠1B. x≥-1C. x≠1D. -1≤x<14.下列各式化简后的结果为3 的是()A. B. C. D.5.下列计算正确的是()A. a5+a2=a7B. × =C. 2-2=-4D. x2·x3=x66.计算|2﹣|+|4﹣|的值是()A. ﹣2B. 2C. 2 ﹣6D. 6﹣27.计算之值为何()A. 5B. 33C. 3D. 98.下列运算正确的是()A. B. C. D.9.已知,则代数式的值是()A. 0B.C.D.10.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A. 3个B. 4个C. 5个D. 6个11.化简为()A. 5﹣4B. 4 ﹣lC. 2D. 112.下列计算:①;②;③;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.函数y=的自变量x的取值范围是________.14.计算:=________.15.计算:________。
16.当x=2时,二次根式的值为________.17.计算的结果是________.18.计算(+1)2016(﹣1)2017=________.19.已知实数a在数轴上的位置如图所示,化简的结果是________.20.若实数a、b满足|a+2|+ =0,则=________.21.计算:=________.22.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.三、解答题23.24.计算:()﹣1﹣6cos30°﹣()0+ .25.在平面直角坐标系中,点P(- ,-1)到原点的距离是多少?26.若b为实数,化简|2b-1|- 。
2023年中考数学高频考点训练——二次根式的混合运算附解析

2023年中考数学高频考点训练——二次根式的混合运算一、综合题1.计算(1-÷(2)先化简211(1)11x x x --÷+-,再从1-,0,1中选择合适的x 值代入求值.2.先观察下列各等式及其验证过程,然后解答问题:①验证:==;②验证:=;解答下列问题:(1)按上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式所反映的一般规律,写出用(n n 为自然数,且2)n ≥表示的等式,并给出证明.3.观察下列式子:第1个式子:1121===-;第2个式子:===3232--=﹣;第3个式子:===4343-=﹣;…(1)仿照写出:=的计算过程;(2)根据上述规律求2020++的值.4.计算:(12.(2-14.(3)用含药30%和75%的两种防腐药水,配制含药50%的防腐药水36千克,两种药水各需多少千克?(4)甲,乙两位同学在解方程组3421ax y x by +=⎧⎨-=-⎩时,甲把字母a 看错了得到方程组的解为43x y =⎧⎨=⎩,乙把字母b 看错了得到方程组的解为22x y =-⎧⎨=⎩.求a ,b 的符合题意值及求原方程组的解.5.解答下列各题:(1)计算:(2)设实数的整数部分为a ,小数部分为b ,求(2a+b)(2a-b)的值.6.已知1+,1-,求下列代数式的值:(1)ab ;(2)a 2+ab+b 2;(3)b a a b+.7.观察下面等式:)()))222121212113121=====--;(1)仿照上面化简过程化去下列各式分母中的根号:,(2)猜想:=(n 为正整数);(3)利用上面的规律计算:+8.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;1==.以上这种化简过程叫做分母有理化.还可以用以下方法化简:221==.(1)请用其中一种方法化简;(2)化简:+.9.如图所示,两个等腰直角三角形拼成一个四边形,已知AB=,求:(1)△ABD 的面积.(2)四边形ABCD 的周长.10.已知22a b ==,.求下列式子的值:(1)22a b ab +(2)223a ab b -+11.已知312x =,312y -=,m xy =,22n x y =-.(1)求m ,n 的值;(2)若72m -=+,2n =,求+的值.12.利用平方根去括号可以用一个无理数构造一个整系数方程.例如:1a =时,移项-1a =,两边平方得()221a -=,所以a 2-2a+1=2,即a 2-2a-1=0。
中考数学二次根式(讲义及答案)及解析

一、选择题1.下列二次根式中是最简二次根式的为( ) A .12B .30C .8D .122.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数3.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是4.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .1015.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)65- =65+,其中正确的有( ) A .1个B .2个C .3个D .4个6.如果2a a 2a 1+-+=1,那么a 的取值范围是( ) A .a 0= B .a 1=C .a 1≤D .a=0a=1或7.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 8.下列运算中错误的是( ) A 235=B 236=C 822÷=D .2 (3)3-=9.已知0xy <,化简二次根式2yx - ) A y B y -C .y -D .y --10.下列计算正确的是( ) A 235=B .332-= C .222= D 393=二、填空题11.化简并计算:()()()()()()()...112231920xx x x x x x x +=+++++++________.(结果中分母不含根式)12.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①f =z __________;②f =z __________;+=__________.13.