高一数学必修1第一单元测试题及答案
(易错题)高中数学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)

一、选择题1.“21x >”是“2x >”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( )A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞3.已知全集U =R ,集合M ={x |x 2+x ﹣2≤0},集合N ={y |y },则(C U M )∪N 等于( ) A .{x |x <﹣2或x ≥0} B .{x |x >1} C .{x |x <﹣1或1<x ≤3} D .R4.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假状况是( )A .原命题与逆命题均为真命题B .原命题真,逆命题假C .原命题假,逆命题真D .原命题与逆命题均为真命题 5.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}6.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤C .21a -<<D .2a <-或1a >7.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④B .①②C .①③D .②④8.已知命题2:230p x x +->;命题:q x a >,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)1,-+∞D .(],3-∞9.已知1:12p x ≥-,:||2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( )A .(,4]-∞B .[1,4]C .(1,4]D .(1,4)10.已知在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则“113a =”是“数列{}n a 唯一”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.若集合1|,6 A x x m m Z ⎧⎫==+∈⎨⎬⎩⎭, 1|,23n B x x n Z ⎧⎫==-∈⎨⎬⎩⎭,1|,26p C x x p Z ⎧⎫==+∈⎨⎬⎩⎭,则A ,B ,C 之间的关系是( )A .ABC ==B .AB C = C .ABC D .B CA12.在下列三个结论中,正确的有( ) ①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件. A .①② B .②③ C .①③D .①②③二、填空题13.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.14.已知集合{}3A x x =≤,{}2B x x =<,则RAB =__________.15.已知1a ≤,集合{}2x a x a ≤≤-中有且仅有三个整数,则实数a 的取值范围为________.16.已知集合{}{}10|133xA aB x =-=,,,<<,若A B ⋂=∅,则实数a 的取值范围是______.17.已知数集{}{},,,1,2,3,4a b c d =,且有下列说法:①1a =;②2>c ;③4d ≠,则满足(),,,a b c d 的数值有________组.18.若集合A ={x|2≤x≤3},集合B ={x|ax -2=0,a ∈Z},且B ⊆A ,则实数a =________. 19.已知集合{}{}22,1,A B a==,若{}0,1,2AB =,则实数a =________.20.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________.三、解答题21.已知集合()(){}10A x x a x a =-++≤,{3B x x =≤或}6x ≥. (1)当4a =时,求AB ;(2)当0a >时,若“x A ∈”是“x B ∈”的充分条件,求a 的取值范围. 22.已知集合411A x x ⎧⎫=>⎨⎬+⎩⎭,集合{}22220,B x x x a a a R =+-+<∈.(1)求集合A ;(2)若x B ∈是x A ∈的必要条件,求实数a 的取值范围. 23.知2:8150p x x -+≤,(): q xx a a -+-≤>222100.(Ⅰ)若p 为真命题,求实数x 的取值范围;(Ⅱ)若p 为q 成立的充分不必要条件,求实数a 的取值范围. 24.设集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-. (1)若B A ⊆,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x A ∈与x B ∈同时成立,求实数m 的取值范围. 25.已知0a >,设p :实数x 满足22430x ax a -+<,q :实数x 满足()231x -<.(1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 26.已知集合121284x A x⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭. (1)若{}122C x m x m =+<≤-,()C A B ⊆⋂,求实数m 的取值范围;(2)若{}61D x x m =>+,且()AB D =∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设{}21A x x =>,{}2B x x =>,然后根据集合包含关系分析充分性和必要性. 【详解】设{}{211A x x x x =>=>或}1x <-,设{}2B x x =>,可得B A ,所以“21x >”是“2x >”的必要不充分条件. 故选:B . 【点睛】方法点睛:充分性和必要性的判断方法:1、定义法,2、命题法,3、传递法,4、集合法.2.C解析:C 【分析】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题,分0x =和0x ≠两种情况讨论,结合参变量分离法可求得实数a 的取值范围. 【详解】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题. 当0x =时,则有10-≥,不合乎题意;当0x ≠时,由2410ax x +-≥,可得214ax x ≥-,则有221414x a x x x-≥=-, 22141244x x x ⎛⎫-=--≥- ⎪⎝⎭,当且仅当12x =时,等号成立, 所以,4a ≥-.综上所述,实数a 的取值范围是[)4,-+∞. 故选:C. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3.A解析:A 【分析】解出不等式x 2+x ﹣2≤0的解集,求出补集,根据集合的运算法则求解. 【详解】解不等式x 2+x ﹣2≤0得:-2≤x ≤1,C U M=()(),21,-∞-+∞,N ={y |y }[)0,=+∞, (C U M )∪N={x |x <﹣2或x ≥0}. 故选:A 【点睛】此题考查集合的基本运算,关键在于准确求解二次不等式,根据集合的运算法则求解.4.B解析:B 【分析】写出原命题的逆否命题,判断其逆否命题为真,从而得到原命题也为真. 【详解】原命题的逆否命题为:若,a b 中没有一个大于等于1,则2a b +<,等价于“若1,1a b <<,则2a b +<”,显然这个命题是对的,所以原命题正确; 原命题的逆命题为:“若,a b 中至少有一个不小于1,则2a b +≥”,取5,5a b ==-则,a b 中至少有一个不小于1,但0a b +=,所以原命题的逆命题不正确. 【点睛】至少有一个的否定为“0个”,“不小于”等价于“大于等于”,同时注意若原命题的真假性不好判断,而等价于判断其逆否命题.5.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.6.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.7.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.8.B解析:B 【分析】解一元二次不等式化简命题p ,再利用集合间的基本关系,求得参数a 的取值范围. 【详解】由2:230p x x +->,知3x <-或1x >, 则p ⌝为31x -≤≤,q ⌝为x a ≤, p ⌝是q ⌝的充分不必要条件,∴1{|}3x x ≤≤-{|}x x a ≤∴1a ≥.故选:B. 【点睛】本题考查利用命题的充分不必要条件求参数的取值范围,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将充分不必要条件转化为真子集的关系.9.C解析:C【分析】求出p ,q 的等价条件,根据充分条件和必要条件的定义即可得到结论. 【详解】由112x ≥-,即302x x -≤-,解得23x <≤, 由||2x a -<得22a x a -<<+,若p 是q 的充分不必要条件,则2223a a -≤⎧⎨+>⎩,解得14a <≤,实数a 的取值范围为(]1,4, 故选:C. 【点睛】本题主要考查充分条件和必要条件的应用,属于中档题.10.C【分析】根据条件“在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项”求解数列{}n a ,然后由充分必要条件的定义判断.【详解】在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则2213(2)(1)(3)a a a +=++,22213134433a a a a a a ++=+++, 设{}n a 的公比为q ,则22222111114433a q a q a q a a q ++=+++,211430q q a -+-=(*),10a >,因为1114164(3)40a a ∆=--=+>,所以此方程一定有两不等实解,当等比数列{}n a 只有一解时,方程(*)的两解中一解为0q =需舍去,此时113a =; 若113a =,方程(*)有一个解是0q =,另一解4q =.数列{}n a 只有一解, 由上分析知113a =是数列{}n a 唯一的充要条件. 故选:C . 【点睛】本题考查充分必要条件的判断,掌握充分必要条件的定义是解题关键.11.B解析:B 【分析】分别将集合中的元素表示为61,6m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,31|,6t x x t Z +⎧⎫=∈⎨⎬⎩⎭和31|,6p x x p Z +⎧⎫=∈⎨⎬⎩⎭即可得结果. 