考研数学一概率论与数理统计公式整理

合集下载

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。

2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。

3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。

4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。

二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。

4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。

4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。

概率论与数理统计公式整理

概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。

其中概率论是研究随机事件发生的可能性或概率的科学。

而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。

本文将整理概率论与数理统计中常用的公式。

一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。

2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。

3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。

4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。

二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。

2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。

3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。

考研概率论与数理统计公式大全

考研概率论与数理统计公式大全

考研概率论与数理统计公式大全1.概率公式:-概率的加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-概率的乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)-全概率公式:P(B)=P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)-贝叶斯公式:P(Ai,B)=P(B,Ai)P(Ai)/(P(B,A1)P(A1)+P(B,A2)P(A2)+...+P(B,An)P(An))2.随机变量与分布:- 期望:E(X) = ∑(xP(X=x))或E(X) = ∫(xf(x)dx)- 方差:Var(X) = E[(X - E(X))^2] = E(X^2) - [E(X)]^2- 协方差:Cov(X, Y) = E[(X - E(X))(Y - E(Y))]- 标准差:SD(X) = sqrt(Var(X))-二项分布:P(X=k)=C(n,k)p^k(1-p)^(n-k)- 泊松分布:P(X = k) = (lambda^k)e^(-lambda) / k!- 正态分布:P(X = x) = (1 / (sqrt(2*pi)*sigma)) * e^(-(x-mu)^2 / (2*sigma^2))3.估计与检验:-极大似然估计:L(θ)=∏(f(x_i;θ))-似然比检验:λ=L(θ)/L(θ0)- 估计的无偏性:E(θ_hat) = θ- 估计的有效性:Var(θ_hat) ≤ Var(θ)- 中心极限定理:对于均值为μ、方差为σ^2的随机变量X,若样本容量n趋于无穷大,则样本均值X_bar的极限分布服从正态分布4.相关与回归:- 相关系数:r = Cov(X, Y) / (SD(X) * SD(Y))-简单线性回归方程:Y=β0+β1X+ε- 最小二乘估计:β1 = Cov(X, Y) / Var(X)- 线性回归预测:Y_hat = β0 + β1X5.抽样分布:- 样本均值分布:X_bar ~ N(μ, σ^2 / n)- 样本比例分布:p_hat ~ N(p, p(1-p) / n)-卡方分布:X^2~χ^2(k)-t分布:T~t(n)-F分布:F~F(m,n)以上是一些概率论与数理统计中常见的公式,希望对你的学习有所帮助。

概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结一、概率论公式:1.基本概率公式:对于随机试验E,事件A的概率可以表示为P(A)=事件A的样本点数/所有样本点数。

2.条件概率公式:对于事件A和事件B,若P(B)>,则事件A在事件B发生的条件下的概率可以表示为P(A,B)=P(A∩B)/P(B)。

3.全概率公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B有P(B)=Σ(P(Ai)×P(B,Ai))。

4.贝叶斯公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B,有P(Ai,B)=(P(B,Ai)×P(Ai))/Σ(P(B,Ai)×P(Ai))。

二、数理统计公式:1.期望:随机变量X的期望E(X)=Σ(Xi×P(Xi)),其中Xi为随机变量X的取值,P(Xi)为随机变量X取值为Xi的概率。

2. 方差:随机变量X的方差Var(X) = Σ((Xi - E(X))^2 ×P(Xi)),其中Xi为随机变量X的取值,E(X)为随机变量X的期望,P(Xi)为随机变量X取值为Xi的概率。

3. 协方差:随机变量X和Y的协方差Cov(X,Y) = E((X - E(X))(Y - E(Y))),其中E(X)和E(Y)分别为随机变量X和Y的期望。

4. 相关系数:随机变量X和Y的相关系数ρ(X,Y) = Cov(X,Y) / √(Var(X) × Var(Y)),其中Cov(X,Y)为随机变量X和Y的协方差,Var(X)和Var(Y)分别为随机变量X和Y的方差。

三、概率论与数理统计定理:1.大数定律:对于独立同分布的随机变量X1,X2,...,Xn,它们的均值X̄=(X1+X2+...+Xn)/n,当n趋向于无穷大时,X̄趋向于X的期望E(X)。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。