已知,-1,则x 2+xy +y 2=_____.14.÷=________________ .15.已知:可用含x =_____.16..17.计算:2015·2016=________.18.===据上述各等式反映的规律,请写出第5个等式:___________________________.19.化简:=_____. 20.x 的取值范围是_____. 三、解答题21.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==22.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3 ∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题:(1(2)若,求4a 2﹣8a+1的值. 【答案】(1)9;(2)5. 【解析】 试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.23.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.24.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+, 当,b=1时, 原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.一样的式子,其实我3==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)===== (2)原式2n +++=12. 考点:分母有理化.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.28.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误;BC =不是最简二次根式,本选项错误;D 2=故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.B解析:B 【分析】直接利用二次根式有意义的条件进而分析得出答案. 【详解】有意义的x 的取值范围是:x ≥3. 故选:B . 【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.C解析:C 【分析】根据二次根式的性质分析即可得出答案. 【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20, 当m=2,n=5时,原式=2是整数; 当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20), 故选:C . 【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.4.B解析:B 【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99. 【详解】∵==()211n n n n ++=+ =111+1n n -+,∴=1111111+11122399100-++-+++- =199+1100- =100-1100,∴不大于S 的最大整数为99. 故选B. 【点睛】1111n n =+-+是解答本题的基础.5.B解析:B 【解析】根据立方根的意义,可知27的立方根是3,故(1a =正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知8=,故(4=,故(5)正确. 故选B.6.C解析:C 【解析】试题解析:∵a1, a ∴1-a ≥0, a ≤1,故选C .7.B解析:B 【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.8.A解析:A 【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断. 【详解】23 23236=⨯=828242÷÷===,故此项正确,不符合要求;D. 2 (3)3-=,故此项正确,不符合要求; 故选A . 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.B解析:B 【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可. 【详解】 解:0xy <,0x ∴>,0y <或0x <,0y >,又2yx x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时,2yx y x -- 故选B . 【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x、y的取值.10.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题11.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式====220400xx x-.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.12.3 【解析】 1、;2、根据题意,先推导出等于什么, (1)∵, ∴,(2)再比较与的大小关系, ①当n=0时,; ②当为正整数时,∵, ∴, ∴,综合(1)、(2)可得:,解析:3 20172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么, (1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->,∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n>-,综合(1)、(2)可得:1122n n-<+,∴f n=z,∴3f=z.3、∵f n=z,∴(2017zf+111112233420172018=++++⨯⨯-⨯111111112233420172018=-+-+-++-112018=-20172018=.