【详解】 ∵161|,,66m A x x m m Z x x m Z ⎧⎫+⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 13231|,|,|,2366n n t B x x n Z x x n Z x x t Z -+⎧⎫⎧⎫⎧⎫==-∈==∈==∈⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,131|,|,266p p C x x p Z x x p Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭显然A B C =,故选:B.本题主要考查集合间的包含关系的判断,考查集合的包含关系等基础知识,属于基础题.12.C解析:C 【分析】①,证明x 2>4是x 3<-8的必要不充分条件.所以该命题正确;②,在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误;③,证明“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 【详解】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确. ②, AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 故选:C. 【点睛】本题主要考查充分必要条件的判定,考查逆否命题和原命题的等价性,意在考查学生对这些知识的理解掌握水平.二、填空题13.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab =−3,若两直线垂直时,两直线斜率存在时,斜率乘积为a b =−3,当a=0,b=0时,此时两直线垂直,但不满足a b=−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题14.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.15.【分析】首先分析出集合里面必有元素1再讨论集合为三种情况讨论求的取值范围【详解】所以集合里的元素一定有1集合有3个元素当集合是时有集合是空集;当集合是时有解得:;当集合是时有集合是空集;综上:的取值 解析:(]1,0-【分析】首先分析出集合里面必有元素1,再讨论集合为{}1,2,3,{}0,1,2,{}1,0,1- 三种情况讨论,求a 的取值范围. 【详解】1a ≤ ,21a ∴-≥ ,所以集合里的元素一定有1, 集合有3个元素,当集合是{}1,2,3时,有01324a a <≤⎧⎨≤-<⎩,集合是空集;当集合是{}0,1,2时,有10223a a -<≤⎧⎨≤-<⎩,解得:10a -<≤ ;当集合是{}1,0,1-时,有21122a a -<≤-⎧⎨≤-<⎩ ,集合是空集;综上:a 的取值范围是(]1,0- 故答案为(]1,0- 【点睛】本题考查根据集合的元素个数求参数的取值范围,意在考查分类,转化,和计算求解能力,属于中档题型.16.或或【解析】【分析】由指数不等式的解法得由集合的运算及集合元素的互异性可得实数的取值范围是或或【详解】解:解不等式可得即又且则或或故答案为:或或【点睛】本题考查了指数不等式的解法及集合的运算重点考查解析:1a <-或 10a -<<或1a ≥ 【解析】 【分析】由指数不等式的解法得{}|01B x x =<<,由集合的运算及集合元素的互异性可得实数a 的取值范围是1a <-或10a -<<或1a ≥. 【详解】解:解不等式133x <<可得01x <<,即{}|01B x x =<<, 又{}1,0,A a =-,且A B φ⋂=,则1a <-或10a -<<或1a ≥, 故答案为:1a <-或 10a -<<或1a ≥. 【点睛】本题考查了指数不等式的解法及集合的运算,重点考查了集合元素的互异性,属基础题.17.【分析】列举出符合条件的数组即可【详解】则的取值可以是或①时即数组为;②时则或即数组为和因此符合题中条件的数组有组故答案为:【点睛】本题主要考查集合相等的应用根据条件进行分类讨论是解本题的关键考查分 解析:3【分析】列举出符合条件的数组(),,,a b c d 即可. 【详解】1a =,2>c ,4d ≠,则c 的取值可以是3或4.①3c =时,4b =,2d =,即数组为()1,4,3,2;②4c =时,则2b =,3d =或3b =,2d =,即数组为()1,2,4,3和()1,3,4,2. 因此,符合题中条件的数组(),,,a b c d 有3组,故答案为:3. 【点睛】本题主要考查集合相等的应用,根据条件进行分类讨论是解本题的关键,考查分类讨论数学思想,属于中等题.18.0或1【分析】根据B ⊆A 讨论两种情况:①B=∅;②B≠∅分别求出a 的范围;【详解】∵B ⊆A 若B=∅则a=0;若B≠∅则因为若2∈B ∴2a ﹣2=0∴a=1若3∈B 则3a ﹣2=0∴a=∵a ∈Z ∴a≠∴a解析:0或1 【分析】根据B ⊆A ,讨论两种情况:①B=∅;②B≠∅,分别求出a 的范围;【详解】∵B ⊆A ,若B=∅,则a=0;若B≠∅,则因为若2∈B ,∴2a ﹣2=0,∴a=1,若3∈B ,则3a ﹣2=0,∴a=32,∵a ∈Z ,∴a≠32, ∴a=0或1,故答案为a=0或1.【点睛】此题主要考查集合关系中的参数的取值问题,此题是一道基础题,注意a 是整数. 19.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的 解析:0.【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0,又由{}{}22,1,A B a ==,则有20a =,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.20.【分析】解不等式和由题意可得是的必要不充分条件转化为两集合的包含关系由此可求得实数的取值范围【详解】因为是的充分不必要条件所以是的必要不充分条件解不等式得解不等式解得所以即因此实数的取值范围是故答解析:[]2,1-【分析】解不等式()29x a -<和()3log 21x +<,由题意可得p 是q 的必要不充分条件,转化为两集合的包含关系,由此可求得实数a 的取值范围.【详解】因为p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,解不等式()29x a -<,得33a x a -<<+,解不等式()3log 21x +<,解得21x -<<. :33p a x a -<<+,:21q x -<<,{}33x a x a ∴-<<+ {}21x x -<<,所以3231a a -≤-⎧⎨+≥⎩,即21a -≤≤.因此,实数a 的取值范围是[]2,1-.故答案为:[]2,1-.【点睛】本题考查利用充分不必要条件求参数,解答的关键就是转化为集合的包含关系来处理,考查分析问题和解决问题的能力,属于中等题. 三、解答题21.(1){4A B x x ⋃=≤或}6x ≥;(2)(]0,3.【分析】(1)当4a =时,解出集合A ,计算A B ; (2)由集合法判断充要条件,转化为A B ⊆,进行计算. 【详解】解:(1)当4a =时,由不等式()()450-+≤x x ,得54x -≤≤,故{}54A x x =-≤≤, 又{3B x x =≤或}6x ≥, 所以{4A B x x ⋃=≤或}6x ≥.(2)若“x A ∈”是“x B ∈”的充分条件,等价于A B ⊆,因为0a >,由不等式()()10x a x a -++≤,得{}1A x a x a =--≤≤, 又{3B x x =≤或}6x ≥,要使A B ⊆,则3a ≤或16a --≥,综合可得a 的取值范围为(]0,3.【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.22.(1)()13A ,=-;(2)(][),35,-∞-+∞.【分析】 (1)解分式不等式411x >+可得集合A ; (2)由已知条件可得出A B ⊆,对a -和2a -的大小关系进行分类讨论,结合A B ⊆可得出实数a 所满足的不等式(组),综合可解得实数a 的取值范围.【详解】(1)因为411x >+,所以431011x x x --=>++, 所以()()130x x +-<,所以13x,故()13A ,=-; (2)由22220x x a a +-+<得()()20x a x a +-+<,由x B ∈是x A ∈的必要条件,知A B ⊆.①当2a a -<-,即1a >时,{}2B x a x a =-<<-,则1231a a a >⎧⎪-≥⎨⎪-≤-⎩,解得5a ≥;②当2a a ->-,即1a <时,{}2B x a x a =-<<-,则1321a a a <⎧⎪-≥⎨⎪-≤-⎩,解得3a ≤-;③当2a a =-,即1a =时,B =∅,不满足A B ⊆.综上可得,实数a 的取值范围为(][),35,-∞-+∞. 【点睛】结论点睛:本题考查利用充分条件求参数,一般可根据如下规则求解:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,则q 对应集合与p 对应集合互不包含. 23.(Ⅰ)[]3,5;(Ⅱ)[)4,+∞.【分析】(Ⅰ)解不等式28150x x -+≤即得;(Ⅱ)再求出不等式()222 x x a a -+-≤>100的解,由充分不必要条件与集合包含的关系得出不等关系,可求得结论.【详解】(Ⅰ)若p 为真命题,解不等式28150x x -+≤得35x ≤≤,实数x 的取值范围是[]3,5.(Ⅱ)解不等式()222 x x a a -+-≤>100得11a x a -≤≤+, p 为q 成立的充分不必要条件,[]3,5∴是[]1,1a a -+的真子集.1315a a -≤⎧∴⎨+≥⎩且等号不同时取到,得4a ≥. ∴实数a 的取值范围是[)4,+∞.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.24.(1){}3|m m ≤(2)254 (3){}|24m m m <>或【分析】(1)对集合B 分空集和非空集两种情况讨论得解;(2)当x ∈Z 时,{}2,1,0,1,2,3,4,5A =--,再求A 的非空真子集个数;(3)分B =∅和B ≠∅两种情况讨论得解.【详解】(1)当121m m +>-,即2m <时,B =∅,满足B A ⊆.当121m m +≤-,即2m ≥时,要使B A ⊆成立,只需12,215,m m +≥-⎧⎨-≤⎩即23m ≤≤. 综上,当B A ⊆时,m 的取值范围是{}3|m m ≤.(2)当x ∈Z 时,{}2,1,0,1,2,3,4,5A =--,∴集合A 的非空真子集个数为822254-=.(3)∵x ∈R ,且{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-,又不存在元素x 使x A ∈与x B ∈同时成立,∴当B =∅,即121m m +>-,得2m <时,符合题意;当B ≠∅,即121m m +≤-,得2m ≥时,2,15,m m ≥⎧⎨+>⎩或2,212,m m ≥⎧⎨-<-⎩解得4m >. 综上,所求m 的取值范围是{}|24m m m <>或.【点睛】本题主要考查集合的关系和真子集的个数的计算,考查集合的元素和集合的关系,意在考查学生对这些知识的理解掌握水平.25.(1) 23x <<;(2) 4,23⎡⎤⎢⎥⎣⎦. 【解析】试题分析:(1)p 为真时实数x 的取值范围是13x <<,q 为真时实数x 的取值范围是,然后求交集即可;(2)p ⌝是q ⌝的充分不必要条件即即q 是p 的充分不必要条件,易得:2a ≤且43a ≤.