无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。

本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。

一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。

- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。

2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。

- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。

3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。

4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。

- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。

- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

第一章 概率论的基本概念定义: 随机试验E 的每个结果样本点组成样本空间S ,S 的子集为E 的随机事件,单个样本点为基本事件.事件关系:1.A ⊂B ,A 发生必导致B 发生.2.A B 和事件,A ,B 至少一个发生,A B 发生. 3.A B 记AB 积事件,A ,B 同时发生,AB 发生. 4.A -B 差事件,A 发生,B 不发生,A -B 发生. 5.A B=?,A 与B 互不相容(互斥),A 与B 不能同时发生,基本事件两两互不相容.6.A B=S 且A B=?,A 与B 互为逆事件或对立事件,A 与B 中必有且仅有一个发生,记B=A S A -=.事件运算: 交换律、结合律、分配率略.德摩根律:B A B A =,B A B A =.概率: 概率就是n 趋向无穷时的频率,记P(A). 概率性质: 1.P (?)=0.2.(有限可加性)P (A 1 A 2 … A n )=P (A 1)+P (A 2)+…+P (A n ),A i 互不相容.3.若A ⊂B ,则P (B -A)=P (B)-P (A). 4.对任意事件A ,有)A (1)A (P P -=.5.P (A B)=P (A)+P (B)-P (AB).古典概型: 即等可能概型,满足:1.S 包含有限个元素.2.每个基本事件发生的可能性相同. 等概公式:中样本点总数中样本点数S A )A (==n k P . 超几何分布:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=n N k n D N k D p ,其中ra C r a =⎪⎪⎭⎫ ⎝⎛. 条件概率: )A ()AB ()A B (P P P =. 乘法定理:)A ()A B ()AB C ()ABC ()A ()AB ()AB (P P P P P P P ==.全概率公式:)B ()B A ()B ()B A ()B ()B A ()A (2211n n P P P P P P P +++= ,其中i B 为S 的划分.贝叶斯公式: )A ()B ()B A ()A B (P P P P i i i =,∑==nj j j B P B A P A P 1)()()(或)()()()()()()(B P B A P B P B A P B P B A P A B P +=.独立性: 满足P (AB)=P (A)P (B),则A ,B 相互独立,简称A ,B 独立. 定理一: A ,B 独立,则.P (B |A)=P (B).定理二: A ,B 独立,则A 与B ,A 与B ,A 与B 也相互独立. 第二章 随机变量及其分布(0—1)分布:k k p p k X P --==1)1(}{,k =0,1 (0<p <1).伯努利实验:实验只有两个可能的结果:A 及A .二项式分布: 记X~b (n ,p ),kn kkn p p C k X P --==)1(}{. n 重伯努利实验:独立且每次试验概率保持不变.其中A 发生k 次,即二项式分布.泊松分布: 记X~π(λ),!}{k e k X P k λλ-==, ,2,1,0=k .泊松定理: !)1(lim k e p p C k kn k knn λλ--∞→=-,其中λ=np .当20≥n ,05.0≤p 应用泊松定理近似效果颇佳.随机变量分布函数: }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.连续型随机变量: ⎰∞-=xt t f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.概率密度性质:1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<21d )()()(}{1221x x x x f x F x F x X x P ;4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.均匀分布: 记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(bx a ab x f ;⎪⎩⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,,,10)(. 性质:对a ≤c <c +l ≤b ,有 指数分布:⎪⎩⎪⎨⎧>=-其它,,001)(x e x f x θθ;⎩⎨⎧>-=-其它,,001)(x e x F x θ. 无记忆性: }{}{t X P s X t s X P >=>+>. 正态分布: 记),(~2σμN X ;]2)(ex p[21)(22σμσπ--=x x f ;t t x F xd ]2)(ex p[21)(22⎰∞---=σμσπ.性质: 1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤μ+h };2.有最大值f (μ)=(σπ2)-1.标准正态分布: ]2exp[21)(2x x -=πϕ;⎰∞--=Φxt t x d ]2ex p[21)(2π.即μ=0,σ=1时的正态分布X ~N(0,1)性质:)(1)(x x Φ-=-Φ.正态分布的线性转化: 对),(~2σμN X有)1,0(~N X Z σμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F .正态分布概率转化:)()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;1)(2)()(}{-Φ=-Φ-Φ=+<<-t t t t X t P σμσμ.3σ法则: P =Φ(1)-Φ(-1)=68.26%;P =Φ(2)-Φ(-2)=95.44%;P =Φ(3)-Φ(-3)=99.74%,P 多落在(μ-3σ,μ+3σ)内. 上ɑ分位点: 对X~N(0,1),若z α满足条件P {X>z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点.常用 上ɑ分位点: 0.001 0.005 0.01 0.025 0.05 0.10 3.0902.5762.3261.9601.6451.282Y 服从自由度为1的χ2分布:设X 密度函数f X (x ),+∞<<∞-x ,若Y=X 2,则⎪⎩⎪⎨⎧≤>-+=000)]()([21)(y y y f y f y y f X XY ,,若设X ~N(0,1),则有⎪⎩⎪⎨⎧≤>=--00021)(221y y e y y f y Y ,,π定理:设X 密度函数f X (x ),设g (x )处处可导且恒有g ′(x )>0(或g ′(x )<0),则Y=g (X)是连续型随机变量,且有h (y )是g (x )的反函数;①若+∞<<∞-x ,则α=min{g (?