Parametric and nonparametric measurements of
Mathematical Modelling and Numerical Analysis Will be set by the publisher Modelisation Mat

c EDP Sciences, SMAI 1999
2
PAVEL BEL K AND MITCHELL LUSKIN
In general, the analysis of stability is more di cult for transformations with N = 4 such as the tetragonal to monoclinic transformations studied in this paper and N = 6 since the additional wells give the crystal more freedom to deform without the cost of additional energy. In fact, we show here that there are special lattice constants for which the simply laminated microstructure for the tetragonal to monoclinic transformation is not stable. The stability theory can also be used to analyze laminates with varying volume fraction 24 and conforming and nonconforming nite element approximations 25, 27 . We also note that the stability theory was used to analyze the microstructure in ferromagnetic crystals 29 . Related results on the numerical analysis of nonconvex variational problems can be found, for example, in 7 12,14 16,18,19,22,26,30 33 . We give an analysis in this paper of the stability of a laminated microstructure with in nitesimal length scale that oscillates between two compatible variants. We show that for any other deformation satisfying the same boundary conditions as the laminate, we can bound the pertubation of the volume fractions of the variants by the pertubation of the bulk energy. This implies that the volume fractions of the variants for a deformation are close to the volume fractions of the laminate if the bulk energy of the deformation is close to the bulk energy of the laminate. This concept of stability can be applied directly to obtain results on the convergence of nite element approximations and guarantees that any nite element solution with su ciently small bulk energy gives reliable approximations of the stable quantities such as volume fraction. In Section 2, we describe the geometrically nonlinear theory of martensite. We refer the reader to 2,3 and to the introductory article 28 for a more detailed discussion of the geometrically nonlinear theory of martensite. We review the results given in 34, 35 on the transformation strains and possible interfaces for tetragonal to monoclinic transformations corresponding to the shearing of the square and rectangular faces, and we then give the transformation strain and possible interfaces corresponding to the shearing of the plane orthogonal to a diagonal in the square base. In Section 3, we give the main results of this paper which give bounds on the volume fraction of the crystal in which the deformation gradient is in energy wells that are not used in the laminate. These estimates are used in Section 4 to establish a series of error bounds in terms of the elastic energy of deformations for the L2 approximation of the directional derivative of the limiting macroscopic deformation in any direction tangential to the parallel layers of the laminate, for the L2 approximation of the limiting macroscopic deformation, for the approximation of volume fractions of the participating martensitic variants, and for the approximation of nonlinear integrals of deformation gradients. Finally, in Section 5 we give an application of the stability theory to the nite element approximation of the simply laminated microstructure.
parameter identification计量

Parameter identification(参数识别)计量是一种量化方法,用于确定模型参数以优化模型性能。
在计量经济学、统计学和机器学习领域中,参数识别是关键步骤之一,因为它有助于我们从观测数据中估计未知参数,从而使模型能够更好地拟合实际现象。
Parameter identification(参数识别)计量的主要方法有以下几种:1. 最大似然估计(Maximum Likelihood Estimation,MLE):最大似然估计是一种常用的参数估计方法,它基于贝叶斯定理,通过寻找使得观测数据出现概率最大的参数值来估计未知参数。
2. 最小二乘法(Least Squares,LS):最小二乘法是一种用于拟合线性模型的参数估计方法。
它通过最小化观测值与模型预测值之间的平方误差来寻找最佳参数。
3. 矩方法(Moment Method,MM):矩方法是一种基于数据分布的性质来估计参数的方法。
它通过计算数据的一阶和二阶矩(均值和方差)来得到参数的估计值。
4. 贝叶斯方法(Bayesian Method,BM):贝叶斯方法是一种基于贝叶斯定理的参数估计方法,它通过计算后验概率来寻找使得观测数据出现的概率最大的参数值。
5. 遗传算法(Genetic Algorithm,GA):遗传算法是一种基于生物进化理论的优化方法,它通过模拟自然选择、交叉和变异等过程来搜索最优参数。
6. 网格搜索(Grid Search,GS):网格搜索是一种遍历方法,它在给定参数范围内进行搜索,以找到使得模型性能最佳的参数组合。
7. 随机搜索(Random Search,RS):随机搜索是一种基于随机抽样的方法,它在搜索空间中随机选择参数组合,以提高搜索效率。
在实际应用中,根据问题的复杂性和数据特点,可以选择适合的参数识别方法来进行计量。
通常,一种方法可能无法适用于所有情况,因此需要尝试多种方法,以找到最佳参数估计。
此外,根据模型的性能指标(如均方误差、平均绝对误差等),我们可以评估不同参数设置对模型性能的影响,从而选择最优的参数组合。
高斯朴素贝叶斯训练集精确度的英语

高斯朴素贝叶斯训练集精确度的英语Gaussian Naive Bayes (GNB) is a popular machine learning algorithm used for classification tasks. It is particularly well-suited for text classification, spam filtering, and recommendation systems. However, like any other machine learning algorithm, GNB's performance heavily relies on the quality of the training data. In this essay, we will delve into the factors that affect the training set accuracy of Gaussian Naive Bayes and explore potential solutions to improve its performance.One of the key factors that influence the training set accuracy of GNB is the quality and quantity of the training data. In order for the algorithm to make accurate predictions, it needs to be trained on a diverse and representative dataset. If the training set is too small or biased, the model may not generalize well to new, unseen data. This can result in low training set accuracy and poor performance in real-world applications. Therefore, it is crucial to ensure that the training data is comprehensive and well-balanced across different classes.Another factor that can impact the training set accuracy of GNB is the presence of irrelevant or noisy features in the dataset. When the input features contain irrelevant information or noise, it can hinder the algorithm's ability to identify meaningful patterns and make accurate predictions. To address this issue, feature selection and feature engineering techniques can be employed to filter out irrelevant features and enhance the discriminative power of the model. Byselecting the most informative features and transforming them appropriately, we can improve the training set accuracy of GNB.Furthermore, the assumption of feature independence in Gaussian Naive Bayes can also affect its training set accuracy. Although the 'naive' assumption of feature independence simplifies the model and makes it computationally efficient, it may not hold true in real-world datasets where features are often correlated. When features are not independent, it can lead to biased probability estimates and suboptimal performance. To mitigate this issue, techniques such as feature extraction and dimensionality reduction can be employed to decorrelate the input features and improve the training set accuracy of GNB.In addition to the aforementioned factors, the choice of hyperparameters and model tuning can also impact the training set accuracy of GNB. Hyperparameters such as the smoothing parameter (alpha) and the covariance type in the Gaussian distribution can significantly influence the model's performance. Therefore, it is important to carefully tune these hyperparameters through cross-validation andgrid search to optimize the training set accuracy of GNB. By selecting the appropriate hyperparameters, we can ensure that the model is well-calibrated and achieves high accuracy on the training set.Despite the challenges and limitations associated with GNB, there are several strategies that can be employed to improve its training set accuracy. By curating a high-quality training dataset, performing feature selection and engineering, addressing feature independence assumptions, and tuning model hyperparameters, we can enhance the performance of GNB and achieve higher training set accuracy. Furthermore, it is important to continuously evaluate and validate the model on unseen data to ensure that it generalizes well and performs robustly in real-world scenarios. By addressing these factors and adopting best practices in model training and evaluation, we can maximize the training set accuracy of Gaussian Naive Bayes and unleash its full potential in various applications.。
美丽心灵中英法文字幕

美丽心灵中英法文字幕UN HOMME D' EXCEPTION《美丽心灵》普林斯顿大学1947年9月Des mathématiciens ont gagné la guerre.二次大战因数学家而获胜Des mathématiciens ont casséles codes des Japonais是数学家破解了日本的密码而且建造了原子炸弹et construit la bombe atomique.Des mathéme vous.就是……像你们这样的数学家Le but avoué des Soviétiques estle communisme global.苏联所定的目标,是让党布遍全球无论在医药还是经济上En médecine, ou en économie,En technologie, ou dans la recherche spatiale,在科技或太空技术上de nouvelles lignes de front ont été esquissées.战线已经分明了想要胜利,我们就需要有成果——Afin de l'emporter,il nous faut des résultats.Des résultats pouvant être publiés, et appliqués.可以发表,实用的成果Lequel d'entre vous sera le nouveau Morse,你们当中谁会成为第二个莫尔斯?le prochain Einstein ?第二个爱因斯坦?Lesquels parmi vous formeront l'avant-garde de la démocratie, de la liberté, et de la découverte. 你们当中谁会成为……民主、自由和探索的先锋?Aujourd'hui le futur de l'Amériquerepose entre vos mains.今天,我们将美国的未来……交于你们的手中Messieurs, bienvenue à Princeton !各位,欢迎来到普林斯顿大学Gagner la bourse Carnegie,a ne suffit pas à Hansen.汉森得了卡内基奖学金还不满足Non, il veut l'avoir pour lui tout seul.是的,他想要所有奖学金都归他所有C'est la première foisqu'on a attibué un prix ex-aequo这可是第一次将卡内基奖学金平分汉森早已做好了决定Ca l'a mis en rogne !Il a des vues sur le Laboratoire Wheeler,听说他已经盯上了惠勒实验室,le nouvel incubateur du MIT.那个在麻省理工的新军事技术中心Un seul sera pris cette année.今年他们只录取一个Hansen a l'habitude d'êtrele premier de la classe.往常都是汉森第一个被选中Ce n'est pas assez bien.Il devrait se présenter aux présidentielles.也是,让他学数学真是浪费了他应该去竞选总统那一定有一个数学上的解释…Il y a donc une logique mathématiquequi pourrait expliquerle mauvaix go?t de cette cravate.来证明你的领带有多差Merci...谢了尼尔逊,符号密码学Nielsen, cryptographie des symboles.Il a cassé les codes japonaisdébarrassant le monde de la menace fasciste 这个尼尔逊曾破解了日本的密码,并且帮助消灭法西斯C'est du moins ce qu'il raconte aux filles.Pas vrai, Niels ?至少他总跟女孩这么说,不是吗,尼尔逊?Mon nom est Bender, physique atomique.我是本德,主修原子物理学V ous êtes ?- 而你是……?- 我迟到了吗?J'suis en retard ?- Oui, M. Sol.- Tant mieux.是的,索尔先生嗯,嗨Bonjour, Sol. Richard Sol.- 索尔,理查德•索尔- 啊,天才总是孤独的Ah... le poids du génie.Le voilà.- 他来了- 这么多的恳求者,却只有这么点时间Tant de suppliques, et si peu de temps. - M. Sol.- Monsieur, mes respects.索尔先生先生,你好吗?啊,本德见到你很高兴Bender...Mes félicitations, M. Hansen.祝贺你啊,汉森先生啊,谢谢Merci.J'en reprendrai bien un autre.再给我来一杯你刚说什么?Pardon ?对不起,我还以为你是服务生Mille excuses,je vous ai pris pour un serveur.Sois gentil, Hansen.- 友善点,汉森- 友善不是汉森的长处La gentillesse n'est pas le fort de Hansen Une erreur non intentionelle.我真的是搞错了Eh bien, Martin Hansen.嗯,马丁•汉森C'est bien Martin, n'est ce pas ?是马丁,没错吧?