试题(1)由22430x ax a -+<得()()30x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.由()231x -<,得24x <<,即q 为真时实数x 的取值范围是24x << 因为p q ∧为真,所以p 真且q 真,所以实数x 的取值范围是23x <<.(2)由22430x ax a -+<得()()30x a x a --<,所以,p 为真时实数x 的取值范围是3a x a <<.因为 p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件所以2a ≤且43a ≤所以实数a 的取值范围为:4,23⎡⎤⎢⎥⎣⎦. 26.(1)7,2⎛⎤-∞ ⎥⎝⎦;(2)[)1,+∞ 【分析】结合指数函数和对数函数性质可分别求得集合A 和集合B ;(1)由交集定义得到A B ,分别在C =∅和C ≠∅两种情况下构造不等式求得结果; (2)由并集定义得到A B ,根据交集结果可构造不等式求得结果.【详解】 {}[]12128272,74x A x x x ⎧⎫=≤≤=-≤≤=-⎨⎬⎩⎭ {}[]21log ,,32353,58B y y x x y y ⎧⎫⎡⎤==∈=-≤≤=-⎨⎬⎢⎥⎣⎦⎩⎭ (1)[]2,5A B =-当C =∅时,122+≥-m m ,解得:3m ≤,满足()C A B ⊆⋂当C ≠∅时,12212225m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得:732<≤m 综上所述:实数m 的取值范围为7,2⎛⎤-∞ ⎥⎝⎦(2)[]3,7A B =-()A B D =∅ 617m ∴+≥,解得:m 1≥∴实数m 的取值范围为[)1,+∞【点睛】本题考查根据集合包含关系、交集结果求解参数范围的问题,涉及到指数函数和对数函数性质的应用;易错点是在根据包含关系求参数范围时,忽略子集可能为空集的情况,造成范围求解错误.。
(典型题)高中数学必修一第一单元《集合》测试题(答案解析)(1)

一、选择题1.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .32.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉3.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤4.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,35.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( )A .()2∞+,B .[)2∞+,C .()3∞-+,D .[)3∞-+,6.集合2|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{|()()0}B x x a x b =--<,若“2a =-”是“A B ⋂≠∅”的充分条件,则b 的取值范围是( ) A .1b <-B .1b >-C .1b ≤-D .12b -<<-7.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<8.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5119.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个10.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .11.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭12.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________.14.已知()2f x x ax b =++,集合(){}0A x f x =≤,集合(){}3B x f f x ⎡⎤=≤⎣⎦,若A B =≠∅,则实数a 的取值范围是______.15.非空集合G 关于运算*满足:① 对任意,a b G ∈,都有a b G *∈;② 存在e G ∈使对一切a G ∈都有a e e a a *=*=,则称G 是关于运算*的融洽集,现有下列集合及运算:①G 是非负整数集,*运算:实数的加法; ②G 是偶数集,*运算:实数的乘法;③G 是所有二次三项式组成的集合,*运算:多项式的乘法; ④{|2,,}G x x a b a b Q ==+∈,*运算:实数的乘法;其中为融洽集的是________16.已知集合{}2|60M x x x =+->,{}2|230,0N x x ax a =-+≤>,若M N ⋂中恰有一个整数,则a 的最小值为_________.17.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______. 18.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.19.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________. 20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.已知全集为R ,集合{}26A x x =≤≤, {}3782B x x x =-≥-. (1)求AB , ()RC A B ⋂;(2)若{}44M x a x a =-≤≤+,且R A C M ⊆,求a 的取值范围.22.设集合{|12A x a x a =-<<,}a R ∈,不等式2760x x -+<的解集为B . (1)当a 为0时,求集合A 、B ; (2)若A B ⊆,求实数a 的取值范围.23.已知0a ≠,集合{}2|60A x x x =--<,{}2|280B x x x =+-≥,{}22|430C x x ax a =-+<,且()RC A B ⊆.求实数a 的取值范围.24.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}|16B x x x =->.(1)求AB ;(2)若{}|11C x m x m =-<<+,()()RC A B ⊆,求实数m 的取值范围.25.已知函数()()2log 4f x x =-的定义域为集合A ,集合{}211B x m x m =-≤<+.(1)当0m =时,求A B ;(2)若B A ⊆,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.26.已知集合2211{|}A x x =-≤-≤,集合{}11B x a x a =-<<+. (1)若1a =,试通过运算验证:()()()RRR A B A B =;(2)若A B ⋂≠∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则AB A =正确.2.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.3.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A .本题考查交集与补集的混合运算,属于中档题4.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.5.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】 解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.6.B解析:B 【分析】由题意知{}|12A x x =-<<,当2a =-时,()(){}|20B x x x b =+-<,且A B ⋂≠∅成立,通过讨论2b <-,2b =-,2b >-三种情况,可求出b 的取值范围.【详解】 解:{}2|0|121x A x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭,当2a =-时,()(){}|20B x x x b =+-< 当2b <- 时,{}|2B x b x =<<-,此时A B =∅不符合题意;当2b =-时,B =∅ ,此时AB =∅不符合题意;当2b >-时,{}|2B x x b =-<<因为A B ⋂≠∅,所以1b >-.综上所述,1b >-.【点睛】本题考查了分式不等式求解,考查了一元二次不等式,考查了由两命题的关系求参数的取值范围.本题的关键是由充分条件,分析出两集合的关系.7.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.9.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.10.B解析:B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈,易得N 是M 的子集,分析选项可得答案. 【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.11.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.12.C解析:C 【分析】化简集合,根据集合的并集补集运算即可. 【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-, 所以AB {|3}x x =>-,()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.二、填空题13.【分析】根据得到之间的关系由此确定出可取的的值【详解】因为所以当时;当时若则所以;若则综上可知:的取值集合为故答案为:【点睛】本题考查根据集合间的包含关系求解参数难度一般分析集合间的子集关系时注意分 解析:{}1,0,2-【分析】 根据A B B =得到,A B 之间的关系,由此确定出可取的a 的值. 【详解】因为AB B =,所以B A ⊆,当B =∅时,0a =;当B ≠∅时,若{}2B =-,则22a -=,所以1a =-;若{}1B =,则2a =. 综上可知:a 的取值集合为{}1,0,2-, 故答案为:{}1,0,2-. 【点睛】本题考查根据集合间的包含关系求解参数,难度一般.分析集合间的子集关系时,注意分析空集的存在.14.【分析】根据设则设再根据则是的解集的子集求解【详解】因为设则设的解集为:所以是方程的两个根由韦达定理得:又因为所以所以即解得故答案为:【点睛】本题主要考查一元二次不等式的解法的应用还考查了转化求解的解析:⎡⎤⎣⎦【分析】根据A ≠∅,设{}01A x x x x =≤≤,则()204a b f x -≤≤,设 ()t f x =,再根据A B =,则2,04a b ⎡⎤-⎢⎥⎣⎦是()3f t ≤的解集的子集求解. 