∞),g (+∞)},β=max{g (?∞),g (+∞)};②若f X (x )在[a ,b ]外等于零,g (x )在[a ,b ]上单调,则α=min{g (a ),g (b )},β=max{g (a ),g (b )}.应用: Y=aX +b ~N(a μ+b ,(|a |σ)2).第三章 多维随机变量及其分布二维随机变量的分布函数:分布函数(联合分布函数):)}(){(),(y Y x X P y x F ≤≤= ,记作:},{y Y x X P ≤≤.),(),(),(),(},{112112222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<.F (x ,y )性质: 1.F (x ,y )是x 和y 的不减函数,即x 2>x 1时,F (x 2,y )≥F (x 1,y );y 2>y 1时,F (x ,y 2)≥F (x ,y 1). 2.0≤F (x ,y )≤1且F (?∞,y )=0,F (x ,?∞)=0,F (?∞,?∞)=0,F (+∞,+∞)=1. 3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x ,y ),即F (x ,y )关于x 右连续,关于y 也右连续. 4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>y 1,有P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0.离散型(X ,Y ):0≥ij p ,111=∑∑∞=∞=ij j i p ,ij yy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):v u v u f y x F yxd d ),(),(⎰⎰∞-∞-=.f (x ,y )性质: 1.f (x ,y )≥0.2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.y x y x f G Y X P G⎰⎰=∈d d ),(}),{(. 4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂.n 维: n 维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似.边缘分布: F x (x ),F y (y )依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数,F X (x )=F (x ,∞),F Y (y )=F (∞,y ). 离散型: *i p 和j p *分别为(X ,Y )关于X 和Y 的边缘分布律,记}{1i ij j i x X P p p ==∑=∞=*,}{1j ij i j y Y P p p ==∑=∞=*. 连续型:)(x f X ,)(y f Y 为(X ,Y )关于X 和Y 的边缘密度函数,记⎰∞∞-=y y x f x f X d ),()(,⎰∞∞-=x y x f y f Y d ),()(. 二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f . 记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y . 离散型条件分布律:jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{.*=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布:条件概率密度:条件分布函数:含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布: 若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布. 独立定义:若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的. 独立条件或可等价为:连续型:f (x ,y )=f x (x )f y (y );离散型:P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }.正态独立: 对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.n 维延伸: 上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.定理:设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则h (X 1,X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.Z=X+Y 分布: 若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为 ⎰∞∞-+-=y y y z f z f Y X d ),()(或⎰∞∞-+-=x x z x f z f Y X d ),()(.f X 和f Y 的卷积公式: 记⎰∞∞-+-==y y f y z f z f f f Y X Y X Y X d )()()(*⎰∞∞--=x x z f x f Y X d )()(,其中除继上述条件,且X 和Y 相互独立,边缘密度分别为f X (x )和f Y (y ).正态卷积:若X 和Y 相互独立且X ~N (μ1,σ12),记Y ~N (μ2,σ22),则对Z=X+Y 有Z ~N (μ1+μ2,σ12+σ22).1.上述结论可推广至n 个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布. 伽马分布:记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(t e t tαα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =: ⎰∞∞-=x xz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=xxzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x x z f x f x z f Y X XY d )()(1)(. 大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望: 简称期望或均值,记为E (X );离散型:k k k p x X E ∑=∞=1)(.连续型:⎰∞∞-=x x xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数).1.若X 是离散型,且分布律为P {X =x k }=p k ,则:k k k p x g Y E )()(1∑=∞=.2.若X 是连续型,概率密度为f (x ),则:⎰∞∞-=x x f x g Y E d )()()(.定理推广: 设Z 是随机变量X ,Y 的函数:Z =g (X ,Y )(g 是连续函数).1.离散型:分布律为P {X =x i ,Y =y j }=p ij ,则:ij j i i j p y x g Z E ),()(11∑∑=∞=∞=. 2.连续型:⎰⎰∞∞-∞∞-=y x y x f y x g Z E d d ),(),()(期望性质:设C 是常数,X 和Y 是随机变量,则:1.E (C )=C .2.E (CX )=CE (X ).3.E (X +Y )=E (X )+E (Y ). 