是的,没错,约翰,为什么问这个?Tout à fait, John. C'est bien cela.J'imagine que les erreurs de calculvous sont devenues familières.我估计你是常常出错的J'ai lu vos pré-publications我读过你的论文稿——Les deux, à vrai dire.两篇都读过L'une portant sur le cryptage nazi,一份关于纳粹密码et l'autre sur les équations non-linéaires.和另一份关于非线性等式Et je puis affirmer avec certitude而我是非常的肯定……qu'il n'y a pas une once d'idée fondatriceou même innovante dans aucune d'entre elles 你两篇里没有一篇有……重大或者是创新的想法Profitez bien du punch.早午饭愉快Messieurs, voici John Nash.先生们,见过约翰•纳什Le génie méconnude la Virginie occidentale.那个神秘的西维吉尼亚天才L'autre gagnantde la célèbre bourse Carnegie.也就是著名的卡内基奖学金的另一位得主Ok...哦,原来如此Mais c'est bien s?r !喔,是吗?噢,天啊Bon sang !Le camarade de chambrée prodigue... ... est arrivé.你的浪子室友抵达了室友?Camarade de chambrée ?Pitié, pas ?a !噢,天那,不要啊———Tu savais que la gueule de bois你知不知道酒喝多了est du au fait qu'il n'y a pasassez d'eau dans ton corps就会使你的身体里缺乏足够的水……pour faire tourner les cycles de Krebs. 来进行体内的循环这就和你快要渴死时……C'est ce qui se passequand tu meurs de soif.所发生的情况是一样的En fin de compte,所以,渴死……mourir de soif...也就很可能和……ferait le même effet...dans les grandes lignes...失血过多而死……que la foutue gueule de boisqui finira par te tuer.感觉差不多约翰•纳什?John Nash ?你好Bonjour.Charles Herman.Ravi de te conna?tre.查尔斯•赫尔曼很高兴认识你V oilà, c'est officiel.Je suis presque redevenu un humain. 正式的讲我差不多恢复成正常人了M. l'agent, j'ai reconnule chauffard qui m'a renversé.警官,我看见了那个撞我的司机Il s'appelle Johnny Walker.他的名字是约翰•沃克Je suis rentré juste à temps hier soir 我昨晚刚好赶到……pour assister au cocktaildu département d'Anglais.英文部的鸡尾酒会公鸡是我的J'ai fait le " coq " pour une" telle " particulièrement ravissante而尾巴则属于一个……et habitée d' une passiondébordante pour... D.H. Lawrence...特别可爱的、年轻的、并对大卫劳伦斯感兴趣的家伙你好像不容易被干扰,是吗?Tu ne te laisses pasfacilement distraire, semble-t-il.Je suis ici pour travailler.我是来学习的喔,是吗?Ah, d'accord...chatouilleux en plus !我的室友是不是书呆子?Mon colocataire serait-il un pisse vinaigre ?是不是?听着Ecoute, si la glace ne peut être rompue如果我们无法打破这沉默,que dirais-tu de la noyer ?那我们把它喝完怎么样?讲讲你的来历吧?Alors, raconte-moi ta vie.你就是那个从来没去过私立中学的穷孩子?Celle du pauvre gaminqu'on n'a pas admis à Exeter ou à Andover ? Après un passage chez les pères,je me considère plut?t équilibré.尽管我的成长很特别但我的生活是十分和谐的A présent, je porte la misèredu monde sur les deux épaules.我是有钱的也许你只是跟数字……Sans doute est tu meilleuravec les chiffres qu'avec les gens.比跟人在一起过得更好我一位老师曾经告诉我Mon instit au cours primaire disaitque j'étais né avec deux rations de cervelle我天生就具有两个有用的大脑mais seulementune demi ration de coeur.但却只有半个有用的心Grand Dieu, elle a l'air charmante !哇!她讲得真好实际上,我——En vérité,je n'aime guère mes semblables.我不喜欢与人交往他们同样也不喜欢我Et ils me le rendent bien.Mais pourquoi ?但是,为什么?Avec ton humour et ton charme naturel ! 因为你太帅了?Soyons sérieux, John.Les maths...说真的,约翰数学嘛……数学永远不会让你领会更高的真理Les maths ne te mèneront jamaisvers la connaissance supérieure.你知道为什么吗?Et sais-tu pourquoi ?因为它很无聊Parce que c'est chiant, super chiant !真是无聊透顶一半的学生都已经发表了文章Tu vois,la moitié de ces " écoliers " a déjà publié. Je n'ai pas de temps à perdredans ces classes, et ces livres.我不能浪费时间在这些课上和书本上A apprendre par coeurles faibles postulats de moindre mortels. 记住这些一点都不重要的理论我需要看透……Je dois arriver à comprendreles lois de la dynamique dominante.管理动力学找真正的原创想法Découvrir une idée vraiment originale. Car c'est la seule fa?onpour moi de me distinguer.走自己的路这只有一个方法La seule fa?on de...Le dompter ?数学是的Oui...Ok, au suivant !好了,下一个是谁?Ah non, assez de go pour aujourd'hui ! 不,我今天已经下够了,谢谢Allez !得了吧Non...je déteste ce jeu.我讨厌这棋Des laches,tous autant que vous êtes !懦夫,你们全都是懦夫Pas un pour oser relever ce défi ?你们谁都不敢和我挑战?Allez, Bender. Sol fera le lingedu vainqueur pendant tout le semestre. 快来吧,本德,不管谁赢这学期都是索尔洗衣服的Quoi, personne à part moine trouve ?a injuste ?你们不觉得这很不公平吗?不觉得Non, je vois pas.- 看他- 纳什!Regardez-le !Nash !On se promène à reculons ?你在练习倒着走吗?J'espère extraire un algorithmepour décrire leurs mouvements.我希望能创造一条运算法则来描述他们的运动哦真酷22, le maboul...嘿,纳什,我记得你已经退学了Hé Nash, je pensaisque t'avais abandonné la fac.Tu vas jamais en cours ?你没有去上课了上课会使你大脑变迟钝Les cours, ?a vous obscurcit la pensée. 减低你的创造力Ca détruit tout potentiel de créativité pure.Oh, ok. Je savais pas.哦,这我就不知道了Nash va tous nous surprendre par son génie.纳什会用他的才华吓到我们所有人这里刚好有个方法可以证明Ce qui revient à direqu'il craint la concurrence.Effrayé ?你害怕吗?害怕、Terrifié, mortifié, pétrifié !恐惧、惊吓、Stupéfié...à ta seule vue !吓呆……都是你说的不要光说Sans amidon. Repassé et plié.抓紧时间开始Pourrais-je te poser une question, John?约翰,让我问问你请讲,马丁Je t'en prie, Martin.Je ne t'ai jamais vu terminerla résolution par Alan de l'hypothèse de Perot.本德和索尔已经成功的完成了……柏瑞特推论的艾伦证明法Un boulot adéquat,mais rien de novateur.做的不错……就是缺少创新噢,我受宠若惊,你觉得呢?Bon, je me sens flatté. Pas toi ?Aussi.我也受宠若惊Et deux de mes travaux en armementsont en cours d'examen au Ministère de la Défense. 我有两篇关于国防的论文……已经经过国防部的安全审查Des produits dérivés.毫无创意的废物Quant aux résultats de Nash ? Zéro.但纳什的成就……零个Je suis d'un naturel patient, Martin.我是一个度量大的人,下一个问题呢?Tu as une vraie question à me poser ?如果你永远都想不出你的原创理论怎么办?Que se passerait-ilsi tu ne le trouves jamais, ce concept original ? 嗯?如果我被选进惠勒实验室……Et comment te sentiras tu,lorsque je serai choisi pour le Wheeler ?而你没有呢?Et toi non.你要是输了怎么办?Qu'arriverait-il si tu perdais ?啊,就是这了Ha, le coup qui tue.你不应该赢的Tu n'aurais pas du gagner.嗯……J'avais la bonne tactique,第一步是我先下,我的每一步都是完美的mon jeu était sans failles.L'amertume de la défaite...骄兵必败这棋不公平Il y a une erreur dans cette partie.先生们,这就是伟大的约翰•纳什Messieurs, le fameux John Nash !Ca fait deux joursque tu es là dedans.你在这里已经两天了Sais-tu que Hansena publié un autre papier ?你知不知道汉森又发表了一篇论文J'arrive même pasà trouver un sujet de thèse.而我却连一个博士论文的主题都没找到Le bon c?té des choses,c'est que tu viens d'inventer la fenêtre d'art. 嘿,往好的方面想,你发明了窗户艺术嘛Ca, c'est le groupe de joueurs de foot.这是正在玩橄榄球的人Et là, la bande de pigeonsqui se disputent les miettes de pain.这是一群正在挣面包渣的鸽子Et ici, la course de cette femmevoulant rattraper le type qui lui a arraché son sac. 而在这的则是一个正在追小偷的妇女John, tu passes ton tempsdevant des inscriptions.约翰,你看的只是表面这是不对的C'est pas normal !在激烈的竞争里总有人要输的Lorsqu'il y a compétition,il existe toujours un perdant.我侄女都知道这些,约翰,她只是这么高Ca, ma nièce elle le sait.Et pourtant, elle est pas plus haute que ?a.Tu vois, si je parvenaisà trouver le point d'équilibre我在想延伸出一条均衡论……ou la prévalenceen tant qu'évènement non-singulier全局皆赢没有人会输sans qu'il y ait de perdant...你能想象这有多好啊Imagine l'effet que ?a auraitdans un scénario de conflit et de négociation...在冲突谈判和武器交易……Depuis quand n'as-tu rien mangé ?你上次就餐是什么时候?Depuis quand n'as-tu rien mangé ?你上次就餐是什么时候?还有对货币兑换……Les échanges monétaires...Tu sais, de la nourriture ?我指的是食物Tu n'as aucun respectpour la rêverie cognitive, tu sais ?a ?你对这样的幻想一点都不看重,知道吗?Pour ?a oui.Contrairement à la pizza...知道,但比萨饼——Oui, la pizza,a commande un respect énorme.我现在更看重比萨饼当然还有啤酒Tout comme la bière.我看重啤酒Moi, je respecte la bière.J'ai du respect pour la bière !我看重啤酒晚上好,尼尔逊Bonsoir, Niels ! Mesdemoiselles...纳什Nash, qui est-ce qui gagne ?谁正获胜?你?还是你?Toi, ou bien toi ?晚上好,纳什- Salut Nash ! hé les gars !- Hé Nash !嗨,朋友们嗨,纳什他肯定正在看你Il te regarde, c'est s?r.Hé, Nash.Niels essaie d'attirer ton attention.嗨,纳什尼尔逊想引起你的注意别开玩笑了- C'est une blague !- Oh non...噢,没有Dieu t'appelle !祝你好运做个男人吧Tu seras un homme à ton retour.La chance sourit aux audacieux.好运总是伴随着勇敢的人Larguez les bombes !出发吧Messieurs, je vous rappelleque mes chances de succès各位,让我告诉你们,试验越多次…… augmentent considérablementà chaque nouvelle tentative.越容易成功这一定会成为经典Ca va être un classique.或许你想请我喝一杯Peut-être voudriez-vousm'offrir quelque chose à boire.我不知道我到底应该说些什么……J'ignore ce qu'il est convenu de direpour vous demanderd'avoir un rapport avec moi.才能促使你和我进行性交Mais pourrions nous prétendreque tout ?a ait déjà été dit ?你能不能假设我已经说过了Après tout, il ne s'agit qued'un échange de fluides, n'est ce pas ?实际上,我们正在谈论唾液交换,对吗?Alors pourrait-onaller directement au sexe ?因此,我们干脆直接去做爱怎么样?噢,这可真浪漫C'est joliment dit.Bonne soirée, couille molle !晚安,王八蛋小姐,等一下Mesdemoiselles ! Attendez !我——J'ai...J'ai beaucoup aiméle coup de l'échange de fluides...我尤其喜欢“唾液交换”这句真的很好Vraiment charmant !约翰,跟我一块走Accompagnez-moi, John.J'aimerais m'entretenir avec vous.我想找你谈谈Le corps enseignant met la touche finaleà l'examen semi-annuel des dossiers.教员们正在写期中评语Nous décidons alors d'accorder notre soutienà telle ou telle demande d'affectation.我们开始推荐了Wheeler, Monsieur, serait mon premier choix. Je n'ai pas de second choix...教授,请推荐我去惠勒实验室,这是我的首选而且实际上,我也没有第二选择,先生John...vos camarades sont allés en cours,ils ont fait des publications.约翰,你的同学上了课他们写了论文,并且都发表了教授,我在寻找……Oh...Je cherche encore, Monsieur.Le concept novateur, oui...你的原创理论管理动力学Oui, la dynamique dominante...这是好的,约翰,但我恐怕……C'est très intéressant, John.Mais je crains que ce soit loin de suffire. 这还是不够的外衣?Merci.谢谢Je travaille sur une théoried'imbrications multiples,我已经开始了“符合嵌入”的工作et ma stratégie de négociationest assez prometteuse.我的“议价策略”已经出现了一些进展Si vous consentiezà me faire rencontrer, je vous en prie,如果你能帮我安排一个见面我和爱因斯坦教授的见面……le Professeur Einstein,je n'ai cessé d'en faire la demande...我已经多次的请求过你Ecoutez, John.J'aimerais lui montrerma fa?on d'utiliser ses...约翰?约翰,约翰John !Savez-vous vousce qui se passe à l'intérieur ?你看见他们正在干什么?恭喜,教授祝贺你,马克斯教授- Toutes mes félicitations, Professeur !- Merci infiniment.谢谢你,谢谢那些笔......C'est la cérémonie des stylos,en l'honneur d'un membre du Département 提供给部门里……ayant réaliséle travail de toute une vie.取得了终身成就的人约翰,你看到了什么?Qu'y voyez-vous, John ?La grandeur名誉?做得好,教授,做得好Bravo, Professeur ! Remarquable !要去尝试看实质Eh bien,essayez d'y entrevoir la réussite.有区别吗?Y a-t-il une différence ?约翰你还没有集中你的精力John, vous vous dispersez.Je suis navré,mais en l'état de votre travail,对不起,但直到现在你的记录还不能够保证有任何职位nous ne pourrons appuyervotre candidature à aucun poste.日安Bonne journée.先生,请接受我的祝贺Mes compliments chaleureux,cher confrère !非常感谢你我无法看见Je ne vois rien.老天哪,约翰Pour l'amour du Ciel, John.我不能失败Je ne peux échouer.C'est tout ce que j'ai.我只能是这样的别这样,我们出去走走Allez, viens. On va sortir.J'y arrive pas我必须的完成些什么John, allons !约翰!Je veux plus regarder dans le vide.- 我不能还这样脑子一片空白- 约翰,够了John, ?a suffit !我需要遵循他们的规定去上课Ca va contre le mur !- Tu veux casser quelque chose, vas-y !- Ils veulent que je suive leurs règles, que j'aille en cours... 你受伤吗?行啊——但别在这搞上他们的课Vas-y, brise-toi le crane !别停啊!继续撞你的头!Allez, finissons-en !撞死你自己别做傻事别再乱搞Qu'est ce que t'attends ?Pas de demi-mesure.Vas donc t'ouvrir le crane !撞你的头,继续Fais-le !Une bonne fracture à une tête de mule !把你那无用的头撞个大口子Bordel, Charles.Quel est ton putain de problème ?该死的,查尔斯!你有问题吗?Ce n'est pas mon problème.这不是我的问题Et ce n'est pas le tien.