故答案为(1)2;(2)3;(3)20172018.点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n为非负整数时,1122n n-<+,从而得到f n=z;(2)解题③的要点是:当n为正整数时,111(1)1n n n n=-++.13.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.14.【解析】=,故答案为.解析:【解析】÷====-,故答案为15.【解析】 ∵=, ∴== = -==﹣x3+x , 故答案为:﹣x3+x.解析:211166x x -+【解析】∵x =-3==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x ,故答案为:﹣16x3+116x. 16.【解析】 【详解】根据二次根式的性质和二次根式的化简,可知==. 故答案为. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可. 解析:2【解析】 【详解】22.故答案为2. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.【解析】 原式=. 故答案为.【解析】原式=20152015=18.【解析】上述各式反映的规律是 (n ⩾1的整数),得到第5个等式为: (n ⩾1的整数). 故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
2024年中考数学复习-二次根式的化简求值考点培优练习(含解析)

二次根式的化简求值考点培优练习考点直击1.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.2.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫作同类二次根式.3.二次根式的运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式.(2)二次根式的乘法:√a⋅√b=√ab(a≥0,b≥0).(3)二次根式的除法:√a√b =√ab(a≥0,b≥0).4.二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式.防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法、除法常用乘法公式或除法公式来简化计算,运算结果一定要写成最简二次根式或整式.例题精讲例1 (邵阳中考)阅读下列材料,然后回答问题.√3√23√3+1这样的式子,其实我们还可以将其进一步化简:√3√3√3×√35√33①√2 3=√2×33×3=√63②;以上这种化简的步骤叫作分母有理化. √3+1还可以用以下方法化简:√3+1√3+1=√3)22√3+1=√3+1)(√3−1)√3+1√3−1④.(1)√5+√3.参照③2√5+√3¯;参照④2√5+√3¯.(2) 化简:√3+1√5+√3√7+√5⋯√2n+1+√2n−1.【思路点拨】(1)通过观察,发现分母有理化的两种方法:①同乘分母的有理化因式;②利用因式分解达到约分的目的;(2)注意找规律:分母的两个被开方数相差2,分母有理化后,分母都是2,分子可以出现抵消的情况.举一反三1 阅读下面计算过程:1√2+1√2−1)(√2+1)(√2−1)=√2−1;1√3+√2=√3−√2)(√3+√2)(√3−√2)√3−√2;√5+2√5−2)(√5+2)(√5−2)=√5−2.请解决下列问题:(1)√n+1+√n =¯;(2)利用上面的解法,请化简:1+√2√2+√3√3+√4⋯√98+√99√99+√100(3)√n+1−√n吗?请写出化简过程. 举一反三2 阅读下列材料,并解决相应问题:√5−√3=√5+√3)(√5−√3)(√5+√3)2√5+√32=√5+√3【应用】用上述类似的方法化简下列各式:(1√7+√6(2) 若a是√2√2的小数部分,求3a的值.例 2 观察下列一组等式,解答后面的问题:√2+1)(√2−1)=1,(√3+√2)(√3−√2)=1,(√4+√3)(√4−√3)=1, (√5+√4)(√5−√4)=1⋯(1)根据上面的规律,计算下列式子的值:(1√2+11√3+√21√4+√3⋯1√2016+√2015)(√2016+1).(2)利用上面的规律,比较√12−√11与√13−√12的大小.【思路点拨】(1)利用分母有理化得到原式=(√2−1+√3−√2+√4−√3+⋯+√2016−√2015)(√2016+1),合并后利用平方差公式计算;(2)通过比较它们的倒数进行判断.举一反三3 (南昌统考)观察下列一组等式的化简过程,然后解答后面的问题.√2+1√2−1)(√2+1)(√2−1)=√2−1√3+√2=√3−√2)(√3+√2)(√3−√2)√3−√21√4+√3=√4−√3)(√4+√3)(√4−√3)2−√3(1)在计算结果中找出规律√n+1+√n =¯(n 表示大于0的自然数);(2)通过上述化简过程,可知√11−√10¯√12−√11(填“>”“<”或“=”);(3)利用你发现的规律计算下列式子的值:举一反三4 已知x,y都是有理数,并且满足x2+2y+√2y=17−4√2,求√x−y的值. 举一反三5 已知x=2√3−√5,求代数式(17+4√15)x2−(2√3+√5)x−x的值.例3 (内江中考)已知:√x=√a√a <a<1),求代数式x2+x−6x÷x+3x2−2xx+2+√x2−4xx−2−√x2−4x的值.【思路点拨】由已知条件可得x=a+1a +2,x−2=a+1a,(x−2)2=(a+1a)2,即x2−4x=a2+1a2−2=(a−1a)2,化简原式,并代入求值,由a 的取值范围确定式子的值.举一反三6 已知:a+b=−5,ab=1,求√ab +√ba的值.举一反三7已知x=√3−2,y=√3+2,求: (1)x²y+xy²;(2)yx +xy的值.