4.又若X 和Y 相互独立的,则E (XY )=E (X )E (Y ).方差: 记D (X )或Var(X ),D (X )=Var(X )=E {[X -E (X )]2}.标准差(均方差): 记为σ(X ),σ(X )= .通式:22)]([)()(X E X E X D -=. k k k p X E x X D 21)]([)(-∑=∞=,⎰∞∞--=x x f x E x X D d )()]([)(2.标准化变量:记σμ-=x X *,其中μ=)(X E ,2)(σ=X D ,*X 称为X 的标准化变量. 0)(*=X E ,1)(*=X D .方差性质: 设C 是常数,X 和Y 是随机变量,则:1.D (C )=0. 2.D (CX )=C 2D (X ),D (X +C )=D (X ).3.D (X +Y )=D (X )+D (Y )+2E {(X -E (X ))(Y -E (Y ))},若X ,Y 相互独立D (X +Y )=D (X )+D (Y ). 4.D (X )=0的充要条件是P {X =E (X )}=1.正态线性变换: 若),(~2ii iN X σμ,i C 是不全为0的常数,则),(~22112211i i ni i i ni n n C C N X C X C X C σμ∑∑+++== .切比雪夫不等式:22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,)(2X D =σ,ε为任意正数.协方差:记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 与Y 的相关系数:)()(),Cov(Y D X D Y X XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).性质: 1.Cov(aX ,bY )=ab Cov(X ,Y ),a ,b 是常数.2.Cov(X 1+X 2,Y )=Cov(X 1,Y )+Cov(X 2,Y ). 系数性质:令e =E [(Y -(a +bX ))2],则e 取最小值时有)()1(]))([(2200min Y D X b a Y E e XY ρ-=+-=,其中)()(00X E b Y E a -=,)(),Cov(0X D Y X b =.1.|ρXY |≤1.2.|ρXY |=1的充要条件是:存在常数a ,b 使P {Y =a +bX }=1.|ρXY |越大e 越小X 和Y 线性关系越明显,当|ρXY |=1时,Y =a +bX ;反之亦然,当ρXY =0时,X 和Y 不相关. X 和Y 相互对立,则X 和Y 不相关;但X 和Y 不相关,X 和Y 不一定相互独立. 定义: k 阶矩(k 阶原点矩):E (X k ). n 维随机变量X i 的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n c c c c c c c c c 212222111211C , =E {[X i -E (X i )][X j -E (X j )]}. k +l 阶混合矩:E (X k Y l).k 阶中心矩:E {[X -E (X )] k }.k +l 阶混合中心矩: E {[X -E (X )]k [Y -E (Y )]l }.n 维正态分布:)}()(21ex p{det )2(1),,,(1T 221μX C μX C ---=-n n x x x f π ,T21T 21),,,(),,,(n n x x x μμμ ==μX .性质:1.n 维正态随机变量(X 1,X 2,…,X n )的每一个分量X i (i =1,2,…,n )都是正态随机变量,反之,亦成立. 2.n 维随机变量(X 1,X 2,…,X n )服从n 维正态分布的充要条件是X 1,X 2,…,X n 的任意线性组合l 1X 1+l 2X 2+…+l n X n 服从一维正态分布(其中l 1,l 2,…,l n 不全为零).3.若(X 1,X 2,…,X n )服从n 维正态分布,且Y 1,Y 2,…,Y k 是X j (j =1,2,…,n )的线性函数,则(Y 1,Y 2,…,Y k )也服从多维正态分布.4.若(X 1,X 2,…,X n )服从n 维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.第五章 大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(X k)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有则称序列Y1,Y2,…,Yn,…依概率收敛于a.记伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或0lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,X n ,…相互独立并服从同一分布,且E(X k)=μ,D(X k)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μ k,D(X k)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:样本方差:样本标准差:样本k阶(原点)矩:kinikXnA11=∑=,k≥1 样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n 的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,X n是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.χ2分布的分位点:对于0<α<1,满足αχχαχα==>⎰∞yyfnPn)(222d)()}({,则称)(2nαχ为)(2nχ的上α分位点.当n充分大时(n>40),22)12(21)(-+≈nznααχ,其中αz是标准正态分布的上α分位点.自由度为n 的t分布:记t~t(n),nYXt/=,其中X~N(0,1),Y~χ2(n),X,Y相互独立.h(t)图形关于t=0对称;当n充分大时,t分布近似于N(0,1)分布.t分布的分位点:对于0<α<1,满足ααα==>⎰∞t t hnttPnt)(d)()}({,则称)(ntα为)(nt的上α分位点.~ 近似的min Q1 M Q3 max由h (t )对称性可知t 1-α(n )=-t α(n ).当n >45时,t α(n )≈z α,z α是标准正态分布的上α分位点.自由度为(n 1,n 2)的F分布: 记F ~F (n 1,n 2),21n V n U F=,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1) F 分布的分位点:对于0<α<1,满足αψαα==>⎰∞y y n n F FP n n F ),(2121d )()},({,则称),(21n n F α为),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).定理一: 设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,则有),(~2n N X σμ,其中X 是样本均值.定理二:设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样本方差分别记为 X ,2S ,则有1.)1(~)1(222--n S n χσ;2.X 与2S 相互独立.定理三:设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样本方差分别记为X ,2S ,则有)1(~--n t nS X μ.