也不是你的问题这是它们的问题C'est leur problème.Tu ne trouveras pas la réponseen faisant face au mur.解决问题的答案不在面壁上而是……Elle est là dehors.Là où tu as toujours travaillé.在你的工作上Elle fait son poids.它真重啊Ce gars,Isaac Newton, il avait raison.牛顿那家伙是对的Il tenait quelque chose là.他了解的很透底Brillant, le gar?on !很聪明Ne vous en faites pas.Elle est à moi.不用担心,那是我的,我一会就去收拾Servez-vous !噢,我的上帝先生们,来了Messieurs, un nouvel arrivage.深呼吸Respire à fond !纳什,你也许愿意停止……Nash, tu peux arrêter de remuercette paperasse pendant 5 secondes.翻动你的文件五秒钟我不会请你们喝酒的Ne comptez passur moi pour payer la bière.噢,我们不是来要酒的On est pas là pour la bière, l'ami.哦Messieurs,je pense qu'elle est faite pour le ralenti.有人觉得她在以慢动作移动吗?她会要求盛大的婚礼吗?Tu crois qu'elle voudraitune grande fête pour notre mariage ?各位,我们用剑决斗吧?Choisissez vos armes, Messieurs.Lame, ou pistolets, demain à l'aube ?还是用手枪?V ous ne retenez donc rien ?你们什么都不记得了吗?回想亚当•史密斯,Souvenez-vousdes le?ons d'Adam Smith.Le père de l'économie moderne.现代经济学之父那课Dans un système concurrentiel,l'ambition individuelle se met au service de l'intérêt général. “在竞争中……每个人的目的都是自私的”Exactement !- 完全正确- 先生们,每个人都会为自己Chacun pour soi, Messieurs.Ceux qui échouentse contenteront de leurs amis.那些失败的就要去追她的朋友Je ne vais pas rater mon coup.我不会失败的Tu peux offrir de l'eau à une blonde,mais tu ne peux l'obliger à boire.你可以带美女到水池边,但你不能强迫她喝水Elle est pas de toi, celle-là.- 我不记得他说过这个- 都别动——Ok, plus un geste.Elle regarde pas ici.她正在往这看,她正在看纳什Mais c'est Nash qu'elle reluque !噢,老天,他现在可能可以占上风Bon sangOn a un avantage certain.Il suffit d'attendre qu'il ouvre la bouche.但只要等他一开口……- Tu te rappelles la dernière fois ?- Ouais, c'est dans tous les livres d'histoire.还记得上次吗?喔,当然,那个可成为历史- 亚当•史密斯需要修改- 你在胡说什么?Adam Smith a besoin d'un lifting.Qu'est ce que tu radotes ?如果我们全都去追美女Si on court tous après la blonde,我们只会钩心斗角Nous allons nous gêner mutuellement,而没有一个人能得到她et aucun de nous ne parviendra au but.如果我们接着去追她的朋友们Suite à quoi,nous nous rabattons sur ses copines.Mais elles se déroberont她们定会冷淡我们car personne n'apprécied'être le second choix.因为没人愿意做替代者但是,如果我们都不去找那美女Et si personne n'entreprenait la blonde ?我们就不会彼此阻挠On ne se marchera plussur les pieds也不会亏待其他的女孩et les autre fillesne se sentiront pas humiliées.On y gagne tous.这是我们唯一能全胜的方法C'est seulement de cette manièrequ' on pourra tous tirer un coup.这是也是我们唯一全都能得到女伴的方法Adam Smith affirmeque le meilleur résultat s'obtient亚当•史密斯说过……最好的结果来自于……组里的每一个人都只做……lorsque chacun dans le groupe s'emploità la tache qui lui sera le plus profitable.对他个人有利的事,对吧?Exact ? c'est bien ce qu'il a dit ?他是这样说的,没错吧? Incomplet... c'est incomplet.但不完整不完整,明白吗?Ok...car le résultat optimal est atteint因为最好的结果是来自于……组里的每一个人……lorsque chacun dans le groupe s'emploità la tache qui lui profitera le plus, à lui...不但做对自己有利……还要做对组有利的事...et au groupe.Nash,si t'espèresnous piquer la fille avec ?a,纳什,如果这是让你自己得到美女的方法tu peux aller au diable.去你的管理动力学La dynamique dominante, Messieurs...La dynamique dominante...管理动力学,亚当•史密斯……Adam Smith...s'est trompé.是错的- Et c'est reparti...- T'emballes pas !哦,又来了小心,小心点谢谢你Merci !你要明白这个想法会和……V ous réalisez que ceci va à l'encontrede 150 ans de théorie économique ?现存150年的经济理论有冲撞Oui, Monsieur, j'en suis conscient.教授,我明白你不认为这是相当鲁莽的吗?N'est ce pas un peuprésomptueux de votre part ? Effectivement, Monsieur.我也认为如此Bien, Mr Nash...嗯……纳什先生凭这如此重大的突破avec une découverte de cette importance,我确信你可以得到任何你想要的职位Je suis certain que vous obtiendrezn'importe quel poste de votre choix.惠勒实验室Wheeler vous demandera de recommander deux membres pour l'équipe.将会要求你推荐两位组员斯蒂尔和法兰克是很好的选择Stills et Franke seraient d'excellents choix. Sol et Bender, Monsieur.教授,我选索尔和本德Sol et Bender, très bien.索尔和本德确实是非凡的数学家Des mathématiciens hors du commun.Néanmoins, M.Nash, vous est-il venu à l'esprit qu'ils aient faits d'autres projets ?但你觉得他们会不会……已经有了自己的计划?我们成功了!Ca y est, tu l'as fait !惠勒实验室,我们成功了!On va à Wheeler !干杯!来,干杯,干杯!Santé ! à la n?tre !为——噢哦!Ok, voici venirle moment embarrassant, Messieurs...各位,准备好了,别扭的时刻来了A la dynamique dominante !管理动力学Félicitations, John...约翰,祝贺你A la santé de Wheeler ! Skol !敬惠勒实验室!敬惠勒!Le Pentagone 1953 - Cinq ans plus tard五年后--五角大楼1953年Mon Général,将军,从惠勒实验室来的分析家已经到了l'analyste de Wheeler est là.Dr Nash,votre manteau ?纳什博士,请给我您的外衣Merci, Monsieur.谢谢Docteur.博士将军,这是惠勒组的组长,约翰•纳什博士Mon Général,voici le chef de l'équipe Wheeler, le Dr. John Nash. Heureux de vous avoir,Docteur.博士,很高兴你能来Enchanté.你好Par ici, je vous prie.这边走Nous avons interceptédes transmissions radio depuis Moscou.我们已从莫斯科拦截到无线电信号电脑无法识别出它的规律L'ordinateur est incapable de le déchiffrer,mais je suis persuadé que c'est un code.但我肯定它是暗码为什么会这么认为,将军?Bel assemblage de chiffres, Général.Et ils vous disentquelque chose, Dr Nash ?你相信直觉吗,纳什博士?Constamment.当然了Nous avons développé des décrypteurs.我们开发了几种解码器Si vous désirez prendreconnaissance des résultats préliminaires. 如果你想参考我们早期的数据的话…… 博士?Docteur ?我需要一张地图46.13.0.8.57.46.9046-13-08,67-46-90Starker's Corner, dans le Maine.斯塔奇角,缅因48.30.1 .91 .26.3548-03-01,91-26-35普来里波蒂奇,明尼苏达Prairie Portage, dans le Minnesota.这些是纬度和经度Ce sont des coordonnéesen latidude et longitude.Il y en a au minimum 10 autres.至少还有其它十个地点Ca ressemble à un itinéraire de passage aux frontières vers l'intérieur du pays.看起来,他们是绕美国边界进入的非常精彩Extraordinaire.Messieurs,各位,我们要开始干活了il nous faut agir.那老大哥是谁?Qui est-ce, le " Big Brother " ?你为你的国家做了很大的贡献Vous venez de rendreà votre pays un fier service.-上尉!-是的,长官Capitaine.A vos ordres.Raccompagnez le Dr Nash.护送纳什博士Pourquoi les Russess'agitent-ils, Général ?将军,俄国人在运送些什么?罗杰上尉会陪同你到……Le Capitaine Roger va vous escortervers la zone non réservée, Docteur.非禁区,博士Je vous remercie.谢谢你纳什博士,请跟我走Dr Nash, veuillez me suivre,je vous prie.那些不喜欢这方法的人里,没有一个…… " Aucun de ceux qui dénigrent nos méthodes ", " n'est capable de proposer une solutionqui serait un tant soit peu efficace ".能告诉我们其它能用并有效的方法车里是纳什博士C'est le Dr. Nash.好的惠勒国防实验室麻省理工校园" On ne peut pas traiterles Communistes en gentleman. "谢谢你,先生Merci.又去了五角大楼啊?Gros succès au Pentagon ?Ils iront jusqu'à effacerl'expression " Top Secret " du dictionnaire.他们不是已经把“机密”这几个字……从字典里去掉了吗?Salut. La climatisation est encore foutue.噢,嗨,空调又坏了Dis-moi commentsauver le monde en étant liquéfié ?如果我都已经熔化了还能怎样拯救全世界我们非常同情你Du coeur à l'ouvrage, Messieurs.Deux passagesau Pentagon en quatre ans...你要知道,四年内去了五角大楼两次C'est deux fois plusque nous n'en avons fait.那比我们还多去两次会好的,约翰Il y a mieux, John.Le dernier travail de prestige en date...刚刚得到我们最新的光荣任务V ous savez,la Russie possède la bombe H,你知道吗,俄罗斯已经有了氢弹et la Nasa est en traind'annexer l'Amérique du Sud.纳粹已经遣返回南美中国已经有了280万常备军Les Chinois ont une arméeforte de 2.8 millions d'hommes.Et moi, je vais me coltinerun test de structure pour un barrage.而我却在做水坝受压测试Hé regarde ?a,nous avons fait la couverture de Fortune, à nouveau... 我们又一次上了财富杂志的封面Je te prierai d'utiliser le mot "tu" et non "nous".请注意使用“你”,而不是“我们”这应该只有我才对Je devais être seul en couverture.哦Non contentsde me voler la médaille Fields,看来他们不仅强走我的菲尔德勋章ils m'ont collésur la couverture de Fortune现在又把我放到财富杂志的封面上……avec ces tacherons,des savants de pacotille.和这些庸俗、不值得一提的人摆在一起John...quelle différenceentre le génie et le "génie plus" ?约翰,到底……天才和几乎是天才有什么不同?十分不同Une très grande.他是你孙子Il te ressemble comme un fils.Passons. Il te reste dix minutes...顺便说一下,你还有十分钟Comment ?a, dix minutes ?我有的是时间Avant le début de ton cours...在你的新课之前?我不能从"医生"那里拿个假条吗?C'est pas possibled'avoir un avis d'exemption du docteur ?约翰,你自己就是"博士"了,而且不行Tu es un " docteur ", John.Et la réponse est non.赶快吧,你知道麻省理工有优秀的师资Bref, à toi l'exercice,à nous ces locaux somptueux...而麻省理工要用美国今天的杰出人才…… Et le MIT,grace au plus grand esprit de notre temps, est en mesure de formerles grands esprits de demain.来培养美国明天的精英Les pauvres...可怜的家伙Amuse-toi bien en classe.好了,祝你在学校里过的愉快La cloche a sonné...铃声就要响了美国明天的精英Les jeunes espritsenthousiastes de demain...Ne pourrait-on en garderune d'ouverte, Professeur ?教授,能开一个窗户吗?Il fait une telle chaleur, Monsieur.先生,真的很热如果我连我自己的声音都听不见V otre confort vient aprèsle fait que je puisse m'entendre parler.你们的舒适就只能排到第二位了个人来说Personnellement,je pense que cette classe constitueune perte de temps pour vous,我认为这堂课就是浪费……你们的——et ce qui est infiniment pire,...更糟糕的是——我的时间...pour moi.Quoiqu'il en soit, nous y sommes, alors... 然而,我们已经在这了你们听不听我不管votre présence n'est pas requise,vous avez le choixde faire ou de ne pas faire vos devoirs.你们喜欢就完成你们的作业我们开始吧Alors, commen?ons.小姐Mademoiselle !对不起!Excusez-moi !打扰一下!Bonjour !嗯,我们有一点小问题On a un léger problème.窗子关上的话,会特别热Il fait extrêmement chaud à l'intérieur, avec les fenêtres fermées.et c'est extrêmement bruyant,si on les laisse ouvertes.而打开的话,又会特别吵Alors je me demandaiss'il vous serait possible所以,我想知道你们能不能……je ne sais pas, peut-être de travaillersur un autre chantier pendant 45 minutes. 到其它地方施工……45分钟后再回来?Y a pas de problème.- 没问题- 非常感谢你们!Merci infiniment !Allez, on s'arrête. Chargez tout.赶紧把这清理一下Nettoyez un peu avant de partir.你们将会发现在多元微积分里。
Survey of Maneuvering Target Tracking—Part II Ballistic models target

A Survey of Maneuvering Target Tracking—Part II:Ballistic Target ModelsX.Rong Li and Vesselin P.JilkovDepartment of Electrical EngineeringUniversity of New OrleansNew Orleans,LA70148,USA504-280-7416,-3950(fax),xli@,vjilkov@AbstractThis paper is the second part in a series that provides a comprehensive survey of the problems and techniques of tracking maneuvering targets in the absence of the so-called measurement-origin uncertainty.It surveys motion models of ballistictargets used for target tracking.Models for all three phases(i.e.,boost,coast,and reentry)of motion are covered.Key Words:Target Tracking,Maneuvering Target,Dynamics Model,Ballistic Target,Survey1IntroductionA survey of dynamics models used in maneuvering target tracking has been reported in[1].It,however,does not cover motion models used for tracking ballistic targets(BT),that is,ballistic missiles,decoys,debris,and satellites.The primary reason for this omission is that these models possess many distinctive features that differ vastly from those covered in[1].To supplement[1],a survey of these models is presented in this paper.To our knowledge,such a survey is not available in the literature.Measurement models are surveyed in Part III[2].The entire trajectory of a BT,from launch to impact,is commonly divided into three basic phases[3,4]:boost1,ballistic (also known as coast),and reentry.The boost phase of motion is the powered,endo-atmosphericflight,which lasts from launch to thrust cutoff or burnout.It is followed by the ballistic phase,which is an exo-atmospheric,free-flight motion, continuing until the Earth’s