【详解】因为A ≠∅,设{}01A x x x x =≤≤,则()204a b f x -≤≤,设 ()t f x =, ()3f t ≤的解集为:()0|0t t t ≤≤ , 所以0,0t t t ==是方程23t at b ++=的两个根, 由韦达定理得:0,3t a b =-=,又因为A B =,所以2004a tb ≤-≤,所以2304a a -≤-≤,即22124120a a a ⎧≥⎨--≤⎩,解得 6a ≤≤.故答案为:⎡⎤⎣⎦【点睛】本题主要考查一元二次不等式的解法的应用,还考查了转化求解的能力,属于中档题15.①④【分析】逐一验证几个选项是否分别满足融洽集的两个条件若两个条件都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意非负整数则仍为非负整数即;取则故①符合题意;②对于任意偶数则仍为偶数即;但是解析:①④ 【分析】逐一验证几个选项是否分别满足“融洽集”的两个条件,若两个条件都满足,是“融洽集”,有一个不满足,则不是“融洽集” 【详解】①对于任意非负整数,a b ,则+a b 仍为非负整数,即a b G +∈;取0e =,则00a a a +=+=,故①符合题意;②对于任意偶数,a b ,则ab 仍为偶数,即ab G ∈;但是不存在e G ∈,使对一切a G ∈都有ae ea a ==,故②不符合题意;③对于G 是所有二次三项式组成的集合,若,a b G ∈,ab 不再是二次三项式,故③不符合题意;④对于{|,}G x x a a b Q ==+∈,设1x a =+2x c =+,则()(122x x ac bd ad bc ⋅=+++,即12x x G ⋅∈;取1e =,则11a a a ⨯=⨯=,故④符合题意,故答案为:①④ 【点睛】本题考查对新定义“融洽集”的理解,考查理解分析能力16.2【分析】解一元二次不等式求得集合根据交集结果可知在只有一个整数解由二次函数性质可得解方程组求得结果【详解】令则对称轴为恰有一个整数即在只有一个整数解即解得:的最小值为故答案为:【点睛】本题考查根据解析:2 【分析】解一元二次不等式求得集合M ,根据交集结果可知()2230f x x ax =-+≤在()(),32,-∞-+∞只有一个整数解,由二次函数性质可得()()3040f f ⎧≤⎪⎨>⎪⎩,解方程组求得结果. 【详解】()(){}()()320,32,M x x x =+->=-∞-⋃+∞,令()()2230f x x ax a =-+>,则对称轴为x a =,M N ⋂恰有一个整数,即()0f x ≤在()(),32,-∞-+∞只有一个整数解,()()3040f f ⎧≤⎪∴⎨>⎪⎩,即963016830a a -+≤⎧⎨-+>⎩,解得:1928a ≤<, a ∴的最小值为2.故答案为:2 【点睛】本题考查根据交集结果求解参数范围的问题,关键是能够将整数解个数问题转化为二次函数图象的讨论,通过约束二次函数的图象得到不等关系.17.3+∞)【分析】先求出集合再利用交集定义和不等式性质求解【详解】∵集合解得∴实数m 的取值范围是故答案为:【点睛】本题考查实数的取值范围的求法解题时要认真审题注意不等式性质的合理运用是基础题解析:[3,+∞) 【分析】先求出集合B ,再利用交集定义和不等式性质求解. 【详解】∵集合{|2}A x x =≥,{|||1}{|11}B x x m x m x m =-≤=-≤≤+,A B B =,12m ∴-≥,解得3m ≥,∴实数m 的取值范围是[)3,+∞. 故答案为:[)3,+∞. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意不等式性质的合理运用,是基础题.18.【分析】根据函数性质求值域解出两个集合再根据新定义运算求交集并集进而求解【详解】对于P 集合即对于Q 集合即则故答案为:【点睛】本题考查函数的值域求法观察法集合的交集并集运算新定义题型属中等题 解析:{}01,2y y y ≤≤>【分析】根据函数性质求值域,解出两个集合,再根据新定义运算求交集并集,进而求解P Q ,【详解】对于P集合,y =2,2x ,[]0,2y ∈,即{}=02P y y ≤≤ 对于Q 集合,4xy =,()0,x ∈+∞,()1,y ∈+∞,即{}1Q y y =>{}12P Q y y ⋂=<≤,{}0P Q y y ⋃=≥ 则{}01,2P Q y y y =≤≤>故答案为:{}01,2y y y ≤≤> 【点睛】本题考查函数的值域求法观察法,集合的交集并集运算,新定义题型,属中等题. 19.【分析】由题意可知实数满足或解出即可得出实数的取值范围【详解】由题意可知实数满足或解不等式即即解得或因此实数的取值范围是故答案为【点睛】本题考查利用元素与集合的关系求参数解题的关键在于将问题转化为不 解析:()[),32,-∞-⋃+∞【分析】由题意可知,实数a 满足2312a --<-+或20a -+=,解出即可得出实数a 的取值范围. 【详解】由题意可知,实数a 满足2312a --<-+或20a -+=. 解不等式2312a --<-+,即5102a +>-,即302a a +>-,解得3a <-或2a >. 因此,实数a 的取值范围是()[),32,-∞-⋃+∞.故答案为()[),32,-∞-⋃+∞.【点睛】本题考查利用元素与集合的关系求参数,解题的关键在于将问题转化为不等式进行求解,考查化归与转化思想的应用,属于中等题.20.【分析】先求得不等式的解集根据不等式的解集中的整数有且仅有得出不等式组即可求解得到答案【详解】由题意不等式即解得要使得不等式的解集中的整数有且仅有则满足解得即实数的取值范围是故答案为【点睛】本题主要 解析:[]16,17 【分析】先求得不等式34x b -<的解集4433b b x -++<<,根据不等式34x b -<的解集中的整数有且仅有5,6,得出不等式组44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案.【详解】 由题意,不等式34x b -<,即434x b -<-<,解得4433b b x -++<<, 要使得不等式34x b -<的解集中的整数有且仅有5,6, 则满足44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b ≤≤,即实数b 的取值范围是[]16,17. 故答案为[]16,17.【点睛】本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题21.(1){}2A B x x ⋃=≥, (){}36R C A B x x x ⋂=或(2) ()(),210,-∞-⋃+∞【分析】(1)先求出集合B ,于是可得A B ⋃和A B ⋂,进而得到()R C A B ⋂;(2)先求出R C M ,再将R A C M ⊆转化为不等式求解,可得所求范围.【详解】(1)∵{}{}37823B x x x x x =-≥-=≥, ∴{}2A B x x ⋃=≥,{}36A B x x ⋂=≤≤,∴(){}3,6R C A B x x x ⋂=或. (2)由题意知M φ≠,且{}4,4R C M x x a x a =-+或. ∵{}26A x x =≤≤,R A C M ⊆,∴46a ->或42a +<,解得10a >或2a <-.故实数a 的取值范围为()(),210,-∞-⋃+∞.【点睛】本题考查集合的基本运算,解题时根据要求逐步求解即可,其中解答(2)的关键是将集合间的包含关系转化为不等式来求解,容易出现的错误是忽视不等式中的等号能否成立. 22.(1){|10}A x x =-<<,{|16}B x x =<<;(2)1a -或23a .【分析】(1)根据题意,由0a =可得结合A ,解不等式2760x x -+<可得集合B ,(2)根据题意,分A 是否为空集2种情况讨论,求出a 的取值范围,综合即可得答案.【详解】解:(1)根据题意,集合{|12A x a x a =-<<,}a R ∈,当0a =时,{|10}A x x =-<<,276016x x x -+<⇒<<,则{|16}B x x =<<,(2)根据题意,若A B ⊆,分2种情况讨论:①,当12a a -时,即1a -时,A =∅,A B ⊆成立;②,当12a a -<时,即1a >-时,A ≠∅,若A B ⊆,必有1126a a -⎧⎨⎩, 解可得23a ,综合可得a 的取值范围为1a -或23a .【点睛】本题考查集合的包含关系的应用,(2)中注意讨论A 为空集,属于基础题.23.22,00,33a ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【分析】先化简集合,A B ,求出R AB ,再对a 分类讨论,根据()RC A B ⊆得解.【详解】 {}{}2|60|23A x x x x x =--<=-<<,{}{2|2804B x x x x =+-≥=≤-或}2x ≥,∴{}|42R B x x =-<<,则(){}|22R A B x x =-<<,又∵{}()(){}22|430|30C x x ax a x x a x a =-+<=--<, ∵0a ≠,∴当0a >时,{}|3C x a x a =<<,当0a <时,{}|3C x a x a =<<.∵()R C A B ⊆,∴0232a a a >⎧⎪≥-⎨⎪≤⎩或0322a a a <⎧⎪≥-⎨⎪≤⎩, 解得203a <≤或203a -≤<. 所以实数a 的取值范围是22,00,33a ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】本题主要考查一元二次不等式的解法,考查集合的关系和运算,意在考查学生对这些知识的理解掌握水平.24.(1){}|13AB x x x =<>或(2)[]1,0- 【分析】(1)解不等式得到集合A ,B ,利用并集定义求解A B ; (2)先求解,R B 再求解()R A B ,利用()()R C A B ⊆,列出不等关系,求解即可. 【详解】(1)由10x ->得,函数()()lg 1f x x =-的定义域{}|1A x x =<, 260x x -->,()()320x x -+>,得{}|32B x x x =><-或,∴{}|13AB x x x =<>或. (2){}|23R B x x =-≤≤,∴(){}|21R A B x x =-≤<,{}|21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题考查了集合运算综合,考查了学生综合分析,数学运算能力,属于中档题. 25.(1)[)1,4AB =-(2)3,4⎛⎫+∞ ⎪⎝⎭(3)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦ 【分析】(1)计算得到142A x x ⎧⎫=<<⎨⎬⎩⎭,[)1,1B =-,求并集得到答案. (2)讨论B =∅和B ≠∅两种情况,分别计算到答案.(3)讨论B =∅和B ≠∅两种情况,分别计算到答案.【详解】(1)由40210x x ->⎧⎨->⎩,解得142A x x ⎧⎫=<<⎨⎬⎩⎭,当0m =时,[)1,1B =-, 所以[)1,4A B =-.(2)当B =∅时,211m m -≥+,2m ≥,符合B A ⊆.当B ≠∅时,根据B A ⊆得211121214m m m m -<+⎧⎪⎪->⎨⎪+≤⎪⎩,解得324m <<. 综上所述,m 的取值范围是3,4⎛⎫+∞ ⎪⎝⎭. (3)当B =∅时,211m m -≥+,2m ≥,符合A B =∅.当B ≠∅时,211112m m m -<+⎧⎪⎨+≤⎪⎩或211214m m m -<+⎧⎨->⎩,解得12m ≤-. 综上所述,m 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查了集合的并集,根据集合包含关系求参数,根据交集结果求参数,意在考查学生对于集合运算的综合应用.26.(1)见解析;(2)3(,2)2-【分析】(1)先解不等式得集合A ,再分别求并集、补集、交集,根据结果进行验证; (2)结合数轴先求AB =∅情况,再根据补集得结果.【详解】 解:A ={2211}x x -≤-≤=1{|1}2x x -≤≤. (1)当1a =时,B ={02}x x <<∴A B =1{|1}2x x -≤≤{02}x x <<=1{|2}2x x -≤< ()R C A B =1{|2x x <-或2}x ≥ 又R C A =1{|2x x <-或1}x >,R C B ={|0x x ≤或2}x ≥ ∴()()R R C A C B =1{|2x x <-或2}x ≥ ∴()R C A B =()()R R C A C B . (2)若AB =∅,则:112a +≤-或11a -≥ ∴32a ≤-或2a ≥ ∴A B ⋂≠∅时,322a -<<,即实数a 的取值范围3(,2)2-. 【点睛】 本题考查集合交并补运算以及根据交集结果求参数,考查综合分析求解能力,属基础题.。