举一反三8 已知m12+√3.(1)下列各式为负值的是 ( )A.1mB.2−(√3+m)C. m--1D.1−√3m(2)求1−2m+m2m−1−√m2−2m+1m2−m.过关检测基础夯实1.(绥化中考)下列等式成立的是 ( )A.√16=±4B.√−83=2C.−a√1a=√−a D.−√64=−82.(济宁中考)下列各式是最简二次根式的是( )A.√13B.√12C.√a3D.√533.(聊城中考)计算√45÷3√3×√35的结果正确的是 ( )A. 1B. 53C.5D. 94.(上海中考)下列二次根式中,与√3是同类二次根式的是 ( )A. √6B.√9C.√12D.√185.(武汉中考)计算 √(−3)2的结果是6.(黄石中考)二次根式 √12,√12,√30, √x +2,√40x 2,√x 2+y 2中,最简二次根式是 .7.(烟台中考)若 √12与最简二次根式 5√a +1是 同 类 二 次 根 式,则 a =8.(哈尔滨中考)计算 √24+6√16的结果是9.(南京中考)√3√3+√12的结果是 能力拓展10.(昆明中考)下列运算中,正确的是 ( ) A.√5−2√5=−2 B.6a⁴b ÷2a³b =3ab C.(−2a²b )³=−8a⁶b³D.a a−1⋅a 2−2a+11−a=a11.(荆州中考)若x 为实数,在 66(√3+1)x”的“□”中添上一种运算符号(在“+,一,×,÷”中选择)后,其运算的结果为有理数,则x 不可能是 ( )A.√3+1B.√3−1C.2√3D.1−√312.(益阳中考)若计算 √12×m 的结果为正整数,则无理数 m 的值可以是 (写出一个符合条件的即可). 13.(北京中考)计算: (16)−1−20090+ |−2√5|−√20.14.(盐城中考)计算: |−2|−√116+ (−2)−2−(√3−2)0.15.(张家界中考)计算: (√3−1)(√3+1)− (sin35∘−12)0+(−1)2008−(−2)−2.16.(十堰中考)计算: (√6+3)(3−√6).17.(湖州中考)计算: √8+|√2−1|.综合创新18.计算:√7−√15−√16−2√15=¯.19.(呼和浩特中考)(1) 计算: |1−√3|−√2×√62−√3(23)−2;(2)已知m是小于0的常数,解关于x 的不等式组:{4x−1>x−7,−14x<32m−1.20.计算:√5+2√7+3√35+3√5+3√7+7.21.(锦州中考)先化简,再求值:xx2−1÷(1+1x−1),其中x=12√32−3√12−(π-3)⁰.22.(山西中考)请阅读以下材料,并完成相应的任务.斐波那契(约 1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第 n√5[(1+√52)n−(1−√52)n]表示 (其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【例题精讲】1.(1√5−√3)(√5+√3)(√5−√3)=√5−√3)(√5)2−(√3)2=√5−√3√5)2√3)2√5+√3=√5+√3)(√5−√3)√5+√3=√5−√3( 2 ) 原式√3−1(√3+1)(√3−1)√5−√3(√5+√3)(√5−√3)√7−√5(√7+√5)(√7−√5)⋯√2n+1−√2n−1(√2n+1+√2n−1)(√2n+1−√2n−1)=√3−12+√5−√32+√7−√52+⋯+√2n+1−√2n−12=√2n+1−122.(1) 原式: =(√2−1+√3−√2+√4−√3+⋯+√2016−√2015)(√2016+1)=(√2016−1)(√2016+1)=2016−1=2 015 (2)∵√12−√11=√12+√11,√13−√12√13+√12,而√12+√11<√13+√12,∴√12−√11>√13−√123.a²+2解析:∵√x=√a√a ∴x=a+1a+2,x−2=a+1a,(x−2)2=(a+1a)2,即x2−4x=a2+1a2−2=(a−1 a )2,∴原式=(x+3)(x−2)x.x(x−2)x+3x−2+√x2−4xx−2−√x2−4x=(x−2)2a+1a+√(a−1a)2a+1a−√(a−1a)2=(a+1a)2a+1a+√(a−1a)2a+1a−√(a−1a)2∴0<a<1,∴a−1a<0,∴原式=a2+1a2+2−a+1a−a+1aa+1a+a−1a=a2+1a2+2−1a2=a²+2.【举一反三】1.(1)√n+1−√n(2))原式=√2−1+√3−√2+√4−√3+⋯+√99−√98+√100−√99=√100−1=10−1=910-1 - 9 (3√n+1−√n√n+1+√n(√n+1−√n)(√n+1+√n)=√n+1+√n2.(1) 原式=√7−√6(√7+√6)(√7−√6)=√7−√6 (2)由题意可得a=√2−1,3a=√2+1)(√2−1)(√2+1)=3√2+33.(1)√n+1-√n (2)> (3) 原式= (√2−1+√3−√2+√4−√3+⋯+√2018−√2017)(√2018+1)=(√2018−1)(√2018+ 1)=2018−1=2 0174.3 解析: :x2+2y+√2y=17−4√2,∴(x2+2y−17)+√2(y+4)=0.∵x,,都是有理数,∴x²+2y−17与y+4 也是有理数, ∴{x2+2y−17=0,y+4=0,解得有意义的条件是x≥y,∴取x=5,y=--4, ∴√x--y = √5−(−4)=3.5.40 解析:当x=2√3−√5时,原式= (17+4√15)(2√3−√5)2−(2√3+√5).(2√3−√5)−2=(17+4√15)(17−4√15)−(12−5)−2=172−(4√15)2−7--2=289-240-9=40.6.5 解析:∵a+b=-5, ab=1,∴a<0,b<0, ∴原式=√ab|b|+√ab|a|=−(1b+1a)=−a+bab=5.7.(1)−2√3(2)−14解析::x=√3−2,y=√3+2,∴x+y=2 √3, xy=3-4=-1.(1).原式=xy(x+ y)=2√3×(−1)=−2√3;(2) 原式= y2+x2xy=(x+y)2−2xyxy =12+2−1=-14.8.