atmosphere is reached again.The atmospheric reentry begins when the atmospheric drag becomes considerable and endures until impact.Target dynamics during the different phases are substantially different.A succinct ouline of the main dynamic phases is given in[5].The boost phase is characterized by a large(primarily axial)thrust acceleration,which in the case of rocket staging is subject to abrupt,jump-wise changes.The effects of the atmospheric drag and the Earth’s gravity are also essential in this phase.After the boost(i.e.,during the post-boost),drag is no longer present and the level of thrust becomes low or vanishes.During the exo-atmospheric ballistic phase the motion is governed essentially by the Earth’s gravity only—the trajectory is more predictable,still,small re-targeting maneuvers are possible.The reentry phase features a rapid drag deceleration with possible lateral accelerations.Overall,a ballistic target has a less uncertain motion than many other types of powered vehicles,such as maneuvering air-craft or agile missiles:Most BTs follow aflight path that is to a large extent predetermined by the performance characteristics, specific for a target type,hence the name ballistic targets.Only some more advanced missiles can undergo small maneuvers, usually for re-targeting.However,this does not mean that the motion of a foreign target can be determined accurately.In fact,as vividly expressed in[4],tracking a foreign BT is likely to be“plagued”with a variety of uncertainties,including those concerning trajectory loft or depression,thrust profile management,target weight,propellant specific impulse,sensor bias, and atmospheric parameters.Many of these uncertainties stem from the uncertainty in the target/missile type,the principal uncertainty in modeling the motion of a foreign BT for the tracking purpose.Compared with[1],this survey is slightly more tutorial in nature for the benefit of the readers less familiar with the ballistics or aerodynamics.The same disclaimers as made in the Introduction section of[1]apply to this survey,including those on the restriction to point targets for temporal behaviors and the interrelationship between dynamics models and tracking algorithms.The reader should keep in mind that while there have been many extensive studies of BT tracking,not many Research supported by ONR Grant N00014-00-1-0677and NSF Grant ECS-9734285.1And possibly a post-boost phase,which involves small maneuvers.Signal and Data Processing of Small Targets 2001, Oliver E. Drummond, Editor,Proceedings of SPIE Vol. 4473 (2001) © 2001 SPIE · 0277-786X/01/$15.00559results have been published in the open literature.In other words,much of the BT information,particularly target-type specific information,such as motion profiles(or templates),is classified and not open to the general public.As a result,this survey covers only those dynamics models used for BT tracking in the open literature available to us.While some models covered are applicable to satellite tracking,the emphasis of the survey is on missile tracking.The rest of the paper is organized as follows.Sec.2provides background knowledge in ballistics and aerodynamics that is necessary to understand the BT motion models presented later.Motion models for the simplest phase,the ballisticflight, are covered in Sec.3.This is followed in Sec.4by a survey of the models for reentry vehicles.Sec.5then describes models for the boost phase,the most sophisticated phase.2PreliminariesIn this section,we provide necessary,rudimentary background information in aerodynamics and ballistics to help the reader understand the BT motion models presented in the subsequent sections.We hope this will make the text more system-atic and self-contained.2.1Coordinate SystemsThe coordinate systems(CS)commonly used in BT tracking are illustrated in Fig.1.Much more detailed information on coordinate systems can be found in e.g.[4,6,7,8,9,10].Fig.1:Coordinate SystemsThe Earth-centered inertial(ECI)CS isfixed in an inertial space(i.e.,fixed relative to the“fixed stars”).It is a right-handed system with the origin at the Earth center,axis pointing in the vernal equinox direction,axis pointing in the direction of the North pole.Its fundamental plane coincides with the Earth’s equatorial plane.The Earth-centered(Earth)fixed(ECF,ECEF,or ECR)CS also has its origin at the Earth center,its axis ,and fundamental plane coincident with the Earth’s equatorial plane.Its axes and,however, rotate with the Earth around the Earth’s spin axis as points to the prime meridian.The East-North-Up(ENU)CS has its origin at some point on the Earth surface or above it(usually at the location of a sensor).Its Up-axis is normal to the Earth’s reference ellipsoid,2usually defined by the geodetic latitude .The axes and are tangential to the Earth reference ellipsoid with pointing North and East.Another CS(not depicted in Fig.1),commonly used in BT tracking,is the radar face(RF)CS3[11,6].It can be defined from the local radar ENU-CS by two angles of rotation[6].For a phased array radar,the and axes of the RF-CS lie on the radar face,with axis along the intersection of the radar face with the local horizontal plane,and is along its normal 2Note that the local vertical direction differs from the radial axis.They coincide if a spherical Earth model is used.3Note that it differs from the so-called radar reference CS,which is actually just an ENU-CS at radar site[11].Proc. SPIE Vol. 4473560(boresight)direction.Such a radar measures the range and the direction cosines and. This nonorthogonal coordinate system is often referred to as the RUV-CS.In Fig.1,points and(i.e.,vectors and)denote target and sensor positions in the ECI-CS or ECF-CS,respectively.Vector defines the target position with respect to the sensor in the ENU-CS.Note that the velocity in the ECF-CS can be expressed in the ECI-CS as follows(1) where is the Earth rotation rate.The choice of a CS is a complex issue,depending on numerous factors and related with many elements of a tracking system[9,10].For more information,the reader is referred to[2].2.2Total AccelerationFor the tracking purpose,only the most substantial forces that may act on a BT are considered:thrust,aerodynamic forces (most notably,atmospheric drag and possibly lift),the Earth’s gravity,and,depending on the CS used,possibly the Coriolis and centrifugal forces.Not all these forces are present at a level that affects significantly the motion of a BT in the different regimes of the trajectory.Specifically,for most tracking applications the significant forces in difference phases are Boost:Thrust,drag,and gravity.Coast:Gravity only.Reentry:Gravity,drag,and lift.The total acceleration of a BT,in the ECI-CS in a fairly general setting,can be decomposed as(2)where(),and denote the acceleration components induced by thrust,aerodynamic forces(drag and lift), and gravity,respectively.Note that the acceleration here is expressed in the ECI-CS(i.e.,)in the absolute sense. If the target motion is considered within a framefixed to the Earth(e.g.,the ENU-CS),then its relative total acceleration (defined as for)should be corrected with the accelerations induced by the Earth’s rotation[3,4]:(3)Coriolis Centrifugalwhere is the Earth’s angular velocity vector.The terms and represent the accelerations due to the Coriolis4and centrifugal forces,respectively.Clearly,the entire end-to-end motion of a BT can be modeled by a“wide-band”dynamic model(e.g.,nearly constant velocity,acceleration,jerk,or Singer model[1])capable of covering the whole range of possible trajectories.Most models developed for the boost phase,the most sophisticated of all three phases,can serve this purpose.This is,however,rather crude and not in common use.What is more natural and rational,as well as common practice,is to develop different models specific for each trajectory portion that more fully exploit the inherent characteristics of the portion.We survey next dynamics models for the distinct regimes of a BT proposed/used in the available literature.The motion phases are ordered with respect to their sophistication levels,rather than to their chronology in the trajectory.4The Coriolis force is an equivalent force induced by the rotation of the Earth that causes the Coriolis effect—the apparent deflection of a body in motion with respect to the Earth,as seen by an observer on the Earth.Proc. SPIE Vol. 44735613Ballistic(Coast)FlightAfter the thrust cut-off or burnout and leaving the atmosphere a BT enters the free-flight portion of its trajectory—no thrust is applied and no drag is experienced.The motion may be considered governed by the gravity alone—other factors (e.g.,perturbations)are neglected.By(2)the total acceleration is and thus obtaining a coast model of the BT amounts to selection of an appropriate gravity model.3.1Gravity ModelsFlat Earth Model.The simplest possible model of gravity assumes aflat,nonrotating Earth.In this model,the gravity acting on the target in the ENU-CS is,where is the constant gravitational acceleration of the Earth.The boost and reentry portions of a BT trajectory are relatively short in range compared to the Earth radius and take place in a close vicinity of the Earth.Thus a model offlat,non-rotating Earth may be adequate,particularly in view of the presence of other more dominating uncertainties.On the contrary,the coastflight comprises much greater ranges usually and thus accounting for the Earth sphericity(and even ellipticity)and rotation is essential.Spherical Earth Model.Assume that the Earth and the BTs can be represented as point masses at their geocenters5and that the gravitational forces of the moon(and other stars)can be neglected.Since the target has a negligible mass relative to the Earth’s mass,the gravitational acceleration is the solution of a so-called restricted two-body problem,obtained by the Newton’s inverse-square gravity law[4]as(4) where is the vector from the Earth center to the target,is its length,is the unit vector in the direction of ,and is the Earth’s gravitational constant6.This inverse-square gravitational acceleration model(4)is classical and has been commonly used in a variety of BT tracking applications[12,13,14,15,16,17,18,19,9].It is attractive for its simplicity.It has been proven satisfactory for tracking of BTs over a short range and/or period,for