人教版高中数学必修一第一章单元测试(含答案)

高中数学《必修一》第一章教学质量检测卷佛冈中学全校学生家长的全体 1、下列各组对象中不能构成集合的是()A 、佛冈中学高一(20)班的全体男生B 、C 、李明的所有家人D 王明的所有好朋友 选择 (将 题的 填入2、 已知集合A x R|x 5 ,B x R x 1 ,那么AI B 等于3、4、5、 A 、6、 7、 A. C. {2, 2,3,4,5 3,4} D.B.2, 3,4,12,3,4,5,6,7,8 ,集合 A {1,2,315}, 设全集U 则图中的阴影部分表示的集合为()A. 2B. 4,6C. 1,3,5D. 4,6,7,8 下列四组函数中表示同一函数的是 A. f(x) x , g(x) (Tx )2B. f (x) C. f (x)廉,g(x) |x|D. f(x) 函数 f(x)= 2x 2- 1 , x? (0,3) o1B 1C 、2D B {2,4,6} ()x 2,g(x) x 1 0 , g(x) < x 1 ■. 1 x若f (a )= 7,则a 的值是() x 2,(x 0)血 设f(x) !,(x 0),则f[f(1)]() A 3B 1C.0D.-1 函数f (x ) = . x + 3的值域为() A 、[3 , +x ) B 、(一x, 3]C 、[0 , +x )D R 8、下列四个图像中,不可能是函数图像的是 () 9、设f (x )是R上 的偶函数,且在 [0,+ x )上单调 递增,则f(-2),f(3),f(- )的大小顺序是:() A f(- )>f(3)>f(-2)B 、f(- )>f(-2)>f(3) C 、f(-2)>f(3)>f(- )D 、f(3)>f(-2)>f(- ) 10、在集合{a , b , c , d }上定义两种运算 和 如下:那么 b (a c)() A. aB. bC. cD. d二、填空题(本大题共4小题,每小题5分,共20分) 11、 函数y 1 (x 3)0的定义域为12、 函数f(x) x 2 6x 10在区间[0,4]的最大值是Q I /'13、 若 A { 2,2,3,4} , B {x|x t 2,t A},用列举法表示 B 是.14、 下列命题:①集合a,b,c,d 的子集个数有16个;②定义在R 上的奇函数f(x)必满足f (0) 0 ; ③f(x) 2x 1 2 2 2x 1既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤f(x)」x在 ,0 U 0, 上是减函数。
高一数学人教版必修一第一章《集合与函数概念》单元测试题(含答案)

三、解答题 :每小题 12 分,共 60 分
16、设 A { x Z || x | 6} , B 1,2,3 , C
3,4,5,6 ,求:
(题目有错漏,需修改,要么改为① A { x Z x 6} ,要么改为② C { 3,4,5} )
( 1) A (B C ) ;( 2) A C A (B C )
的元素 ( 1,2) 对应的 B 中的元素为(
A)
(A ) ( 3,1)
( B) (1,3)
( C) ( 1, 3)
(D ) (3,1)
5、下列各组函数 f ( x)与 g (x) 的图象相同的是( D )
(A ) f ( x) x, g( x) ( x ) 2
(B ) f ( x) x2 , g(x) (x 1) 2
第一章 《集合与函数概念》单元测试题
姓名:
班别:
学号:
一、选择题:每小题 4 分,共 40 分
1、在“①高一数学课本中的难题;②所有的正三角形;
2
③方程 x 2 0 的实数解”中,能够
表示成集合的是 ( A )
(A )② ( C )②③
( B)③ ( D)①②③
2、若 A x | 0 x 2 , B x |1 x 2 ,则 A B ( D )
元?
解: 设每天从报社买进 x 份,每月所获的利润为 f( x),则
① 当每天购入少于或等于 250 份的报纸的时候,全部都卖光了,则
f( x) =( 1-0.9) *30*x
故 f ( x)在 x
x 0 的值域为
,2
综上得, f ( x)的值域为 2,
,2
19、中山市的一家报刊摊点,从报社买进《南方都市报》的价格是每份
高一数学必修一单元测试题(一)

单元测试题(一)(时间:120分钟;满分:150分)一、选择题(每小题5分,共60分)1.下列几组对象中可以构成集合的是()A.充分接近π的实数的全体B.善良的人C.A校高一(1)班所有聪明的学生D.B单位所有身高在1.75 cm以上的人答案 D解析A中“充分接近”,B中“善良”,C中“聪明”无法确定某一对象是否在这个范围内.2.集合{x∈N*|x-3<2}的另一种表示法是()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}答案 B解析∵x<5且x∈N*,∴x=1,2,3,4.3.定义集合A、B的一种运算:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},则A*B中的所有元素数字之和为()A.9 B.14 C.18 D.21答案 B解析由定义和A*B={2,3,4,5}知,A*B所有元素之和为14.4.集合M={1,2,3,4,5}的非空真子集的个数是()A.32个B.31个C.30个D.16个答案 C解析非空真子集个数为25-2=30个.5.已知A={(x,y)|y1-x2=1},B={(x,y)|y=1-x2},C={(x,y)|(x,y)∈B且(x,y)∉A},则B∩C为()A.{(-1,0)} B.{(-1,0),(1,0)}C.{(1,0)} D.{-1,1,0}答案 B解析由A中y1-x2=1⇔⎩⎪⎨⎪⎧1-x2≠0y=1-x2⇔y=1-x2(x≠±1)可得A B,故C={(1,0),(-1,0)},∴B∩C={(-1,0),(1,0)}.6.满足条件M∪{1,2}={1,2,3}的集合M的个数是()A.1个B.2个C.3个D.4个答案 D解析M={2,3}或{1,2,3}或{3}或{1,3}.7.设全集是实数集,M={x|-2≤x≤2},N={x|x<1},则∁R M∩N 等于()A.{x|x<-2} B.{x|-2<x<1}C.{x|x<1} D.{-2≤x<1}答案 A解析∁R M={x|x<-2或x>2},(∁R M)∩N={x|x<-2}.8.已知U为全集,M、N⊆U,且M∩N=N,则()A.∁U M⊇∁U N B.∁U M⊆∁U NC.∁U N⊇M D.M⊇∁U N答案 B解析利用Venn图可得∁U M⊆∁U N.9.已知集合A={x|a-1≤x≤a+2},B={x|3≤x≤5},则能使A⊇B成立的实数a的取值范围是()A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅答案 B解析 A 、B 关系如下图.由图可知⎩⎪⎨⎪⎧a -1≤3,a +2≥5. ∴3≤a ≤4.10.设集合M ={x |x 2-x <0},N ={x ||x |<2},则( ) A .M ∩N =∅ B .M ∩N =M C .M ∪N =M D .M ∪N =R答案 B解析 M ={x |0<x <1},N ={x |-2<x <2}.11.设集合P ={3,4,5},Q ={4,5,6,7},定义,P *Q ={(a ,b )|a ∈Q ,b ∈Q },则P *Q 中元素个数是( )A .3个B .7个C .10个D .12个 答案 D解析 当a =3时,b =4或5或6或7,共有4个. 同理当a =4或5时都有4个,∴一共有3×4=12个. 12.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P -={n ∈N |f (n )∈P },Q -={n ∈N |f (n )∈Q },则(P -∩∁N Q -)∪(Q -∩∁N P -)等于( )A .{0,3}B .{1,2}C .{3,4,5}D .{1,2,6,7}答案 A解析 P -={0,1,2},Q -={1,2,3}, P -∩∁N Q -={0},Q -∩∁N P -={3}, ∴(P -∩∁N Q -)∪(Q -∩∁N P -)={0,3}. 二、填空题(每小题5分,共20分)13.已知A ={x |x <3},B ={x |x <a },若B ⊆A ,则a 的取值范围是________.答案 a ≤3解析 将A 、B 用数轴表示如下图;∵B ⊆A ,由图可知a ≤3.14.设I 是全集,非空集合P 、Q 满足P Q I .若含P 、Q 的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是______________________.答案 P ∩∁I Q =∅或∁I Q ∩(Q ∪P )=∅解析 利用Venn 图,可得P ∩∁I Q =∅或∁I Q ∩(Q ∪P )=∅. 15.集合A ={a,0,-8},集合B =⎩⎨⎧⎭⎬⎫c ,1b ,8,且集合A =B ,则3a 2006b 2007-4c 2008的值为________.答案 -38解析 因为集合A 、B 的元素都相同,所以⎩⎨⎧a =8,1b =-8,c =0.即⎩⎨⎧a =8,b =-18,c =0.∴3a2006b2007-4c2008=3·82006·⎝ ⎛⎭⎪⎫-182007-4·02008=-38. 16.设全集U ={x |1≤x ≤100,x ∈N },集合A ={x |x =3k ,k ∈N },A U ,集合B ={x ∣x =3k -1,k ∈N },B U ,则∁U (A ∪B )=____________________.解析 U 中的元素有三类构成,一类是被3整除,一类是被3除余1,一类是被3除余2,即U =A ∪B ∪{x |x =3k -2,1≤k ≤34,k ∈N },∴∁U (A ∪B )={x |x =3k -2,1≤k ≤34,k ∈N }.三、解答题(共70分)17.(10分)已知集合S ={x |1<x ≤7},A ={x |2≤x <5},B ={x |3≤x <7}.