(1) C (2)3解析:(1)将已知条件 m =2+√3分母有理化, m =2−√3,,则m-1<0;(2) 由(1)得 m =2−√3,∴m <1,则 √m 2−2m +1=√(m −1)2=1−m.原式 =(1−m )2m−1− |m−1|m (m−1).∵m <1,∴|m −1|=1−m ∴原式 =(m−1)2m−1−1−m m (m−1)=m − 1+1m=2−√3−12−√3=1−√3+ 2+√3=3.【过关检测】1. D 解析: √16=4,A 错误; √−83=−2,13错误; −a√1a=−√a,C 错误.2. A 解析: √12=2√3,,不是最简二次根式,不符合题意; √a 3=a √a,不是最简二次根式,不符合题意; √53=√153,不是最简二次根式,不符合题意.3. A 解析:原式 =3√5÷3√3×√35= √53×√35=1.4. C 解析: √6与 √3的被开方数不相同,故不是同类二次根式; √9=3,与 √3不是同类二次根式; √12=2√3,,与 √3被开方数相同,故是同类二次根式; √18=3√2,与 √3被开方数不同,故不是同类二次根式.5.36.√30,√x +2,√x 2+y 27.2 解析: ∵√12与最简二次根式 5√a +1是同类二次根式,且 √12=2√3,∴a +1=3,解得a=2. 8.3√6解析:原式 =2√6+√6=3√6. 9. 13 解析:原式 =√3√3+2√3√33√3=13.10. C 解析: √5−2√5=−√5,A 错误; 6a⁴b ÷2a³b =3a,B 错 误; a a−1.a 2−2a+11−a=a a−1⋅(1−a )21−a=−a,I 错误.11. C 解析:( (√3+1)−(√3+1)=0,A 选项不合题意; (√3+1)(√3−1)=2,B 选项不合题意; (√3+1)与 2√3无论是相加,相减,相乘,相除,结果都是无理数,C 选项符合题意; (√3+1)(1−√3)=−2,D 选项不合题意.12. √3(答案不唯一)13. 5 解析:原式 =6−1+2√5−2√5=5. 14.1 解析:原式 =2−14+14−1=1.15. 74解析:原式 =3−1−1+1−14=74.16.3 解析:原式 =32−(√6)2=9−6=3.17.3√2−1 解析:原式 =2√2+√2−1= 3√2−1. 18.√5−√3 解析:原式= √7−√15−√(√15−1)2=√7−√15−√15+1=√8−2√15= √5−√3. 19. (1)⁵/₄ (2)x>4-6m解析:(1)原式=√3−1−2√3+2+√3−94=−54;(2){4x−1>x−7,−14x<32m−1解不等式①得x>-2,解不等式②得x>4-6m,∵m是小于0的常数,∴4--6m>0>-2,∴不等式组的解集为x>4-6m.20. 原式√5+√7)+(√7+3)√5(√7+3)+√7(3+√7)√5+√7)+(√7+3)(√5+√7)(3+√7)13+√71√5+√73−√72+√7−√52=3−√5221. 原式=x(x+1)(x−1)÷xx−1=x(x+1)(x−1)×x−1x=1x+1,x=12√32−3√12−(π−3)0=12×4√2−3√22−1=2√2−3√22−1=√22−1,把x=√22−1代入1x+1,得1x+1√22−1+1=√222. 第1个数:当n=1时,√5[(1+√52)n−(1−√52)n]=√5(1+√52−1−√52)=√5√5=1;第2个数:当n=2时,√5[(1+√52)n−(1−√52)n]=√5[(1+√52)2−(1−√52)2]=√5(1+√52+1−√52)(1+√52−1−√52)√51×√5=1.。
2022-2023学年北师大版八年级上册数学二次根式的化简——分母有理化专题(含答案)

二次根式的化简——分母有理化专题(含答案)【知识点1 :分母有理化】 【方法点拨】1、分母有理化:把分母中的根号化去,叫做分母有理化。
2、分母中含根号的三种形式:形式一:ab形式二:b a +1与b a -1形式三:b n a m +1与b n a m -13、互为有理化因式:两个含有二次根式的非零代数式相乘,如果它们的积不含有二次根式,我们就说这两个二次根式互为有理化因式。
互为有理化因式有三种形式:(1)a a 与互为有理化因式,也就是a 的有理化因式是a .(2)))与((b a b a -+互为有理化因式,也就是 )(b a +的有理化因式是)(b a -, )(b a -的有理化因式是)(b a +.(3)))与((b n a m b n a m -+互为有理化因式,也就是 )(b n a m +的有理化因式是)(b n a m -, )(b n a m -的有理化因式是)(b n a m +.比如:3的有理化因式是3,)(23+的有理化因式是)(23-,)(3254+的有理化因式是)(3254-,一、 形式一:ab1、化简依据:a a a a ==2)(2、化简过程:a abaa ab ab ==3、例题讲解: 【例1】化简:(1)52(2)384、巩固练习:【练习1】将下列各式化简:(1)53(2)716(3)238(4)1)6(-二、形式二:b a +1与ba -11、化简依据:b a b a b a b a -=-=-+22)()())((2、化简过程:b a ba b a b a b a b a --=-+-⨯=+))((11)( b a ba b a b a b a b a -+=+-+⨯=-))((11)( 3、例题讲解: 【例2】 化简:(1)351+ (2)561-4、巩固练习:【练习2】将下列各式化简:(1)251- (2)235+(3)10099199981431321211++++++++++三、形式三:b n a m +1与bn a m -11、化简依据:b n a m b n a m b n a m b n a m 2222)()())((-=-=-+2、化简过程:b n a m b n a m b n a m b n a m b n a m b n a m 22))((11--=-+-⨯=+)( b n a m bn a m b n a