example,as a model of the gravitational acceleration as an integral part of the total acceleration within a boost(boost-to-coast)motion model[15,16,19,9]or for track initiation purposes [17].However,its underlying assumptions are rather idealistic,especially the one that the Earth can be treated as a point mass.This may make it inadequate for other BT tracking applications,in particular,precision tracking of coast targets over a long time period or at a low data rate,such as the ballisticflight portion of a long-range missile or a satellite.Clearly, these simplifying assumptions becomes less accurate when the targets being tracked travel over a larger geographical region and a longer time period.Also,during the exo-atmospheric ballisticflight,gravity is either the only practical or at least the dominating acceleration acting on the targets and thus needs to be modeled more accurately.That is why the employment of more precise gravity models have been proposed.Ellipsoidal Earth Model.More accurate expressions for the gravitational acceleration can be obtained by replacing the above spherical Earth model with an ellipsoidal(or more precisely,spheroidal)Earth model.Such a more precise approx-imation—accounting for the Earth oblateness by including the second-order gravitational harmonic term of the Earth’s gravitationalfield model—is[4,11](5)where is the Earth’s equatorial radius,is a correction constant,and is the unit vector along(see Fig.1).,the best known Jeffery constant,represents the difference between the polar and equatorial moment of inertia.It quantifies the oblateness of the Earth because it is approximately equal to one third of the ellipticity of the Earth,hence also known as the oblateness term.This model is usually considered sufficiently accurate for most BT tracking applications[11],at a cost of considerable nonlinearity.5This holds if the Earth and the targets are spherically symmetric with an even distribution of their masses.6For the values of well-known constants used in this survey,the reader is referred to[4].Proc. SPIE Vol. 44735623.2Motion Models in ECI CoordinatesIn the ECI-CS,the target position and velocity vectors are and respectively.Clearly,a state-space model of a coast target with the state vector in the ECI-CS is(6)where is the gravitational acceleration given by,e.g.,(4)or(5).3.2.1Inverse-Square ModelIn this case,the acceleration part of the state-space model(6)is clearly described by the inverse-square model(4)in the ECI-CS as:with(7)A trajectory described by(6)with(7)is confined to a plane in the ECI-CS,called an orbital plane,and is a part of a conic orbit,governed by the Keplerian motion equation[4].For the BTs considered in this survey,this orbit is elliptical.A dynamics model is mainly used in target tracking for propagating the target state(i.e.,state prediction),known as the Kepler problem in astrodynamics,and covariance prediction.While the model of(6)with(7)is highly nonlinear,with it the state propagation can be done in an efficient manner,as outlined below.Given at time the(predicted)target state at time(with)is given by[4](8)(9)where,,and are known functions of.The variable is defined through its time derivative by and can be computed accurately and efficiently via the Newton iteration scheme for solving a so-called time-of-flight equation,as given below for the case of an elliptical orbit(i.e.,)[4]:1.Initialize2.RepeatUntilA useful program-like pseudocode7of the above algorithm for all conic(i.e.,elliptical,parabolic,and hyperbolic)trajec-tories can be found in[17],along with the computation of the Jacobian necessary for the extended 7With a few small typographical errors.Proc. SPIE Vol. 4473563Kalmanfiltering(EKF)[13,20].Explicit evaluation of the Jacobian by direct differentiation of(7)can be found in[14].For a comprehensive treatment of the underlying theoretical background and solutions to the Kepler prediction problem,the reader is referred to[4].3.2.2Model with CorrectionA refined model for the gravitational acceleration is based on the ellipsoidal Earth model(5).Note that andin the ECI-CS.Similar to(7),the acceleration part of the state-space model(6)has the following form[4,16]:with(10)This model is highly accurate.It was chosen as the coast model for a6-state EKF-based ballisticfilter in the ECI-CS implemented in a multiple-model tracking system developed in[16,5].However,as pointed out in[16],a model mismatch caused by moderate trajectory perturbations(due to,e.g.,maneuvers from countermeasure thrust)will lead to track diver-gence.This effect can be alleviated by introducing smallfictitious zero-mean process noise.This technique was used in[16] to adapt the model for the post-boost phase of the trajectory,where small maneuvers are involved.In the early work on BT(e.g.,satellite)tracking and in particular orbit determination,the target dynamics were usually considered to be deterministic(i.e.,without process noise).This often had led to divergence problems with the EKF[13]. Introducing afictitious process noise input is an effective means to account for such factors as model errors,neglected perturbations,nonlinearities,and computer roundoff errors.With an additional zero-mean process noise input,while state prediction is unaffected,its associated error covariance is amplified by the process noise covariance,thus reducing the possibility for the EKF to diverge.The price paid is a possible accuracy degradation of thefilter when the deterministic model is indeed adequate.This is closely related to the problem of noise identification and adaptivefiltering.See[13]and the brief surveys included in[21,22].The latest work along this line for tracking an orbital target can be found in[23], where is tuned adaptively using the most recent state estimate and covariance,as well as gravity-gradient model with the inverse-square law.Although a number of choices of have been proposed in the literature,remains a design parameter in practice,adjusted/tuned mostly based on engineering experience and intuition[11,24].3.3Motion Models in ENU CoordinatesIt is often preferable or necessary to formulate the BT motion in the natural sensor ENU coordinate system(Fig.1).For this reason,let,,and denote the target position,velocity,and acceleration in the ENU CS respectively.In this case the total acceleration involves the Coriolis and centrifugal terms as well as the gravitational acceleration:(11) withCoriolis andCentrifugal(12)where the vector and the Earth’s angular velocity vector are expressed in the ENU-CS(see, e.g.,[4]).During the powered-flight and reentry portions of a BT,where the target is in a close vicinity of the Earth and over a short period,the effect of the Coriolis and centrifugal forces may be neglected compared with other factors.For the ballistic portion,however,this effect on the BT motion relative to a non-inertial frame(e.g.,the ENU-CS)is usually significant and should be accounted for,in particular,in the case of long-range BTs(relative to the Earth’s radius).The target state-space model in the ENU-CS is clearly given by(13) where is the total acceleration,as a function of the position and velocity,specified by(11)and(12).Proc. SPIE Vol. 44735643.3.1Inverse-Square ModelWith this spherical Earth model,as shown in Fig.1,the vector from the Earth center to the target in the ENU-CS is,where is the known distance between the sensor and the Earth center,,is the Earth rotation rate,and are the known sensor latitude and altitude, respectively,and is the Earth center.Then it can be easily obtained from(12)that(14)(15)where(16) Thus the motion equation can be given in the following compact form(17)withAs for the models considered before,the standard EKF technique is directly applicable to this model in the ENU-CS.The linearization needed for error covariance propagation is sufficiently accurate for relatively short propagation time periods. For cases with high sampling rates,however,a simple yet accurate piecewise-constant acceleration model[18]could be used, discussed later.3.3.2Model with CorrectionWith an ellipsoidal Earth model in the sensor ENU-CS(see,e.g.,[10]),the vector from the Earth center to the target is,where.It is then straightforward to obtain the state-space form of the acceleration model in the sensor ENU-CS from(11)with(5)and(12)as(18)withand(19) The Jacobian of the model needed for the state prediction error covariance can be computed as[11](20)By including the correction term,this model clearly gives a more accurate approximation of the gravitational accelera-tion than the simper spherical Earth based models.A detailed discussion of its further conversion to the radar face CS and the corresponding RUV-CS and of its application in the EKF can be found in[11].A similar model with inverse-square gravity, an ellipsoidal Earth,and Coriolis and centrifugal acceleration terms in the radar face CS,along with the respective EKF with RUV measurements is discussed in[6].Proc. SPIE Vol. 44735653.3.3Piecewise-Constant Acceleration ModelThe idea of this approach,proposed in[18],is simple and natural.At each propagation time step,first sample (i.e.,compute)the continuous-time total acceleration process at the estimated point,that is,.For example,if(17)is used to model the total acceleration,we have(21)with.Then,assume that the target motion is uncoupled along,,and directions with a constant acceleration over the time period.This leads to the following discrete-time dynamics model,for example,along the direction(22)Likewise for and directions.This state-dependent piecewise-constant acceleration model is simple and straightforward for application.