b样条曲线721讲义83120

合集下载

B样条曲线曲面基本理论

B样条曲线曲面基本理论

第七章 B样条曲线曲面基本理论
方法一
第七章 B样条曲线曲面基本理论
重要
方法一
第七章 B样条曲线曲面基本理论
重要
方法一
第七章 B样条曲线曲面基本理论
重要
方法二
第七章 B样条曲线曲面基本理论
重要
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论 2次B样条基函数
第七章 B样条曲线曲面基本理论 3次B样条基函数
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
பைடு நூலகம்
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
第七章 B样条曲线曲面基本理论
Bezier实现高速列车外形
作业2:
第一部分 自由曲面设计理论
第七章 B样条曲线曲面基本理论

6.4.B样条曲线

6.4.B样条曲线
j =0 n +1
未知新顶点的计算公式:
Pj1 = Pj , 1 Pj = (1 β )Pj 1 + β j Pj , P1 = P , j 1 j
βj = t tj t j + k 1 t j
j = 0,1,L , i k + 1 j = i k + 2,L , i r j = i r + 1,L , n + 1
P (t ) = ∑ Pi N i , k (t )
i=0 n
[t
j
, t j +1 (k 1 ≤ j ≤ n )
]
= =
i= j k j
∑ P N (t )
i i ,k
j
t ti t t Pi N i , k 1 + i + k N i +1, k 1 (t ) ∑ t t t i + k t i +1 i = j k +1 i + k 1 i
T 1 = [t 0 , t1 ,L , t i , t , t i +1 ,L , t n + k ]
这个新的节点矢量 T 1 决定了一组新的B样条基
N i1,k (t ) i = 0,1,L , n + 1
原B样条曲线可以用这组新 B样条基与未知新顶点 Pi1 表示出:
P(t ) = ∑ Pj1 N 1,k (t ) j
曲线如表示成三次Bezier曲线,则其控制顶点为:
2 Pj[1] (t j ) Pj[1]1 (t j ) Pj[1]1 (t j +1 ) Pj[2 ] (t j +1 )
如图6.4.7所示
图6.4.7 四阶B样条曲线转化成Bezier曲线

课件 计算机图形学 贝塞尔曲线及B样条

课件 计算机图形学 贝塞尔曲线及B样条

二 B样条曲线的数学表达式 1 通常,给定m+n+1个顶点Pi(i=0,1,2,…,m+n”),
可以定义m十1段n次的参数曲线为:
n
Pi,n (t) Pik • Fk,n (t)
(0 t 1)
k 0
式中:
Fk,n(t)为n次B样条基函数,也叫B样条分段混合函数。 其形式为:
C Fk,n
(t)
n
p(t) pi Bi,n (t)
(0 t 1)
i0
p(t) (1 t)3 p0 3t(1 t)2 p1 3t 2 (1 t) p2 t3 p3
其中混合函数分别为:
B0,3 = 1- 3t + 3t2 - t3 =
B1,3 = 3t - 6t2 + 3t3 =
B2,3 = 3t2 - 3t3 =
(二 )起始点与终止点切矢量的方向 通过对基函数求导,可以证明起始点与终止点的 切矢量与第1和第n(最后)条边一致(走向一致)。
基函数的导数:
B'i,n
(t)
n! i!(n
i)!
t(i 1
t)ni
'
Bi ,n
(t)
n! i!(n
i)!
t(i 1
t)ni
n! i·ti(1 1 t)ni (n i)t(i 1 t)ni1 i!(n i)!
贝塞尔曲 线
起始点
终止点
五 贝塞尔曲线的数学表达式:
Bezier曲线的数学基础:在第1个和最后一个端点之间进行
插值的多项式混合函数(调和函数)
它可以参用数方程表示如下:
n
p(t) pi Bi,n (t)
(0 t 1)

B样条基础解析

B样条基础解析

Bezier曲线的形状是通过一组多边折线(特征多边 形)的各顶点唯一地定义出来的。在这组顶点中: (1) 只有第一个顶点和最后一个顶点在曲线上; (2) 其余的顶点则用于定义曲线的导数、阶次和形 状; (3) 第一条边和最后一条边则表示了曲线在两端点 处的切线方向。
一、 Bé zier曲线的定义和性质
1. 定义
给定空间n+1个点的位置矢量Pi ( i=0,1,2,…,n ),则Bé zier曲线可定 义为: n P(t) Pi B i,n (t), t 0,1
i 0
其中,Pi(i=0,1, …,n)构成该Bé zier曲线的特征多边形,Bi,n(t)是n次 Bernstein基函数: n! i i B i,n (t) Cn t (1 t)n i t i (1 t)n i , (i 0,1,..., n) (n i )!i ! 其中,00=1,0!=1。 控制顶点 特征多边形
1 ti t ti 1 N i ,1 (t ) 0 Otherwise
t ti ti k t N i ,k (t ) N i ,k 1 (t ) N i 1,k 1 (t ) ti k 1 ti ti k ti 1
and t0 , t1 ,, tk 1 , tk ,, tn , tn1 ,, tn k 1 , tn k
(1) 正性
Bi,n (t) 0 (t (0,1), i 1,2, , n 1)
(2) 端点性质
1, i=0 Bi,n(0)= 1, i=n Bi,n(1)=
0, i≠0
0, i≠n
2. Bernstein基函数的性质
(3) 权性
B
i 0
n