m b n a m b n a m b n a m 22))((11-+=+-+⨯=-)( 3、例题讲解: 【例3】 化简: (1)62541+ (2)32231-4、巩固练习:【练习3】将下列各式化简: (1)323)62(2++(2)33522-(3)4947474917557153351331++++++++二次根式的化简——分母有理化专题答案【例1】 化简:(1)52(2)38解:原式5552⨯⨯=510=解:原式38=3338⨯⨯=362=【练习1】将下列各式化简:(1)53(2)716解:原式5553⨯⨯=553=解:原式77716⨯⨯=716=774= (3)238(4)1)6(-解:原式22328⨯⨯=64=32= 解:原式61=6661⨯⨯=66=【例2】 化简: (1)351+ (2)561-解:原式)()()(3535351-⨯+-⨯=解:原式)()()(5656561+⨯-+⨯=235-=56+=【练习2】将下列各式化简:(1)251- (2)235+解:原式)()()(2525251+⨯-+⨯=解:原式)()()(2323235-⨯+-⨯=25+=1552-=(3)10099199981431321211++++++++++解:原式99100198991341231121++++++++++=991009899342312-+-++-+-+-=100999998984433221+-+-++-+-+-+-=1001+-=101+-=9=【例3】 化简: (1)62541+ (2)32231-解:原式)()()(6254625462541-⨯+-⨯=解:原式)()()(3223322332231+⨯-+⨯=22)62(546254--=)( 2232233223)()(-+= 24806254--=12183223-+= 566254-=63223+= 28652-=3322+=【练习3】将下列各式化简: (1)3231+ (2)33522-解:原式)()()(3233233231-⨯+-⨯=解:原式)()()(3352335233522+⨯-+⨯=22)3(23323--=)( 2233523654)()(-+= 318323--=27203654-+= 15323-=73654+-=(3)4947474917557153351331++++++++4947474917557153351331++++++++=解:原式)49474749)(49474749(49474749)5335)(5335(5335)33)(33(33-+-++-+-+-+-=24749494747492577557235533521333⨯⨯-++⨯⨯-+⨯⨯-+⨯⨯-=)4749494747495775573553351333(21⨯-++⨯-+⨯-+⨯-⨯=)4949474777555533331(21-++-+-+-⨯=)49491(21-⨯=)4971(21-⨯=)711(21-⨯=7621⨯=73=。
中考数学真题解析 分母有理化二次根式化简(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编分母有理化、二次根式化简一、选择题1. (2011•台湾17,4分)计算631254129⨯÷之值为何( ) A 、123 B 、63 C 、33D 、433 考点:二次根式的乘除法。
分析:把分式化为乘法的形式,相互约分从而解得. 解答:解:原式=635412129⨯⨯=63. 故选B .点评:本题考查了二次根式的乘除法,把分式化为乘法的形式,互相约分而得.2. (2011•贺州)下列计算正确的是( ) A 、=﹣3 B 、()2=3C 、=±3D 、+=考点:二次根式的混合运算。
专题:计算题。
分析:根据二次根式的性质进行计算,找出计算正确的即可.解答:解:A、=3,此选项错误;B、()2=3,此选项正确;C、=3,此选项错误;D、+=+,此选项错误.故选B.点评:本题考查了二次根式的混合运算.解题的关键是注意开方的结果是≥0的数.3.(2011黑龙江大庆,3,3分)对任意实数a,则下列等式一定成立的是()A、a=aB、2a=-aC、2a=±aD、2a=a考点:二次根式的性质与化简。
专题:计算题。
分析:根据二次根式的化简、算术平方根等概念分别判断.解答:解:A、a为负数时,没有意义,故本选项错误;B、a为正数时不成立,故本选项错误;C、=|a|,故本选项错误.D、故本选项正确.故选D.点评:本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.4.(2011,台湾省,17,5分)下列何者是方程式(﹣1)x=12的解?()A、3B、6C、2﹣1D、3+3考点:二次根式的混合运算;解一元一次方程。
专题:计算题。
分析:方程两边同除以(﹣1),再分母有理化即可.解答:解:方程(﹣1)x=12,两边同除以(﹣1),得x=,=,=,=3(+1),=3+3.故选D.点评:本题考查了解一元一次方程.关键是将方程的未知数项系数化为1,将分母有理化.5.(2011山东菏泽,4,4分)实数a在数轴上的位置如图所示,则24a-()化简后为()a-()+211A.7 B.﹣7 C.2a﹣15 D.无法确定考点:二次根式的性质与化简;实数与数轴.分析:先从实数a 在数轴上的位置,得出a 的取值范围,然后求出(a ﹣4)和(a ﹣11)的取值范围,再开方化简.解答:解:从实数a 在数轴上的位置可得,5<a <10,所以a ﹣4>1,a ﹣11<﹣1,a ﹣4+11﹣a =7.故选A .点评:本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.6. (2011•莱芜)下列计算正确的是( )A 、3)3(2-=-B 、91)31(2=- C 、(﹣a 2)3=a 6D 、a 6÷(21a 2)=2a 4考点:整式的除法;幂的乘方与积的乘方;负整数指数幂;二次根式的性质与化简。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(分母有理化、二次根式化简一、选择题1. (2011•台湾17,4分)计算631254129⨯÷之值为何( ) A 、123 B 、63 C 、33 D 、433 考点:二次根式的乘除法。