定理四:设X 1,X 2,…,X n 1 与Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 X ,Y ,21S,22S,则有1.)1,1(~2122212221--n n F S S σσ.2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t n n S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2w w S S =. 第七章 参数估计定义: 估计量:),,,(ˆ21n X X X θ,估计值:),,,(ˆ21nx x x θ,统称为估计. 矩估计法:令)(ll X E =μ=li n i l X n A 11=∑=(k l ,,2,1 =)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X 均值μ及方差σ2都存在,则有 X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ. 最大似然估计法:似然函数:离散:);()(1θθi ni x p L =∏=或连续:);()(1θθi ni x f L =∏=,)(θL 化简可去掉与θ无关的因式项.θˆ即为)(θL 最大值,可由方程0)(d d=θθL 或0)(ln d d=θθL 求得. 当多个未知参数θ1,θ1,…,θk 时:可由方程组0d d =L i θ或0ln d d =L iθ(k i ,,2,1 =)求得. 最大似然估计的不变性:若u =u (θ)有单值反函数θ=θ(u ),则有)ˆ(ˆθu u=,其中θˆ为最大似然估计. 截尾样本取样: 定时截尾样本:抽样n 件产品,固定时间段t 0内记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量. 定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ).结尾样本最大似然估计: 定数截尾样本:设产品寿命服从指数分布X~e (θ),θ即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d t i ,寿命超过t m 的概率θm t m et tF -=>}{,则)(}){()(1i mi mn m m nt P t t F CL =-∏>=θ,化简得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:mt s m )(ˆ=θ,其中s (t m )=t 1+t 2+…+t m +(n -m )t m ,称为实验总时间. 定时截尾样本:与定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,mt s )(ˆ0=θ,. 无偏性: 估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. 有效性:),,,(ˆ211n X X X θ与),,,(ˆ212n X X X θ都是θ的无偏估计量,若)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效.相合性: 设),,,(ˆ21nX X X θθ的估计量,若对于任意0>ε有1}|ˆ{|lim =<-∞→εθθP n ,则称θˆ是θ的相合估计量. 置信区间:αθθθ-≥<<1)},,,(),,,({2121n n X X X X X X P ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态样本置信区间: 设X 1,X 2,…,X n 是来自总体X ~N (μ,σ2)的样本,则有μ的置信区间:枢轴量W W 分布 a ,b 不等式 置信水平 置信区间其中z α/2为上α分位点 θ置信区间的求解: 1.先求枢轴量:即函数W =W (X 1,X 2,…,X n ;θ),且函数W 的分布不依赖未知参数.如上讨论标注2.对于给定置信水平α-1,定出两常数a ,b 使P {a <W <b }=α-1,从而得到置信区间.(0-1)分布p 的区间估计:样本容量n >50时,⇒--∞→)1,0(~)1()(lim N p np np X n n {}⇒-≈<--αα1)1()(2z p np np X n P0)2()(222222<++-+X n p z X n p z n αα⇒若令22αz n a +=,)2(22αz X n b +-=,2X n c =,则有置信区间(a ac b b 2)4(2---,a ac b b 2)4(2-+-).单侧置信区间: 若αθθ-≥>1}{P 或αθθ-≥<1}{P ,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估 其他 枢轴量W 的分布置信区间单侧置信限一个正态总体μσ2已知ασμz nX +=,ασμz nX -=μ σ2未知αμt n S X +=,αμt nSX -= σ2μ未知2122)1(αχσ--=S n ,222)1(αχσS n -=两个正态总体 μ1-μ2 σ12,σ22 已知μ1-μ2 σ12=σ22=σ2 未知σ12/σ22μ1,μ2 未知ασσ-=1222122211F S S ,ασσF S S 122212221=单个总体X ~N (μ,σ2),两个总体X ~N (μ1,σ12),Y ~N (μ2,σ22).第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设. 第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显着性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显着水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0.正态总体均值、方差的检验法(显着性水平为α)原假设H 0备择假设H 1检验统计量拒绝域 1 σ2已知μ≤μ0μ>μ0z ≥z α μ≥μ0 μ<μ0 z ≤-z α μ=μ0μ≠μ0|z |≥z α/22 σ2未知μ≤μ0μ>μ0t≥tα(n-1) μ≥μ0μ<μ0t≤-tα(n-1) μ=μ0μ≠μ0|t|≥tα/2(n-1)3 σ1,σ2已知μ1-μ2≤δμ1-μ2>δz≥zαμ1-μ2≥δμ1-μ2<δz≤-zαμ1-μ2=δμ1-μ2≠δ|z|≥zα/24 σ12=σ22=σ2未知μ1-μ2≤δμ1-μ2>δt≥tα(n1+n2-2)μ1-μ2≥δμ1-μ2<δt≤-tα(n1+n2-2)μ1-μ2=δμ1-μ2≠δ|t|≥tα/2(n1+n2-2)5 μ未知σ2≤σ02σ2>σ02χ2≥χα2(n-1)σ2≥σ02σ2<σ02χ2≤χ21-α(n-1)σ2=σ02σ2≠σ02χ2≥χ2α/2(n-1)或χ2≤χ21-α/2(n-1)6 μ1,μ2未知σ12≤σ22σ12>σ22F≥Fα(n1-1,n2-1)σ12≥σ22σ12<σ22F≤F1-α(n1-1,n2-1)σ12=σ22σ12≠σ22F≥Fα/2(n1-1,n2-1)或F≤F1-α/2(n1-1,n2-1)7成对数据μD≤0 μD>0 t≥tα(n-1)μD≥0 μD<0 t≤-tα(n-1)μD=0 μD≠0 |t|≥tα-2(n-1)检验方法选择:主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X和Y之间存在一一对应关系,而3和4一般指X和Y相互对立,但针对同一实体.关系:置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显着水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。