(22)is used for state prediction to get.For the propagation of the associated error covariance needed in,e.g.,Kalmanfiltering, it is proposed in[18]to add,in effect,component-uncoupled small noise to in the dynamics equation,where cov diag is a design parameter.As a result,what is proposed is a coordinate-“uncoupled,”state-dependent piecewise-constant nonzero-mean white-noise acceleration model,using the terminology of [20,1].There seems room for improvement here by a better way of adding noise or by adding temporally or spatially correlated noise,but at a price of increased complexity.Note that the motions along,,and directions described by this model are not actually uncoupled over a period of multiple time steps.The coupling arises from the dependence of the acceleration on the common target state in(21).This model has been reported in[18]to provide quite satisfactory performance—competitive with the EKF based on the fully coupled nonlinear inverse-square model—for several BT tracking scenarios with a high sampling rate(of Hz).We emphasize that the underlying idea of this approach is not restricted to coast models or the specific form of the acceleration model used:The piecewise-constant approximation can be directly applied in any situation where the total acceleration is available as a function of the position and velocity,such as those described in later sections.Its accuracy depends mainly on the sampling rate.Given the attractive simplicity and accuracy of this model,it seems worthwhile to try this model in conjunction with some more precise acceleration models,rather than(17)as originally proposed in[18].3.4Models in Other CoordinatesModels in other CSs(e.g.,radar face CS and spherical CS)can be obtained by conversion from the ENU-CS.For example, an explicit expression of the inverse-square model(neglecting the Coriolis and centrifugal forces)can be found in[25].4ReentryDuring the atmospheric reentry phase,two significant forces always act on the target:the Earth’s gravity and atmospheric drag.If maneuvers are possibly present,a third force—aerodynamic lift force—must also be considered.A reentry vehicle (RV)is referred to as a maneuvering RV(MaRV)if it involves maneuvers or ballistic RV(BRV)if it does not.Formally the total acceleration of an RV is given by(2)or(3)with a zero thrust acceleration term().Most RV motion models can be viewed as coast models plus additional but dominating terms to account for drag and possibly lift.In fact,during reentry aerodynamic forces(drag and possibly lift)are usually much greater than gravity:drag in excess ofcan be present over most of the RV trajectory below km,possibly as high as,and lift and other transverse loads can easily exceed.Also,the effect of the Coriolis and centrifugal forces and the Earth oblateness on the target motion is much smaller than during the coastflight.Wefirst describe the models for drag and lift,and then present models for the motion of a BRV and MaRV respectively. Note that[26]is a useful reference but is largely overlooked by the tracking community so far.Proc. SPIE Vol. 44735664.1Aerodynamic ForcesDrag.The drag force acts opposite to the target velocity vector relative to the atmosphere(e.g.,as seen in the ENU-CS or ECF-CS rather than the ECI-CS),with a magnitude proportional to the air density and the square of the target speed. Specifically,the drag induced acceleration is given by[3]for(23)where is the air density,denotes the target altitude,and is referred to as drag parameter,given by through the target mass,the reference area(defined as the target body cross-sectional area perpendicular to the velocity),and the so-called drag coefficient.The coefficient generally depends on and,but is sometimes assumed constant[9].The inverse of the drag parameter is known as the ballistic coefficient(BC).Consequently,for the tracking purpose, all uncertainties associated with the drag(other than the air density and velocity)are generally aggregated in(the dynamic models of)the drag parameter(or equivalently the ballistic coefficient)within the simple drag formulation(23).Lift.The lift force on an RV can be any direction in the plane perpendicular to the velocity vector[26].The presence of a lift force causes also a change in the target ballistic profile,which is accounted for by an additional drag,referred to as a residual or induced drag,acting along the negative velocity direction.Like the zero-lift drag,both lift and its induced drag have a magnitude proportional to.This factor quantifies the free-stream dynamic pressure[3]and is indispensable in the RV dynamic models.The complete aerodynamic acceleration is the vector sum of drag and lift:(24)where is the zero-lift drag component,given by(23),is the residual(lift induced)drag,and is the lift acceleration, perpendicular to the velocity vector.Air Density.The air density needed in the above models is usually approximated as an exponential function[27,26,28] or more accurately as a locally exponential function8of the target altitude[6,29,30]:(25) where and are known constants.See,e.g.,[30]for the parameters of the local exponential functions.More precise but nonanalytic models of the air density are available[26].4.2Ballistic(Nonmaneuvering)RV MotionIn simple terms,a nonmaneuvering reentry vehicle travels along a“purely”ballistic trajectory in the atmosphere,hence the name ballistic RV(BRV).Such an endo-atmospheric motion is governed by atmospheric drag,the Earth’s gravity,and depending on the CS,the Coriolis and centrifugal forces.Knowing the important role the drag parameter plays in the drag,it should come as no surprise that BRV motion models can be classified into two groups:with and without knowledge of the drag parameter.4.2.1Kinematic Models(Known Drag Parameter)If the drag parameter(or the BC)is(assumed)known,obtaining motion models of a BRV is straightforward by using a coast models of Sec.3and an additional drag model(23).Since the drag is a function of the relative velocity,it is more convenient to use some Earth-fixed CS(usually the ENU-CS),instead of the ECI-CS.Considerfirst the simplest case.Assuming aflat,nonrotating Earth model with a constant gravity9(i.e.,neglecting the Coriolis and centrifugal accelerations and treating the target as a mass-point with constant mass),it follows directly from(23) 8“Local”in the sense that the function is piecewise exponential,with parameters depending on the target height;that is,each piece corresponds to some layer of the atmosphere.9This could be acceptable for low-altitude targets.Proc. SPIE Vol. 4473567。
A Noval Modality for Uncertainty Measurement

1 INTRODUCTION
An important application of rough set theory is to induce classification or decision rules that indicate the decision class of an object based on its values on some condition attributes[1-3]. A decision class is a subset of a universe of objects in the field of three-way decision[4]. And it is approximated by a pair of definable sets with respect to a logic language[5]. With more profound and extensive research in decision theory, the advantages of three-way decision have been accepted by the rough sets and decision theory community[6].
- 27 /cst
TABLE 1. COST MATRIX OF THREE-WAY DECISION Action Buy Do not Buy Buy at a further shop Status Qualified No waste 200 dollar 2 miles Unqualified 150 dollar 50 dollar 2 miles
If the probability of qualified pants is greater(for example, the probability is equal or greater than α , α > β ), then buy the pants is a better choice; If the probability of qualified pants is lower(for example, the probability is equal or less than β , α > β ), do not buy the pants would be a better choice; If the probability of qualified pants is neither great or low(for example, the probability is greater than β and less than α , α > β ), then, both of the choices are unsatisfactory. That is, once he forcibly make two decisions, each one is unreasonable. Thus, Tom may has his third choice — buy the same pants at a further shop, and the cost is only the extra 2 miles distance. Indeed, that’s a typical solution of three-way decision.
非参数检验
n
n
利用秩的大小进行推断就避免了不知道背景分布 的困难。这也是大多数非参数检验的优点。 多数非参数检验明显地或隐含地利用了秩的性质; 但也有一些非参数方法没有涉及秩的性质。 常用的非参数检验的方法有:单样本检验、两独 立样本检验、多个独立样本检验、多个相关样本 检验和列联表某一变量各水平比例检验
H0成立,秩和统计量w随机出现在n1*(N+1)/2两 侧附近并且在T=n1(N+1)/2的地方呈对称分布, 在大多数情况下,T与n1 *(N+1)/2的差值较小 (纯属抽样误差),并且当n1和n2都较大时,T近 似服从均数为n1(N+1)/2,方差为 n1n2 ( N + 1) /12 的正态分布。 若H0非真时,大多数情况下,统计量T远离 n1(N+1)/2处并呈偏态分布。因此在H0成立的情 况下T远离它的期望值n1(N+1)/2为小概率事件, 可认为在一次抽样中是不会发生的,故当出现 这种情况时推断拒绝H0。
参数统计
(parametric statistics)
非参数统计
(nonparametric statistics)
如何判别数据分布类型
n
均数、中位数两者关系
n n n
已知总体分布类型,对 未知参数(μ、π)进行 统计推断 依赖于特定分布类 型,比较的是参数
对总体的分布类 型不作任何要求 不受总体参数的影响, 比较分布或分布位置 适用范围广;可用于任何类型 资料(等级资料,或 “>50mg >50mg” )
ti为第i个相同秩号的数据个数
(3)求秩和并确定检验统计量: 分别将试验组和对照组的秩次累加求和,得 TX=145,TY=180。设较小样本的样本例数 为n1,较大样本的样本例数为n2。取小样本 的秩和作为检验统计量。若n1=n2,可任取 一组的秩和作为统计量。本例n1=15,n2= 10,因此检验统计量T=TY=180。
Parametric and Non-Parametric
8 10 z 1 2 8 10 z 1 2
xx z s
• On the tables for z =1 we get 0.3413. Then z = = 0.6826. This means that the probability of X assuming a value between 8 and 12 or P (8 < X < 12) IS 68.26%
Distributions
Normal Probability Distribution
• Characteristics of the normal probability distribution:
• Bell-shaped, single peak at the centre of the distribution. • The arithmetic mean, median and mode are equal and located in the centre of the distribution. Thus half the area under the normal curve is to the right of this centre point and the other half to the left of it. • It is symmetrical about the mean. • The distribution is asymptotic. The curve gets closer and closer to the X-axis but never actually touches it.
– subtract the mean of the data set from each observation – Divide each by the standard deviation
International Journal of Pattern Recognition and Artificial Intelligence c ○ World Scienti
AUTOMATIC CLASSIFICATION OF DIGITAL PHOTOGRAPHS BASED ON DECISION FORESTS
RAIMONDO SCHETTINI DISCo, University of Milano Bicocca, Via Bicocca degli Arcimboldi 8 Milano, 20126, Italy schettini@disco.unimib.it CARLA BRAMBILLA IMATI, CNR, Via Bassini 15 Milano, 20131, Italy carla@r.it CLAUDIO CUSANO ITC, CNR, Via Bassini 15 Milano, 20131, Italy DISCo, University of Milano Bicocca, Via Bicocca degli Arcimboldi 8 Milano, 20126, Italy cusano@r.it GIANLUIGI CIOCCA ITC, CNR, Via Bassini 15 Milano, 20131, Italy DISCo, University of Milano Bicocca, Via Bicocca degli Arcimboldi 8 Milano, 20126, Italy ciocca@r.it
Annotating photographs with broad semantic labels can be useful in both image processing and content-based image retrieval. We show here how low-level features can be related to semantic photo categories, such as indoor, outdoor and close-up, using decision forests consisting of trees constructed according to CART methodology. We also show how the results can be improved by introducing a rejection option in the classification process. Experimental results on a test set of 4500 photographs are reported and discussed. Keywords : CART, decision forest, digital images, image classification, low-level features.