求(1)(∁S A )∩(∁S B );(2)∁S (A ∩B ).解析 在数轴上表示集合S 、B 、A ,如下图:(1)∁S A ={x ·|1<x <2或5≤x ≤7}, ∁S B ={x |1<x <3或x =7},∴(∁S A )∩(∁S B )={x |1<x <2或x =7}. (2)A ∩B ={x |3≤x <5},∴∁S (A ∩B )={x |1<x <3或5≤x ≤7}. 18.(12分)用列举法表示下列集合:(1)A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪⎪66-x ∈N; (2)所求的集合B 满足∁U B ={-1,0,2},而∁U A ={-1,-3,1,3},A ={0,2,4,6}.解析 (1)当x =0,3,4,5时,66-x =1,2,3,6符合题意.∴A ={0,3,4,5}.(2)先求全集U =A ∪(∁U A )={-3,-1,0,1,2,3,4,6}. ∵B ⊆U ,又∵∁U B ={-1,0,2},∴B ={-3,1,3,4,6}.19.(12分)已知:集合A ={x |x 2+ax +1=0},B ={1,2},且A B ,求实数a 的取值范围.分析 运用分类讨论思想解题.解析 ∵B ={1,2},A B ,∴A 可能是A ={1},A ={2},A =∅, 当A ={1}时,a =-2;当A ={2}时,有⎩⎪⎨⎪⎧2a +4+1=0,a 2-4=0,方程组无解;当A =∅时,-2<a <2; 综上-2≤a <2.∴实数a 的取值范围是{a |-2≤a <2}.20.(12分)对于集合A ={x |x 2-2ax +4a -3=0},B ={x |x 2-22x +a 2-2=0},是否存在实数a ,使A ∪B =∅?若不存在,说明理由;若存在,求出它的取值.分析 探索性的题目,可先假设存在.若求出值,则假设成立,若求不出,则假设不成立.解析 设存在实数a ,使得A ∪B =∅,∴A =B =∅, 当A =∅时,1<a <3; 当B =∅时,a >2或a <-2, ∴存在2<a <3,使得A ∪B =∅.21.(12分)设A ={x |x 2+px +q =0},B ={x |x 2+qx -p =1},若A ∩B ={-1},求A ∪B .解析∵A ∩B ={-1},∴-1∈A ,-1∈B ,∴⎩⎪⎨⎪⎧1-p +q =01-q -p =1∴⎩⎪⎨⎪⎧q =-12p =12∴A =⎩⎨⎧⎭⎬⎫x |x 2+12x -12=0=⎩⎨⎧⎭⎬⎫-1,12, B =⎩⎨⎧⎭⎬⎫x |x 2-12x -12=1=⎩⎨⎧⎭⎬⎫-1,32, ∴A ∪B =⎩⎨⎧⎭⎬⎫-1,12,32.22.(12分)设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A 且x ∉B }(1)试举出两个数集A ,B ,求它们的差集;(2)差集A -B 与B -A 是否一定相等,说明你的理由; (3)已知A ={x |x >4},B ={x ||x |<6}, 求A -(A -B )及B -(B -A ),由此你可以得到什么更一般的结论?(不必证明) 解析(1)如A ={1,2,3},B ={2,3,4},则A -B ={1}.(2)不一定相等,由(1)知,B -A ={4},而A -B ={1},∴B -A ≠A -B .再如A ={1,2,3},B ={1,2,3},A -B =∅,B -A =∅,此时A -B=B-A.故A-B与B-A不一定相等.(3)因为A-B={x|x≥6},B-A={x|-6<x≤4},A-(A-B)={x|4<x<6},B-(B-A)={x|4<x<6},由此猜测:一般的对于两个集合A,B,有A-(A-B)=B-(B-A).。
高中数学必修一第一章《集合与函数概念》单元测试题(含答案)

高中数学必修一第一章单元测试题《集合与函数概念》(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,1,2},B={x|-1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N⊆M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满足f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( )A.5B.10C.8D.不确定5.已知一次函数y=kx+b为减函数,且kb<0,则在直角坐标系内它的大致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为自变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=∅,则实数m的取值范围是( )A.m<4B.m>4C.0<m<4D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a ※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x<a},若A∩B=A,则实数a的取值范围是.14.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-⎧⎨⎩≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.(1)分别求A∩B,(B)∪A.R(2)已知C={x|a<x<a+1},若C⊆B,求实数a取值构成的集合.18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并用定义证明.21.(12分)(2015·葫芦岛高一检测)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.高中数学必修一第一章单元测试题《集合与函数概念》参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,1,2},B={x|-1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}【解析】选C.因为A={0,1,2},B={x|-1<x<2},所以A∩B={0,1}.2.(2015·天津高一检测)设集合M={2,0,x},集合N={0,1},若N⊆M,则x的值为( ) A.2 B.0C.1D.不确定【解析】选C.因为N⊆M,所以集合N中元素均在集合M中,所以x=1.3.在下列由M到N的对应中构成映射的是( )【解析】选C.选项A中,集合M中的数3在集合N中没有数与之对应,不满足映射的定义;选项B中,集合M中的数3在集合N中有两个数a,b与之对应;选项D中,集合M中的数a在集合N中有两个数1,3与之对应,不满足映射的定义.4.已知函数f(x)=ax3+bx(a≠0),满足f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【解析】选 C.方法一:f(-3)=a(-3)3+b(-3)=-33a-3b=-(33a+3b)=3,所以33a+3b=-3.f(3)=33a+3b=-3.方法二:显然函数f(x)=ax3+bx为奇函数,故f(3)=-f(-3)=-3.【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( )A.5B.10C.8D.不确定【解析】选B.因为f(x)是偶函数,所以f(-4)=f(4)=5,所以f(4)+f(-4)=10.5.已知一次函数y=kx+b为减函数,且kb<0,则在直角坐标系内它的大致图象是( )【解析】选A.选项A图象为减函数,k<0,且在y轴上的截距为正,故b>0,满足条件,而B,C,D 均不满足条件.6.若f(x)=则f的值为( )A.-B.C.D.【解析】选C.因为<1,所以应代入f(x)=1-x2,即f=1-=.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+1【解析】选B.由f(g(x))=f(2x+1)=6x+3=3(2x+1),知f(x)=3x.8.(2015·西城区高一检测)下列四个图形中,不是以x为自变量的函数的图象是( )【解析】选C.由函数定义知,定义域内的每一个x都有唯一函数值与之对应,A,B,D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的值与之对应,不符合函数定义.9.已知集合A={x|x2+x+1=0},若A∩R=∅,则实数m的取值范围是( )A.m<4B.m>4C.0<m<4D.0≤m<4【解析】选D.因为A∩R=∅,所以A=∅,即方程x2+x+1=0无解,所以Δ=()2-4<0,所以m<4.又因为m≥0,所以0≤m<4.10.(2015·赣州高一检测)函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( ) A.(-∞,0]和(-∞,1] B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)【解析】选C.函数f(x)=|x|的单调递增区间为[0,+∞),函数g(x)=x(2-x)=-(x-1)2+1的单调递增区间为(-∞,1].11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a ※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个【解析】选B.若a,b同奇偶,有12=1+11=2+10=3+9=4+8=5+7=6+6,前面的每种可以交换位置,最后一种只有1个点(6,6),这时有2×5+1=11;若a,b一奇一偶,有12=1×12=3×4,每种可以交换位置,这时有2×2=4,所以共有11+4=15个.12.(2015·西安高一检测)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)【解析】选D.由f(x)为奇函数,可知=<0.而f(1)=0,则f(-1)=-f(1)=0.又f(x)在(0,+∞)上为增函数,所以当0<x<1时,f(x)<0=f(1),此时<0;又因为f(x)为奇函数,所以f(x)在(-∞,0)上为增函数,所以当-1<x<0时,f(x)>0=f(-1),此时<0,即所求x的取值范围为(-1,0)∪(0,1).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·开封高一检测)已知集合A={x|1≤x<2},B={x|x<a},若A∩B=A,则实数a的取值范围是.【解析】因为A∩B=A,所以A B,所以a≥2.答案:a≥214.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是.【解析】若集合{x|ax=1}是任何集合的子集,则它是空集,即方程ax=1无解,所以a=0.答案:015.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-⎧⎨⎩≤≤≤≤【解析】当x∈[0,1]时,-x∈[-1,0],f(-x)=-x+1,又因为f(x)为偶函数,所以f(x)=f(-x)=1-x.答案:1-x16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).