概率论与数理统计 公式

概率论与数理统计 公式

概率论与数理统计公式概率论与数理统计是现代科学与工程领域中应用最广泛的数学分支之一。

概率论与数理统计涉及众多的公式和理论,是数据分析、预测和决策的重要工具。

在此,我们将介绍概率论与数理统计中常用的公式。

1. 概率计算公式概率计算是概率论中的基础。

以下是概率的定义和概率计算公式。

定义:事件A在随机试验中出现的可能性称为概率P(A)。

公式1:若事件A和事件B相互独立,则P(A∩B)=P(A)×P(B)。

公式2:若事件A和事件B不相互独立,则P(A∩B)=P(A)×P(B|A)。

公式3:若事件A和事件B互为对立事件,则P(A)+P(B)=1 。

公式4:全概率公式:P(B)=∑P(Ai)×P(B|Ai) 。

2. 随机变量和概率分布随机变量是概率论中的重要概念。

以下是随机变量和概率分布函数的定义和公式。

定义1:在随机试验中,对每个样本点都有一个对应的实数值,则这个实数值称为随机变量X。

定义2:X的概率分布函数F(x)定义为:F(x)=P(X≤x)。

公式5:二项分布的概率分布函数为:P(X=k)=C(n,k)p^k*q^(n-k) (其中n表示试验次数,k表示事件A 发生的次数,p表示单次事件A发生的概率,q=1-p )。