传感器的simulation参数
英文回答:The accurate and reliable functioning of sensors in a virtual environment relies heavily on the meticulous configuration of simulation parameters. These pivotal parameters epass a wide array of factors including, but not limited to, the sensor's operational range, resolution, noise level, response time, power consumption, and environmental conditions. Through the deliberate manipulation of these parameters in the simulation, developers are able to meticulously assess the sensor's performance across varied scenarios and unearth potential issues that may impede real-world deployment. Notably, the adjustment of the operating range allows developers to simulate the sensor's responsiveness to objects situated at varying distances, thereby ascertaining its efficacy in diverse applications. Similarly, by fine-tuning the noise level, developers are able to replicate the potential impact of external factors on the sensor's readings and evaluate its resilience in environments characterized by high levels of noise.传感器在虚拟环境中的准确和可靠功能在很大程度上取决于模拟参数的精心配置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Parametric and Nonparametric Volatility Measurement *Torben G. Andersen a , Tim Bollerslev b , and Francis X. Diebold cJuly 2002__________________*This paper is prepared for Yacine Aït-Sahalia and Lars Peter Hansen (eds.), Handbook of Financial Econometrics ,Amsterdam: North Holland. We are grateful to the National Science Foundation for research support, and to Nour Meddahi, Neil Shephard and Sean Campbell for useful discussions and detailed comments on earlier drafts.a Department of Finance, Kellogg School of Management, Northwestern University, Evanston, IL 60208, and NBERphone: 847-467-1285, e-mail: t-andersen@bDepartments of Economics and Finance, Duke University, Durham, NC 27708, and NBERphone: 919-660-1846, e-mail: boller@ c Departments of Economics, Finance and Statistics, University of Pennsylvania, Philadelphia, PA 19104, and NBERphone: 215-898-1507, e-mail: fdiebold@Andersen, T.G., Bollerslev, T., and Diebold, F.X. (2005),"Parametric and Nonparametric Volatility Measurement,"in L.P. Hansen and Y. Ait-Sahalia (eds.),Handbook of Financial Econometrics. Amsterdam: North-Holland, forthcoming.Table of ContentsAbstract1. Introduction2. Volatility Definitions2.1. Continuous-Time No-Arbitrage Pricing2.2. Notional, Expected, and Instantaneous Volatility2.3. Volatility Models and Measurements3. Parametric Methods3.1. Discrete-Time Models3.1.1. ARCH Models3.1.2. Stochastic Volatility Models3.2. Continuous-Time Models3.2.1. Continuous Sample Path Diffusions3.2.1. Jump Diffusions and Lévy Driven Processes4. Nonparametric Methods4.1. ARCH Filters and Smoothers4.2. Realized Volatility5. ConclusionReferencesABSTRACTVolatility has been one of the most active areas of research in empirical finance and time series econometrics during the past decade. This chapter provides a unified continuous-time, frictionless, no-arbitrage framework for systematically categorizing the various volatility concepts, measurement procedures, and modeling procedures. We define three different volatility concepts: (i) the notional volatility corresponding to the ex-post sample-path return variability over a fixed time interval, (ii) the ex-ante expected volatility over a fixed time interval, and (iii) the instantaneous volatility corresponding to the strength of the volatility process at a point in time. The parametric procedures rely on explicit functional form assumptions regarding the expected and/or instantaneous volatility. In the discrete-time ARCH class of models, the expectations are formulated in terms of directly observable variables, while the discrete- and continuous-time stochastic volatility models involve latent state variable(s). The nonparametric procedures are generally free from such functional form assumptions and hence afford estimates of notional volatility that are flexible yet consistent (as the sampling frequency of the underlying returns increases). The nonparametric procedures include ARCH filters and smoothers designed to measure the volatility over infinitesimally short horizons, as well as the recently-popularized realized volatility measures for (non-trivial) fixed-length time intervals.1 See, for example, Bollerslev, Chou and Kroner (1992).-1-1. INTRODUCTIONSince Engle’s (1982) seminal paper on ARCH models, the econometrics literature has focused considerable attention on time-varying volatility and the development of new tools for volatility measurement, modeling and forecasting. These advances have in large part been motivated by the empirical observation that financial asset return volatility is time-varying in a persistent fashion, across assets, asset classes, time periods, and countries.1 Asset return volatility,moreover, is central to finance, whether in asset pricing, portfolio allocation, or riskmanagement, and standard financial econometric methods and models take on a very different,conditional , flavor when volatility is properly recognized to be time-varying.The combination of powerful methodological advances and tremendous relevance in empirical finance produced explosive growth in the financial econometrics of volatility dynamics, with the econometrics and finance literatures cross-fertilizing each other furiously. Initial developments were tightly parametric, but the recent literature has moved in less parametric, and even fully nonparametric, directions. Here we review and provide a unified framework for interpreting both the parametric and nonparametric approaches.In section 2, we define three different volatility concepts: (i) the notional volatilitycorresponding to the ex-post sample-path return variability over a fixed time interval, (ii) the ex-ante expected volatility over a fixed time interval, and (iii) the instantaneous volatility corresponding to the strength of the volatility process at a point in time.In section 3, we survey parametric approaches to volatility modeling, which are based on explicit functional form assumptions regarding the expected and/or instantaneous volatility. In the discrete-time ARCH class of models, the expectations are formulated in terms of directlyobservable variables, while the discrete- and continuous-time stochastic volatility models both involve latent state variable(s).In section 4, we survey nonparametric approaches to volatility modeling, which are generally free from such functional form assumptions and hence afford estimates of notional volatility that are flexible yet consistent (as the sampling frequency of the underlying returns increases). The nonparametric approaches include ARCH filters and smoothers designed to measure the volatility over infinitesimally short horizons, as well as the recently-popularized realized volatility measures for (non-trivial) fixed-length time intervals.We conclude in section 5 by highlighting promising directions for future research.2. VOLATILITY DEFINITIONSHere we introduce a unified framework for defining and classifying different notions of return volatility in a continuous-time no-arbitrage setting. We begin by outlining the minimal set of regularity conditions invoked on the price processes and establish the notation used for the decomposition of returns into an expected, or mean, return and an innovation component. The resulting characterization of the price process is central to the development of our different volatility measures, and we rely on the concepts and notation introduced in this section throughout the chapter.2.1. Continuous-Time No-Arbitrage Price ProcessesMeasurement of return volatility requires determination of the component of a given price increment that represents a return innovation as opposed to an expected price movement. In a discrete-time setting this identification may only be achieved through a direct specification of the conditional mean return, for example through an asset pricing model, as economic principles impose few binding constraints on the price process. However, within a frictionless continuous-time framework the no-arbitrage requirement quite generally guarantees that the return innovation is an order of magnitude larger than the mean return. This result is not only critical to the characterization of arbitrage-free continuous-time price processes, but it also has important implications for the approach one may employ for measurement and modeling of volatility over short intradaily return horizons.We take as given a univariate risky logarithmic price process p(t) defined on a complete probability space, (S,ö,P). The price process evolves in continuous time over the interval [0,T], where T is a (finite) integer. The associated natural filtration is denoted (öt )t0[0,T]fö, where the information set,öt , contains the full history (up to time t) of the realized values of the asset price and other relevant (possibly latent) state variables, and is otherwise assumed to satisfy the usual conditions. It is sometimes useful to consider the information set generated by the asset price history alone. We refer to this coarser filtration, consisting of the initial conditions and the history of the asset prices only, by (F t )t0[0,T]f F / F T , so that by definition, F t föt . Finally, we assume there is an asset guaranteeing an instantaneously risk-free rate of interest, although we shall not refer to this rate explicitly. Many more risky assets may, of course, be available but we explicitly retain a univariate focus for notational simplicity. The extension to the multivariate setting is conceptually straightforward as discussed in specific instances below. The continuously compounded return over the time interval [t-h,t] is thenr(t,h) = p(t) - p(t-h), 0#h#t#T .(2.1) We also adopt the following short hand notation for the cumulative return up to time t, i.e., the return over the [0,t] time interval:-2-r(t) / r(t,t) = p(t) - p(0), 0#t#T.(2.2)These definitions imply a simple relation between the period-by-period and the cumulative returns that we use repeatedly in the sequel:r(t,h) = r(t) - r(t-h), 0#h#t#T.(2.3)A maintained assumption throughout is that - almost surely (P) (henceforth denoted (a.s.) ) - the asset price process remains strictly positive and finite, so that p(t) and r(t) are well defined over [0,T] (a.s.). It follows that r(t) has only countably many jump points over [0,T], and we adopt the convention of equating functions that have identical left and right limits everywhere.Defining r(t-) / lim J6 t, J<t r(J) and r(t+) / lim J6 t, J>t r(J), uniquely determines the right-continuous, left-limit (càdlàg) version of the process, for which r(t)=r(t+) (a.s.), and the left-continuous, right-limit (càglàd) version, for which r(t)=r(t-) (a.s.), for all t in [0,T]. In the following, we assume without loss of generality that we are working with the càdlàg version of the various return processes and components.The jumps in the cumulative price and return process are then)r(t) / r(t) - r(t-), 0#t#T.(2.4) Obviously, at continuity points for r(t), we have )r(t) = 0. Notice also that, because there are at most a countably infinite number of jumps, a jump occurrence is unusual in the sense that we generically haveP( )r(t) … 0 ) = 0 ,(2.5)for an arbitrarily chosen t in [0,T]. This does not imply that jumps necessarily are rare. In fact, equation (2.5) is consistent with there being a (countably) infinite number of jumps over any discrete interval - a phenomenon referred to as an explosion. Jump processes that do not explode are termed regular. For regular processes, the anticipated jump frequency is conveniently characterized by the instantaneous jump intensity, i.e., the probability of a jump over the next instant of time, and expressed in units that reflect the expected (and finite) number of jumps per unit time interval.In the following, we invoke the standard assumptions of no arbitrage opportunities and a finite expected return. Within our frictionless setting, it is well known that these conditions imply that the log-price process must constitute a (special) semi-martingale (e.g., Back, 1991). This, in turn, affords the following unique canonical return decomposition (e.g., Protter, 1992). PROPOSITION 1 - Return Decomposition-3-Any arbitrage-free logarithmic price process subject to the regularity conditions outlined above may be uniquely represented asr(t) / p(t) - p(0) = µ(t) + M(t) = µ(t) + M c(t) + M J(t),(2.6) where µ(t) is a predictable and finite variation process, M(t) is a local martingale which may be further decomposed into M c(t), a continuous sample path, infinite variation local martingale component, and M J(t), a compensated jump martingale. All components may be assumed to have initial conditions normalized such that µ(0) / M(0) / M c(0) / M J(0) / 0, which implies that r(t) / p(t).Proposition 1 provides a unique decomposition of the instantaneous return into an expected return component and a (martingale) innovation. Over discrete intervals, the relation becomes slightly more complex. Letting the expected returns over [t-h,t] be denoted by m(t,h), equation (2.6) impliesm(t,h) / E[r(t,h)|öt-h ] = E[µ(t,h)|öt-h ] , 0<h#t#T,(2.7) whereµ(t,h) / µ(t) - µ(t-h) , 0<h#t#T,(2.8) and the return innovation takes the formr(t,h) - m(t,h) = ( µ(t,h) - m(t,h) ) + M(t,h) , 0<h#t#T.(2.9) The first term on the right hand side of (2.9) signifies that the expected return process, even though it is (locally) predictable, may evolve stochastically over the [t-h,t] interval.2If µ(t,h) is predetermined (measurable with respect to öt-h), and thus known at time t-h, then the discrete-time return innovation reduces to M(t,h) / M(t) - M(t-h). However, any shift in the expected return process during the interval will generally render the initial term on the right hand side of (2.9) non-zero and thus contribute to the return innovation over [t-h,t].Although the discrete-time return innovation incorporates two distinct terms, the martingale component, M(t,h), is generally the dominant contributor to the return variation over short intervals, i.e., for h small. In order to discuss the intuition behind this result, which we formalize in the following section, it is convenient to decompose the expected return process into a purely continuous, predictable finite variation part, µc(t), and a purely predictable jump part, µJ(t).2In other words, even though the conditional mean is locally predictable, all return components in the special semi-martingale decomposition are generally stochastic: not only volatility, but also the jump intensity, the jump size distribution and the conditional mean process may evolve randomly over a finite interval.