【解析】若a+b≤0,则a≤-b,b≤-a,又因为f(x)为R上递减的奇函数,所以f(a)≥f(-b),f(b)≥f(-a),所以f(a)+f(b)≥f(-a)+ f(-b),④正确;又因为f(-b)=-f(b),所以f(b)f(-b)=-f(b)f(b)≤0,③正确.其余错误.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.B)∪A.(1)分别求A∩B,(R(2)已知C={x|a<x<a+1},若C⊆B,求实数a取值构成的集合.【解析】(1)A∩B={x|3≤x<6}.因为B={x|x≤2或x≥9},RB)∪A={x|x≤2或3≤x<6或x≥9}.所以(R(2)因为C⊆B,如图所示:所以解得2≤a≤8,所以所求集合为{a|2≤a≤8}.18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.【解析】(1)因为f(x)=,所以f(3)==-,所以点(3,14)不在f(x)的图象上.(2)f(4)==-3.(3)令=2,即x+2=2x-12,解得x=14.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.【解析】因为函数f(x)的对称轴方程为x=-2,所以函数f(x)在定义域[-2,b](b>-2)上单调递增,所以函数f(x)的最小值为f(-2)=a-4=-2,所以a=2.函数f(x)的最大值为f(b)=b2+4b+2=b.所以b2+3b+2=0,解得b=-1或b=-2(舍去),所以b=-1.20.(12分)(2015·烟台高一检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并用定义证明.【解析】(1)由f(1)=2,f(2)=-1,得a+b=2,2a+b=-1,即a=-3,b=5,故f(x)=-3x+5,f(m+1)=-3(m+1)+5=-3m+2.(2)函数f(x)在R上单调递减,证明如下:任取x1<x2(x1,x2∈R),则f(x2)-f(x1)=(-3x2+5)-(-3x1+5)=3x1-3x2=3(x1-x2),因为x1<x2,所以f(x2)-f(x1)<0,即f(x2)<f(x1),所以函数f(x)在R上单调递减.【拓展延伸】定义法证明函数单调性时常用变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进行因式分解.(2)通分:当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解.(3)配方:当原函数是二次函数时,作差后可考虑配方,便于判断符号.21.(12分)(2015·葫芦岛高一检测)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.【解析】(1)取x=y=0,则f(0+0)=2f(0),所以f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),所以f(-x)=-f(x)对任意x∈R恒成立,所以f(x)为奇函数.(2)任取x1,x2∈(-∞,+∞),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,所以f(x2)<-f(-x1),又f(x)为奇函数,所以f(x1)>f(x2),所以f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,所以对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),因为f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2×3=-6,所以f(-3)=-f(3)=6,所以f(x)在[-3,3]上的值域为[-6,6].22.(12分)定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.【解题指南】(1)结合已知等式利用赋值法求解.(2)利用赋值法并结合奇偶性定义判断.(3)结合(2)的结论及已知条件得f=1,再利用奇偶性和单调性脱去符号“f”,转化为一次不等式求解.【解析】(1)令x=y=0,得2f(0)=f(0),所以f(0)=0.(2)令y=-x,得f(x)+f(-x)=f(0)=0,即f(x)=-f(-x),所以f(x)为奇函数.(3)因为f=-1,f(x)为奇函数,所以f=1,所以不等式f(2x-1)<1等价于f(2x-1)<f,又因为f(x)在(-1,1)上是减函数,所以2x-1>-,-1<2x-1<1,解得<x<1.所以不等式的解集为.【误区警示】解答本题(3)时易忽视函数定义域而得出解集为的错误.。
高一数学必修1第一章集合与函数的概念单元测试题(含答案)

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}解析M={x|x(x+2)=0.,x∈R}={0,-2},N={x|x(x-2)=0,x∈R}={0,2},所以M ∪N={-2,0,2}.答案 D2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=()A.{0} B.{2}C.{0,2} D.{-2,0}解析依题意,得B={0,2},∴A∩B={0,2}.答案 C3.f(x)是定义在R上的奇函数,f(-3)=2,则下列各点在函数f(x)图象上的是() A.(3,-2) B.(3,2)C.(-3,-2) D.(2,-3)解析∵f(x)是奇函数,∴f(-3)=-f(3).又f(-3)=2,∴f(3)=-2,∴点(3,-2)在函数f(x)的图象上.答案 A4.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1 B.3C.5 D.9解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案 C6.设f(x)=x+3(x>10),f(x+5)(x≤10),则f(5)的值为()A.16 B.18C.21 D.24解析f(5)=f(5+5)=f(10)=f(15)=15+3=18.答案 B7.设T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0},若S∩T={(2,1)},则a,b的值为()A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-1解析依题意可得方程组2a+1-3=0,2-1-b=0,⇒a=1,b=1.答案 C8.已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1) B.-1,-12C.(-1,0) D.12,1解析由-1<2x+1<0,解得-1<x<-12,故函数f(2x+1)的定义域为-1,-12.答案 B9.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f(0)>f(1)的映射有()A.3个B.4个C.5个D.6个解析当f(0)=1时,f(1)的值为0或-1都能满足f(0)>f(1);当f(0)=0时,只有f(1)=-1满足f(0)>f(1);当f(0)=-1时,没有f(1)的值满足f(0)>f(1),故有3个.答案 A10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)解析由题设知,f(x)在(-∞,0]上是增函数,又f(x)为偶函数,∴f(x)在[0,+∞)上为减函数.∴f(n+1)<f(n)<f(n-1).又f(-n)=f(n),∴f(n+1)<f(-n)<f(n-1).答案 C11.函数f(x)是定义在R上的奇函数,下列说法:①f(0)=0;②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确说法的个数是()A.1个B.2个C.3个D.4个解析①f(0)=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.12.f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,则f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=()A.1006 B.2014C.2012 D.1007解析因为对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,由f(2)=f(1)•f(1),得f(2)f(1)=f(1)=2,由f(4)=f(3)•f(1),得f(4)f(3)=f(1)=2,……由f(2014)=f(2013)•f(1),得f(2014)f(2013)=f(1)=2,∴f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=1007×2=2014.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数y=x+1x的定义域为________.解析由x+1≥1,x≠0得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14.f(x)=x2+1(x≤0),-2x(x>0),若f(x)=10,则x=________.解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5(不合题意,舍去).∴x=-3.答案-315.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又f(x)的值域为(-∞,4],∴a≠0,b=-2,∴2a2=4.∴f(x)=-2x2+4.答案-2x2+416.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.解析设一次函数y=ax+b(a≠0),把x=800,y=1000,和x=700,y=2000,代入求得a=-10,b=9000.∴y=-10x+9000,于是当y=400时,x=860.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁UA)∩B;(2)若A∩C≠∅,求a的取值范围.解(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.∁UA={x|x<2,或x>8}.∴(∁UA)∩B={x|1<x<2}.(2)∵A∩C≠∅,∴a<8.18.(本小题满分12分)设函数f(x)=1+x21-x2.(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求证:f1x+f(x)=0.解(1)由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数f(x)的定义域为{x∈R|x≠±1}.(2)由(1)知定义域关于原点对称,f(-x)=1+(-x)21-(-x)2=1+x21-x2=f(x).∴f(x)为偶函数.