分析:把分式化为乘法的形式,相互约分从而解得.解答:解:原式=635412129⨯⨯=63. 故选B .点评:本题考查了二次根式的乘除法,把分式化为乘法的形式,互相约分而得.2. (2011•贺州)下列计算正确的是( ) A 、=﹣3 B 、()2=3C 、=±3D 、+=考点:二次根式的混合运算。
专题:计算题。
分析:根据二次根式的性质进行计算,找出计算正确的即可.解答:解:A 、=3,此选项错误;B 、()2=3,此选项正确;C 、=3,此选项错误;D、+=+,此选项错误.故选B.点评:本题考查了二次根式的混合运算.解题的关键是注意开方的结果是≥0的数.3.(2011黑龙江大庆,3,3分)对任意实数a,则下列等式一定成立的是()A、a=aB、2a=-aC、2a=±aD、2a=a考点:二次根式的性质与化简。
专题:计算题。
分析:根据二次根式的化简、算术平方根等概念分别判断.解答:解:A、a为负数时,没有意义,故本选项错误;B、a为正数时不成立,故本选项错误;C、=|a|,故本选项错误.D、故本选项正确.故选D.点评:本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.4.(2011,台湾省,17,5分)下列何者是方程式(﹣1)x=12的解?()A、3B、6C、2﹣1D、3+3考点:二次根式的混合运算;解一元一次方程。
专题:计算题。
分析:方程两边同除以(﹣1),再分母有理化即可.解答:解:方程(﹣1)x=12,两边同除以(﹣1),得x=,=,=,=3(+1),=3+3.故选D . 点评:本题考查了解一元一次方程.关键是将方程的未知数项系数化为1,将分母有理化.5. (2011山东菏泽,4,4分)实数a 在数轴上的位置如图所示,则24a-()+211a-()化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定考点:二次根式的性质与化简;实数与数轴.分析:先从实数a 在数轴上的位置,得出a 的取值范围,然后求出(a ﹣4)和(a ﹣11)的取值范围,再开方化简.解答:解:从实数a 在数轴上的位置可得,5<a <10,所以a ﹣4>1,a ﹣11<﹣1,24a-()211a-()a ﹣4+11﹣a =7.故选A . 点评:本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.6. (2011•莱芜)下列计算正确的是( )A 、3)3(2-=-B 、91)31(2=- C 、(﹣a 2)3=a 6 D 、a 6÷(21a 2)=2a 4 考点:整式的除法;幂的乘方与积的乘方;负整数指数幂;二次根式的性质与化简。
分析:A 、首先计算出(﹣3)2的结果,再开方判断;B 、根据负整数指数幂:a ﹣p =p a1(a≠0,p 为正整数)计算可判断; C 、首先看准底数,判断符号,再利用幂的乘方法则:底数不变,指数相乘计算即可判断;D 、根据单项式除以单项式法则:把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式计算即可判断.解答:解:A 、3)3(2=-,故此选项错误;B 、2)31(-==9,故此选项错误;C 、(﹣a 2)3=﹣a 6,故此选项错误;D 、a 6÷(21a 2)=(1÷21)(a 6÷a 2)=2a 4,故此选项正确. 故选:D .点评:此题主要考查了二次根式的开方,负整数指数幂,幂的乘方,单项式除以单项式,关键是准确把握各种计算法则.7. (2011•临沂,4,3分)计算﹣ )A 、B 、5C 、5D 、 考点:二次根式的加减法。
分析:根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解答:解:﹣=2×2﹣,﹣,﹣故选A .点评:此题主要考查了二次根式的运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.8. (2011泰安,7,3分)下列运算正确的是( )A .525±=B .12734=-C .9218=÷D .62324=⋅ 考点:二次根式的混合运算。
专题:计算题。
分析:根据二次根式运算的法则,分别计算得出各答案的值,即可得出正确答案.解答:解:A .∵25=5,∴故此选项错误; B .∵43-27=43-33=3,∴故此选项错误;C .18÷2=9=3,∴故此选项错误;D .∵24×=2324⋅=6,∴故此选项正确. 故选:D .点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9. (2011山东省潍坊, 1,3分)下面计算正确的是( ).A .3333+=B 、2733+=C .235⋅= D .2(2)2-=-【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的混合运算方法,分别进行运算即可.【解答】解:A.3+不是同类项无法进行运算,故此选项错误; B.= = =3,故此选项正确; C.= , ×= = ,故此选项错误; D.=-2, ∵= =2,故此选项错误; 故选:B .【点评】此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.10.(2011山东淄博3,3分)下列等式不成立的是( )A.= 4== =考点:二次根式的混合运算。
专题:计算题。
分析:根据二次根式的混合运算依次计算,再进行选择即可.解答:解:A 、=B 2=,故本选项错误;C=,故本选项正确;D ==故选C .点评:本题考查了二次根式的混合运算,是基础知识比较简单.11. (2011成都,23,4分)设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++设...S S =_________ (用含n 的代数式表示,其中n 为正整数).考点:二次根式的化简求值。
专题:计算题;规律型。