-4-Because the continuous component, µc(t), is of finite variation it is locally an order of magnitude smaller than the corresponding contribution from the continuous component of the innovation term, M c(t). The reason is - loosely speaking - that an asset earning, say, a positive expected return over the risk-free rate must have innovations that are an order of magnitude larger than the expected return over infinitesimal intervals. Otherwise, a sustained long position (infinitely many periods over any interval) in the risky asset will tend to be perfectly diversified due to a Law of Large Numbers, as the martingale part is uncorrelated. Thus, the risk-return relation becomes unbalanced. Only if the innovations are large, preventing the Law of Large Numbers from becoming operative, will this not constitute a violation of the no-arbitrage condition (e.g., Maheswaran and Sims, 1993). The presence of a non-trivial M J(t) component may similarly serve to eliminate arbitrage and retain a balanced risk-return trade-off relationship.Analogous considerations apply to the jump component for the expected return process, µJ(t), if this factor is present. There cannot be a predictable jump in the mean - i.e., a perfectly anticipated jump in terms of both time and size - unless it is accompanied by large jump innovation risk as well, so that Pr()M(t) … 0) > 0. Again - intuitively - if there was a known, say, positive jump then this induces arbitrage (by going long the asset) unless there is offsetting (jump) innovation risk.3 Most of the continuous-time asset pricing literature ignores predictable jumps, even if they are logically consistent with the framework. One reason may be that their existence is fragile in the following sense. A fully anticipated jump must be associated with release of new (price relevant) information at a given point in time. However, if there is any uncertainty about the timing of the announcement so that it is only known to occur within a given minute, or even a few seconds, then the timing of the jump is more aptly modelled by a continuous hazard function where the jump probability at each point in time is zero, and the predictable jump event is thus eliminated. In addition, even if there were predictable jumps associated with scheduled news releases, the size of the predictable component of the jump is likely much smaller than the size of the associated jump innovation, so that the descriptive power lost by ignoring the possibility of predictable jumps is minimal. Thus, rather than modify the standard setup to allow for the presence of predictable (but empirically negligible) jumps, we follow the tradition in the literature and assume away such jumps.Although we will not discuss specific model classes at length until later sections, it may be useful to briefly consider two simple examples to illustrate the somewhat abstract definitions given in the current section.EXAMPLE 1: Stochastic Volatility Jump Diffusion with Non-Zero Mean Jumps3This point is perhaps most readily understood by analogy to a discrete-time setting. When there is a predictable jump at time t, the instant from t- to t is effectively equivalent to a trading period, say from t-1 to t, within a discrete-time model. In that setting, no asset can earn a positive (or negative) excess return relative to the risk-free rate over (t-1,t] without bearing genuine risk as this would otherwise imply a trivial arbitrage opportunity.A predictable price jump without an associated positive probability of a jump innovation works entirely analogous.-5-Consider the following continuous-time jump diffusion expressed in stochastic differential equation (sde) form,dp(t) = ( µ + $F2(t))dt + F(t) dW(t) + 6(t) dq(t) , 0#t#T,where F(t) is a strictly positive continuous sample path process (a.s.), W(t) denotes a standard Brownian motion, q(t) is a pure jump process with q(t)=1 corresponding to a jump at time t and q(t)=0 otherwise, while 6(t) refers to the size of the corresponding jumps. We assume the jump size distribution has a constant mean of µ6 and variance of F62. Finally, the jump intensity is assumed constant (and finite) at a rate 8 per unit time. In the notation of Proposition 1, we then have the return components,µ(t) = µc(t) = µ@ t + $I0t F2(s)ds + 8@ µ6@ t ,M c(t) = I0t F(s)dW(s) ,M J(t) = E0#s#t6(s) q(s) - 8@ µ6@ t .Notice that the last term of the mean representation captures the expected contribution coming from the jumps, while the corresponding term is subtracted from the jump innovation process to provide a unique (compensated) jump martingale representation for M J.EXAMPLE 2: Discrete-Time Stochastic Volatility (ARCH) ModelConsider the discrete-time (jump) process for p(t) defined over the unit time interval, p(t) = p(t-1) + µ + $F2(t) + F(t) z(t) , t = 1, 2, ..., T,where (implicitly),p(t+J) / p(t) ,t = 0, 1, ..., T-1,0 #J <1,and z(t) denotes a martingale difference sequence with unit variance, while F(t) is a (possibly latent) positive (a.s.) stochastic process that is measurable with respect to öt-1. Of course, in this situation the continuous-time no-arbitrage arguments based on infinitely many long-short positions over fixed length time intervals are no longer operative. Nonetheless, we shall later argue that the orders of magnitude of the corresponding terms in the decomposition in Proposition 1 remain suggestive and useful from an empirical perspective. In fact, we may still think of the price process evolving in continuous time, but the market being open and prices observed only at discrete points in time. In this specific model we have, for t = 1, 2, ..., T,µ(t) = µ@ t +$E s=1,...,t F2(s) ,-6-M(t) / M J(t) = E s=1,...,t F(s) z(s) .A final comment is in order. We purposely express the price changes and associated returns in Proposition 1 over a discrete time interval. The concept of an instantaneous return employed in the formulation of continuous-time models, that are given in sde form (as in Example 1 above), is pure short-hand notation that is formally defined only through the corresponding integral representation, such as equation (2.6). Although this is a technical point, it has an important empirical analogy: real-time price data are not available at every instant and, due to pertinent microstructure features, prices are invariably constrained to lie on a discrete grid, both in the price and time dimension. Hence, there is no real-world counterpart to the notion of a continuous sample path martingale with infinite variation over arbitrarily small time intervals (say, less than a second). It is only feasible to measure return (and volatility) realizations over discrete time intervals. Moreover, sensible measures can typically only be constructed over much longer horizons than given by the minimal interval length for which consecutive trade prices or quotes are recorded. We return to this point later. For now, we simply note that our main conceptualization of volatility in the next section conforms directly with the focus on realizations measured over non-trivial discrete time intervals rather than vanishing, or instantaneous, interval lengths.2.2. Notional, Expected, and Instantaneous VolatilityThis section introduces three distinct volatility concepts that serve to formalize the process of measuring and modeling volatility within our frictionless, arbitrage-free setting.By definition volatility seeks to capture the strength of the (unexpected) return variation over a given period of time. However, two distinct features importantly differentiate the construction of all (reasonable) volatility measures. First, given a set of actual return observations, how is the realized volatility computed? Here, the emphasis is explicitly on ex-post measurement of the volatility. Second, decision making often requires forecasts of future return volatility. The focus is then on ex-ante expected volatility. The latter concept naturally calls for a model that may be used to map the current information set into a volatility forecast. In contrast, the (ex-post) realized volatility may be computed (or approximated) without reference to any specific model, thus rendering the task of volatility measurement essentially a nonparametric procedure.It is natural first to concentrate on the behavior of the martingale component in the return decomposition (2.6). However, a prerequisite for observing the M(t) process is that we have access to a continuous record of price data. Such data are simply not available and, even for extremely liquid markets, microstructure effects (discrete price grids, bid-ask bounce effects, etc.) prevent us from ever getting really close to a true continuous sample path realization. Consequently, we focus on measures that represent the (average) volatility over a discrete time-7-interval, rather than the instantaneous (point-in-time) volatility.4 This, in turn, suggests a natural and general notion of volatility based on the quadratic variation process for the local martingale component in the unique semi-martingale return decomposition.Specifically, let X(t) denote any (special) semi-martingale. The unique quadratic variation process, [X,X]t , t0[0,T], associated with X(t) is then formally defined by[X,X]t / X(t)2 - 2 I0t X(s- ) dX(s), 0<t#T,(2.10)where the stochastic integral of the adapted càglàd process, X(s- ), with respect to the càdlàg semi-martingale, X(s), is well-defined (e.g., Protter, 1992). It follows directly that the quadratic variation, [X,X], is an increasing stochastic process. Also, jumps in the sample path of the quadratic variation process necessarily occur concurrent with the jumps in the underlying semi-martingale process, )[X,X] =()X)2.Importantly, if M is a locally square integrable martingale, then the associated (M2 - [M,M]) process is a local martingale,E[ M(t,h)2 - ( [M,M]t - [M,M]t-h ) | öt-h ] = 0, 0 < h # t # T.(2.11)This relation, along with the following well-known result, provide the key to the interpretation of the quadratic variation process as one of our volatility measures.PROPOSITION 2 - Theory of Quadratic VariationLet a sequence of possibly random partitions of [0,T], (J m ), be given s.t. (J m ) / {J m,j }j$0 , m = 1,2, ... where J m,0 #J m,1#J m,2# ... satisfy, with probability one, for m 64 ,J m,06 0 ; sup j$1J m,j6 T; sup j$0 (J m,j+1 - J m,j ) 6 0 .Then, for t 0 [0,T],lim m64{E j$1 (X(t v J m,j) - X(t v J m,j-1))2 } 6 [X,X]t ,where t v J/ min (t,J), and the convergence is uniform in probability.Intuitively, the proposition says that the quadratic variation process represents the (cumulative) realized sample path variability of X(t) over the [0,t] time interval. This observation, together4Of course, by choosing the interval very small, one may in principle approximate the notion of point-in-time volatility, as discussed further below.-8-with the martingale property of the quadratic variation process in (2.11), immediately point to the following theoretical notion of ex-post return variability.DEFINITION 1 - Notional VolatilityThe Notional Volatility over [t-h,t], 0<h # t # T, isL2(t,h)/ [M,M]t - [M,M]t-h= [M c,M c]t - [M c,M c]t-h + E t-h<s#t)M2(s) .(2.12) This same volatility concept has recently been highlighted in a series of papers by Andersen, Bollerslev, Diebold and Labys (2001a,b) and Barndorff-Nielsen and Shephard (2002a,b,c). The latter authors term the corresponding concept Actual Volatility.Under the maintained assumption of no predictable jumps in the return process, and noting that the quadratic variation of any finite variation process, such as µc(t), is zero, we also have L2(t,h)/ [r,r]t - [r,r]t-h= [M c,M c]t - [M c,M c]t-h + E t-h<s#t)r2(s) .(2.13) Consequently, the notional volatility equals (the increment to) the quadratic variation for the return series. Equation (2.13) and Proposition 2 also suggest that (ex-post) it is possible to approximate the notional volatility arbitrarily well through the accumulation of ever finely sampled high-frequency squared return, and that this approach remains consistent independent of the expected return process. We shall return to a much more detailed analysis of this idea in our discussion of nonparametric ex-post volatility measures in section 4 below.Similarly, from (2.13) and Proposition 2 it is evident that the notional volatility,L2(t,h), directly captures the sample path variability of the log-price process over the [t-h,t] time interval. In particular, the notional volatility explicitly incorporates the effect of (realized) jumps in the price process: jumps contribute to the realized return variability and forecasts of volatility must account for the potential occurrence of such jumps. It also follows, from the properties of the quadratic variation process, thatE[L2(t,h)|öt-h ] = E[M(t,h)2 |öt-h ] = E[M2(t)|öt-h ] - M2(t-h), 0<h#t #T.(2.14)Hence, the expected notional volatility represents the expected future (cumulative) squared return innovation. As argued in section 2.1, this component is typically the dominant determinant of the expected return volatility.For illustration, consider again the two examples introduced in section 2.1 above. Alternative more complicated specifications and issues related to longer horizon returns are considered in section 3.-9-EXAMPLE 1: Stochastic Volatility Jump Diffusion with Non-Zero Mean Jumps (Revisited) The log-price process evolves according todp(t) = ( µ + $F2(t))dt + F(t) dW(t) + 6(t) dq(t) , 0#t#T.The notional volatility is thenL2(t,h) = I0h F2(t-h+s) ds + E t-h<s#t62(s) .The expected notional volatility involves taking the conditional expectation of this expression. Without an explicit model for the volatility process, this cannot be given in closed form. However, for small h the (expected) notional volatility is typically very close to the value attained if volatility is constant. In particular, to a first-order approximation,E[L2(t,h)|öt-h ] .F2(t-h)· h + 8· h·( µ62 +F62 ) .[F2(t-h) + 8( µ62 +F62 ) ] · h,whilem(t,h) . [ µ + $ ·F2(t-h) + 8·µ6 ] · h .Thus, the expected notional volatility is of order h, the expected return is of order h (and the variation of the mean return of order h2 ), whereas the martingale (return innovation) is of the order h1/2, and hence an order of magnitude larger for small h.EXAMPLE 2: Discrete-Time Stochastic Volatility (ARCH) Model (Revisited)The discrete-time (jump) process for p(t) defined over the unit time interval isp(t) = p(t-1) + µ + $F2(t) + F(t) z(t) , t = 1, 2, ..., T.The one-period notional volatility measure is thenL2(t,1) = F2(t) z2(t),while, of course, the expected notional volatility isE[L2(t,1)|öt-1 ] =F2(t),and the expected return ism(t,1) = µ + $F2(t).-10-。