(3)证明:∵f1x=1+1x21-1x2=x2+1x2-1,f(x)=1+x21-x2,∴f1x+f(x)=x2+1x2-1+1+x21-x2=x2+1x2-1-x2+1x2-1=0.19.(本小题满分12分)已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.(1)求当x<0时,f(x)的解析式;(2)作出函数f(x)的图象,并指出其单调区间.解(1)当x<0时,-x>0,∴f(-x)=(-x)2-2(-x)=x2+2x.又f(x)是定义在R上的偶函数,∴f(-x)=f(x).∴当x<0时,f(x)=x2+2x.(2)由(1)知,f(x)=x2-2x(x≥0),x2+2x(x<0).作出f(x)的图象如图所示:由图得函数f(x)的递减区间是(-∞,-1],[0,1].f(x)的递增区间是[-1,0],[1,+∞).20.(本小题满分12分)已知函数f(x)=2x+1x+1,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.解(1)函数f(x)在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,f(x1)-f(x2)=2x1+1x1+1-2x2+1x2+1=x1-x2(x1+1)(x2+1),∵x1-x2<0,(x1+1)(x2+1)>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)在[1,+∞)上是增函数.(2)由(1)知函数f(x)在[1,4]上是增函数,最大值f(4)=95,最小值f(1)=32.21.(本小题满分12分)已知函数f(x)的定义域为(0,+∞),且f(x)为增函数,f(x•y)=f(x)+f(y).(1)求证:fxy=f(x)-f(y);(2)若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围.解(1)证明:∵f(x)=fxy•y=fxy+f(y),(y≠0)∴fxy=f(x)-f(y).(2)∵f(3)=1,∴f(9)=f(3•3)=f(3)+f(3)=2.∴f(a)>f(a-1)+2=f(a-1)+f(9)=f[9(a-1)].又f(x)在定义域(0,+∞)上为增函数,∴a>0,a-1>0,a>9(a-1),∴1<a<98.22.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30 40 45 50y 60 30 15 0(1)在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定y与x的一个函数关系式.(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?解(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则50k+b=0,45k+b=15,⇒k=-3,b=150.∴y=-3x+150(0≤x≤50,且x∈N*),经检验(30,60),(40,30)也在此直线上.∴所求函数解析式为y=-3x+150(0≤x≤50,且x∈N*).(2)依题意P=y(x-30)=(-3x+150)(x-30)=-3(x-40)2+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案一、单项选择题(5分,每小题1分)1. 在空间直角坐标系中,共线的两个非零向量()A. 必定相等B. 不一定相等C. 长度不定D. 不可能共线答案:B2. 关于两个集合A和B,下列说法正确的是()A. 如果A⊆B,那么有B⊆AB.如果A⊂B,那么有B⊂AC.A∩B=B∩AD.两个空集合A和B之间有A=B答案:C3. 若a>0,b≤1,则有()A. a+b>1B. a+b≤1C. a+b<1D. a+b≥1答案:B4. 在三棱锥P—ABC中,底面PAB的面积是9,PA的长是6,PB的长为5,AB的长为9,则该三棱锥的体积是()A. 45B. 90C. 108D. 135答案:A5. 设X=[1,3],Y=[2,4],则下列命题中正确的是()A. X∪Y=[1,4]B. X∩Y=[2,3]C. X-Y=[1]D. Y-X=[4]答案:A二、填空题(10分,每小题2分)6. 已知一个空间向量a=(1,3,1),其中张成a的两条线段长分别为p和q,则 p、q 的大小关系是()。
答案:p>q7. 已知平面内角∠A、∠B、∠C三角形的度数分别为20°、70°、90°,若三角形ABC的面积为12,则此三角形的外接圆半径是()。
答案:128. 已知集合A={1,2,3}, B={1,5,9},则A∪B={()}答案:1,2,3,5,99. 已知数列{an}的首项a1=2,公比q=3,则数列{an}的前4项和S4=()答案:6210. 设函数f(x)=sinθx,θ是未知实数,则函数f(x)的最大值为( )答案:1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一年级数学学科第一单元质量检测试题参赛试卷
学校:宝鸡石油中学 命题人:张新会
一、选择题:本答题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.集合{0,1}的子集有 A.1个 B. 2个 C. 3个 D. 4个
2.已知集合2{|10}M x x =-=,则下列式子正确的是
A.{1}M -∈
B.1 M ⊂ C . 1 M ∈- D. 1 M ∉-
3.已知集合M={},0a N={}1,2且M {2}N =,那么=N M
A .{},0,1,2a
B .{}1,0,1,2
C .{}2,0,1,2
D .{}0,1,2
4.已知集合 A 、B 、C 满足A ⊂B ⊂C ,则下列各式中错误的是
A .()A
B
C ⊂ B .()A B C ⊂ C .()A C B ⊂
D .()A C B ⊂
5.设集合{(,)|46},{(,)|53}A x y y x B x y y x ==-+==-,则B A =
A .{x =1,y =2}
B .{(1,2)}
C .{1,2}
D .(1,2)
6.设全集I={16,}x x x N ≤<∈,则满足{1,3,5}∩I B ={1,3,5}的所有集合B 的个数是 A. 1 B. 4 C. 5 D. 8
7.设{012},{}B A x x B ==⊆,,则A 与B 的关系是
A .A
B ⊆ B .B A ⊆
C .A ∈B
D .B ∈A 8.31{|},{|},2
m A n Z B m Z A B n +=∈=∈=则 A .B B .A C .φ D .Z
9.已知全集I={0,1,2}则满足(){2}I A B =的集合A 、B 共有
A .5组
B .7组
C .9组
D .11组
10.设集合2{|10}A x x x =+-=,{|10}B x ax =+=,若B A ⊂则实数a 的不同值的个数是 A .0 B. 1 C. 2 D. 3
11.若2{|10}p m mx mx x R =--<∈,对恒成立,则p =
A .空集
B .{|0}m m <
C .{|40}m m -<< D.{|40}m m -<≤
12. 非空集合M 、P 的差集{,}M P x x M x P -=∈∉且,则()M M P --=
A .P
B .M ∩P
C .M ∪P
D .M
二、填空题:本大题共6小题,每小题5分,共30分.
13.已知{}2|2,A y y x x ==+∈R ,则 R A = .【答案】{|2}x x < 14.数集2{2,}a a a +,则a 不可取值的集合为 . 【答案】{0,1}
15.集合A 、B 各含12个元素,A ∩B 含4个元素,则A ∪B 含有 个元素.【答案】20
16.满足2
{1,3,}{1,1}a a a ⊇-+的元素a 构成集合 .【答案】{-1,2}
17.已知全集{1,3,},,I a A I B I =⊆⊆,且2{1,1}B a a =-+,I B A =,则A = . 【答案】}2{}1{=-=A A 或
18.符合条件{a ,b ,c }⊆P ⊆{a ,b ,c ,d ,e }的集合P 有 个.【答案】4
三、解答题:本大题共4小题,共60分.解答应写出文字说明或演算步骤.
19.(15分)若集合2
{|210}A x ax x =++=中有且仅有一个元素,求a 的取值.
解:当0a =时,方程为210x +=,12x =-
只有一个解; 当0a ≠时,方程2210ax x ++=只有一个实数根,
所以440a ∆=-=,解得1a =
故a 的取值为0或1
20.(本小题满分15分)已知集合A={-1,1},B={x | x ∈A},C={y | y ⊆A}
(1)用列举法表示集合B 、C ;(2)写出A 、B 、C 三者间的关系.
解:(1)∵A={-1,1} ∴B={-1,1},C={{ }, {-1}, {1}, {-1, 1}}
(2)A = B ∈C
21.(15分)设全集为R ,{}|25A x x =<≤,{}|38B x x =<<,{|12}C x a x a =-<<.
(1)求A
B 及()R A B ;(2)若()A B
C =∅,求实数a 的取值范围. 解:(1)A
B ={}|35x x <≤ ∵ A B ={}|28x x << ∴()R A B ={}|28x x x ≤≥或
(2)若()A B C =∅,
则有231512a a a a ≤⎧⎪-≥⎨⎪-<⎩
得312a -<≤或6a ≥ ∴实数a 的取值范围为{3|12
a a -<≤
或6a ≥} 22. (本小题满分15分)已知集合22{|0(40)}M x x px q p q =++=->,{13579}A =,,,,,
{14710}B =,,,且M A φ=,M B M =,试求p q 、的值.
解:M B M =,M B ∴⊂,
2240p q ->时,方程20x px q ++=有两个不等的根,且这两个根都在集合B 中, M A φ=,∴ 1,7不是M 的元素,∴4,10是方程20x px q ++=的两个根
故14,40p q =-=
【试题命制意图分析】
考查基本内容:①集合的基本内容包括集合有关概念,集合的三种运算和集合语言和思想的初步应用。
②学习中要求能准确理解集合、子集、交集、并集、补集的概念,正确使用各种符号,掌握有关的术语。
③对集合的运算要求用文字语言表述。
用符号语言做出表示及用图形语言表示做出全面理解。
考查重点与难点内容:(1)本节的重点内容是对集合概念的准确理解与应用:①认识集合应从构成集合的元素开始,利用集合中元素的特性(确定性、互异性、无序性)可指导集合的表示。
②对集合的三种表示方法(列举、描述、图示法)不仅要求了解不同表示方法的不同要求,还要求能根据不同情况对表示方法进行选择。
③求有限集合的子集,应正确运用分类讨论的思想确定子集中元素的选取规律。
(2)本节的难点是各种符号的正确理解和使用。
正确理解和熟练运用数学符号是提高抽象思维能力的重要途径。
数学符号是符号化了的数学概念。
以前接触的符号都是有关数、或数与数的关系的,本节中学习的抽象符号是表示元素、集合或集合间关系的,如“∈”,“∉”,“⊆”, “=”等,是全新的一套。
对符号的使用不仅要明确其意义,而且还要注意各类符号间不能混用,并能识别和处理用集合中有关符号表述的数学命题。
(3)对于集合的应用重点是交并思想在解不等式中的应用,不做过多延伸。