分析:由222222222222)]1([]1)1([)]1([122)]1([)1()1()1(11+++=+++++=+++++=+=n n n n n n n n n n n n n n n n n S n ,求n S ,得出一般规律.解答:解:∵222222222222)]1([]1)1([)]1([122)]1([)1()1()1(11+++=+++++=+++++=+=n n n n n n n n n n n n n n n n n S n , ∴1111)1(1)1(+-+=+++=n n n n n n S n , ∴1111312112111+-+++-++-+=n n S 111+-+=n n 1211)1(22++=+-+=n n n n n 故答案为: 122++n n n 点评:本题考查了二次根式的化简求值.关键是由S n 变形,得出一般规律,寻找抵消规律.12. (2011湖北孝感,4,3分)下列计算正确的是( )A . =B =C .=D =考点:二次根式的混合运算。
专题:计算题。
分析:根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.解答:解:A 故本选项正确.BC ,故本选项错误;D =2,故本选项错误.故选A .点评:本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.二、填空题1.(2011江苏南京,9,2分)计算(2+1)(2﹣2)=2.考点:二次根式的混合运算。
分析:根据二次根式的混合运算直接去括号得出,再进行合并同类项即可.解答:解:(2+1)(2﹣2),=22﹣2×2+1×2﹣1×2,=22﹣2+2﹣2,=2.故答案为:2.点评:此题主要考查了二次根式的混合运算,在加减的过程中,有同类二次根式的要合并注意认真计算防止出错.2.(2011•青海)分解因式:﹣x3+2x2﹣x=﹣x(x﹣1)2;计算:= 0.考点:二次根式的加减法;提公因式法与公式法的综合运用。
专题:计算题。
分析:①先提取公因式﹣x,再根据完全平方公式进行二次分解即可.完全平方公式:a2±2ab+b2=(a±b)2.②将二次根式化为最简,然后合并同类二次根式即可.解答:解:①﹣x3+2x2﹣x=﹣x(x2﹣2x+1)=﹣x(x﹣1)2;②原式=3+﹣4=0. 故答案为:﹣x (x ﹣1)2,0.点评:本题考查二次根式的加减及提公因式法、公式法分解因式,属于基础题木,在分解因式时注意提取公因式后利用完全平方公式进行二次分解,分解要彻底. 3. (2011年山东省威海市,13,3分)计算(508)2-÷的结果是 3.考点:二次根式的混合运算.专题:计算题.分析:本题只需将二次根式化为最简,然后合并同类二次根式,最后进行二次根式的除法运算即可.解答:解:原式=(5–2 2)÷2=3. 故答案为:3.点评:本题考查二次根式的混合运算,难度不大,解答此类题目时往往要先将二次根式化为最简.4. (2011贵州遵义,11,4分)计算:218⨯= ▲ 。
【考点】二次根式的乘除法.【分析】本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出结果.【解答】解:218⨯, =22×122, =2.故答案为:2.【点评】本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则,求出正确答案是本题的关键.5. (2011天水,11,4= 考点:二次根式的加减法。
分析:首先将各二次根式化为最简二次根式,再合并同类二次根式即可.解答:解:原式=22= 点评:在二次根式的加减运算中,首先要将各式化为最简二次根式,然后再合并同类二次根式,不是同类二次根式的不能合并.6.(2011•包头,15,3分)化简二次根式:1232127---= ﹣2 . 考点:二次根式的混合运算。
分析:首先进行各项的化简,然后合并同类项即可.解答:解:1232127---=33﹣(32+)﹣23=﹣2, 故答案为﹣2.点评:本题主要考察二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.三、解答题考点:二次根式的混合运算;分式的混合运算;负整数指数幂.分析:(1)各项化为最简根式、去绝对值号、去括号,然后进行四则混合运算即可;解答:(11112-⎛⎫ ⎪⎝⎭ 解:原式=212223+-+-=123+点评:本题主要考察二次根式的混合运算,分式的混合运算,负整数指数幂,解题的关键在于首先对各项进行化简,然后在进行运算 2. 计算:(-3)0—27+21-+321+.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:观察,可以首先去绝对值以及二次根式化简,再合并同类项.解答:解:(-3)0—27+21-+321+ =1-33+ 2-1+ )23)(32(23-+-, =-3+ + - , =-2 . 点评:此题主要考查了二次根式的混合运算以及绝对值的性质,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.3. (2011四川凉山,25,5分)已知a b 、为有理数,m n 、分别表示57-小数部分,且21amn bn +=,则2a b += .考点:二次根式的混合运算;估算无理数的大小.专题:计算题.分析:只需首先对57从而求出其整数部分a ,其小数部分用 57-a 表示.再分别代入amn +bn 2=1进行计算.解答:解:因为2<7<3,所以2<5-7<3,故m =2,n =5- 7-2=3- 7. 把m =2,n =3- 7代入amn +bn 2=1,化简得(6a +16b )-(2a +6b )7=1,所以6a +16b =1且2a +6b =0,解得a =1.5,b =-0.5.所以2a +b =3-0.5=2.5.故答案为:2.5.点评:本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.4. (2011黑龙江大庆,19,4分)计算26)1(30--+-π.考点:二次根式的混合运算;零指数幂。