公式6:泊松分布的概率分布函数为:P(X=k)=(λ^k/k!)×e^-λ (其中λ是一个正实数)。

公式7:正态分布的概率分布函数为:f(x)=(1/√(2π)σ)×e^-(x-μ)²/(2σ²) (其中μ是分布的均值,σ²是分布的方差)。

3. 样本描述和参数估计样本描述和参数估计是数理统计中的基础。

以下是样本描述和参数估计的公式。

公式8:样本的均值:X=(x1+x2+…+xn)/n 。

公式9:样本的方差:S²=[(x1-X)²+(x2-X)²+…+(xn-X)²]/(n-1) 。

概率论与数理统计公式大全

概率论与数理统计公式大全

第1章随机事件及其概率第二章随机变量及其分布Ihl ttamitai'l例1.16设某人从一副扑克中(52张)任取13张,设A为 至少有一张红桃”,B 为恰有2张红桃”,张方块”,求条件概率P( B| A), P( B| C) 解 P(A)1 P(A)P(BA)P(AB) P(A)1 c;3CTG ;c3;C 13 C52C52C39—C13一C 13 C 13C 52 C 39—血39P(AB)P(C)C 13C 39 c ;3P(BC)5 26C13C 13C 2652P(B C )P ( BC ) P(C)C13 C 13 C 2613 --------- C 52C 5 C 8C13 C 39C13~ —C 522 6C 13 C 26C 8C39C 为恰有5 C 23C 3113T -某种动物出生后活到20岁的概率为0.7,活到25岁的概率为0.56,求现 年为20岁的这种动物活到25岁的概率.解 设A 表示事件 活到20岁以上”,B 表示 事件活到25岁以上”, P(A) 0.7 P(B) 0.56P(B A)P(AB) P(A)显然P(AB) 0.56 0.7P(B) 0.560.81例 1.21例1.21 某工厂生产的产品以 超过 4件,且具有如下的概率: 一批产品中的次品数 0概率 0.1 0.2现进行抽样检验,从每批中随机抽取 为该批产品不合格。

求一批产品通过检验的概率。

解设B 表示事件 “一批产品通过检验 品”100 1 2 0.4 0.2 件为一批,假定每一批产品中的次品最多不 3 0.1 10件来检验,若发现其中有次品,则认 ”,A (=0,1,234) 表示 ,贝U A 0 ,A 1 , A 2, A 3, A 4组成样本空间的一个划分, C 10C99 C 10C100P(A) 0.1P(B|") 1P(A) 0.2,P (B |A )0.900 P(A)'一批产品含有 0.4,P(B A 2)i 件次P(A 3) 0.2, P(B A 3)c 10崗 0.727 C 100P(A 4)0.1 , P(B A 4)C 10C 96C 10 C0.652C 1098C 101000.8094P ( A k )P ( B |A k ) k 0 顾客买到的一批合格品中,含次品数为0的概率是类似可以计算顾客买到的一 批合格品中,含次品数为 1、2、 3、 4件的概率分别约 为 0.221 、0.398 、0.179 、 0.080贝叶斯公式(Bayes)P(B) P (A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章随机事件及其概率
我们作了次试验,且满足
每次试验只有两种可能结果,发生或不发生;
次试验是重复进行的,即发生的概率每次均一样;
每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影
响的。

这种试验称为伯努利概型,或称为重伯努利试验。


表示每次试验发生的概率,
则发生的概率为,用
表示重伯努利试验中
出现次的概率,
,。

n A A n A A A n p A A q p =-1)(k P n n A )0(n k k ≤≤k
n k k
n n q p k P C -=)(n k ,,2,1,0 =
第二章随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
2
(
x
f)
dx
,
dxdy
)dx
x f X )()]2dy
y f Y )()]2
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验
31。

相关文档
最新文档