b线样条

b线样条
Pm
P3
三次B样条曲线段
P0
P”(1) P”(0)
P4
同理,对于终点P(1)处的情形与此相应。如果在B特征多边形上 增加了一个顶点P4,那么P1P2P3P4又可定义一段新的三次B样条曲线。 因为新曲线段起点的有关数据和上一段曲线的终点的有关数据都只和 P1、P2、P3三点有关,所以该二段曲线在连接处的位置矢量,一阶切矢 和二阶切矢都应相等,即: P'1(1) = P'2(0) P''1(1) = P''2(0) 这就证明了,三次B样条曲线可以达到二阶连续。
P ' (0) P ' (1) 1 ( P2 P0 ) 2 1 ( P3 P1 ) 2
P ' ' ( 0 ) P0 2 P1 P2 ) ( P2 P1 ) ( P0 P1 ) P ' ' (1) P1 2 P2 P3 ) ( P3 P2 ) ( P1 P2 )
ti k ti ti k 1 ti 1
tk u t K 1
(权Ni,k(u) i=0,1,2,3,…n+1称为基函数,即调合函数)。
B样条曲线的定义
设Pi (i=0,1,2,3,…n) 为给定空间的n+1个顶点 (即B样条曲线特征多边形的n+1个顶点),则k次(k+1阶)的表
B样条曲线的性质: ●端点及连续性(扩展性): 如果对特征多边形 P0P1P2P3,增加一个顶点P4,则特征多边形 P1P2P3 P4生成的三次B样条曲线与P0P1P2P3生成 的三次B样条曲线在连接点的一阶和二阶导数 都是连续的。
●局部性: 三次B样条曲线只被相邻的4个顶点所 控制,而与其它顶点无关。当移动一个顶点时, 只对其中二段曲线有影响,并不对整段曲线有 影响。

B样条曲线----曲线曲面

B样条曲线----曲线曲面
赤峰学院计算机系 计算机图形学 08-09第二学期
B样条曲线的适用范围
对于特征多边形的逼近性
二次B样条曲线优于三次B样条曲线 三次Bezier曲线优于二次Bezier曲线 •
相邻曲线段之间的连续性
二次B样条曲线只达到一阶导数连续 三次B样条曲线则达到二阶导数连续

角点的修改对曲线形状的影响
Bezier曲线:修改一个角点将影响整条曲线的形状。
• 贝塞尔曲面表达式如下:
n m
P(u,v)=∑ ∑bi,jBi,n(u)Bj,m(v)
i=0 j=0
0≤u,v≤1
• 贝塞尔曲面中应用最广泛的是双3次贝塞尔曲面, 它由给出的4*4个网格点唯一决定.
赤峰学院计算机系 计算机图形学 08-09第二学期
一般称 Pij为 P(u , v) 的控制顶点,把由 Pi 0 , Pi1 , , Pim (i 0,1, , n) 和 P0 j , P , Pnj( j 0,1, , m) 组成的网格 1j , 称为 P(u , v) 的控制网格,记为{Pij } ,如图9.15所示。
赤峰学院计算机系 计算机图形学 08-09第二学期
在以上表达式中: Fk,n( t )为n次B样条基函数,也称B 样条分段混合函数。其表达式为:
1 nk j j n Fk ,n (t ) (1) Cn1 (t n k j ) n! j 0
n! C 式中: 0≤t ≤ 1 r ! ( n r )! k = 0, 1, 2, …, n
Q1
Q0
P0
Q2
赤峰学院计算机系
计算机图形学
08-09第二学期
• 四角点共线
若要使B样条曲线段之间切接入一段直线,可运用四 角点共线的方法。 Q5 Q1 Q2 P0 P2 P3

构造带形状参数的二次均匀b样条曲线

构造带形状参数的二次均匀b样条曲线

构造带形状参数的二次均匀b样条曲线在计算机图形学领域中,二次均匀B样条曲线(Quadratic uniform B-spline curve)是常见的一种曲线类型。

该曲线以若干个控制点和一个节点向量(Knot Vector)为基础进行构造,其中节点向量描绘了参数空间中曲线的结构特征。

但是,在实际应用中,我们经常需要在B样条曲线的基础上增加形状参数,以满足不同的需求。

下面将结合实例解释如何构造带形状参数的二次均匀B样条曲线。

一、基本概念1.1 B样条基函数B样条基函数(B-spline basis function)是构造B样条曲线的基础,它描述了曲线的形状特征。

对于二次均匀B样条曲线,其基函数为:N(i,2)(t)={(t-i+1)^2, i≤t≤i+12(t-i+2)(i-t)+1, i+1≤t≤i+2(i+2-t)^2, i+2≤t≤i+3其中i为基函数的下标,t为参数值。

1.2 节点向量节点向量(Knot Vector)是描述曲线参数空间结构的重要参数,它定义了曲线的节点位置和节点跨度。

对于二次均匀B样条曲线,其节点向量为:U={0,0,0,1,2,3,4,4,4}其中,0为第一次节点,4为最后一次节点。

二、构造带形状参数的二次均匀B样条曲线2.1 基本构造以五个控制点构造带形状参数的二次均匀B样条曲线为例:控制点:P0(0,0)、P1(1,1)、P2(2,0)、P3(3,1)、P4(4,0)首先,根据节点向量U和基函数N(i,2)(t)计算出基于控制点的曲线点序列:C (t) =∑( P(i) * N(i,2)(t) )其中i为控制点的下标。

2.2 带形状参数的构造为曲线增加形状参数,需要对节点向量U进行调整。

对于二次均匀B样条曲线,节点向量中每个节点对应着一个控制多边形的顶点,调整节点向量的位置可以改变多边形的形状,从而改变曲线的形状。

以U'={0,0,p,p,2,3,4,4,4}为例,其中p为形状参数。

B样条曲线

B样条曲线

Bezier曲面
Bezier曲面是Bezier曲线的扩展, Bezier曲面的边界线就是由四条Bezier曲 线构成的。三次Bezier曲线段由四个控制 点确定,三次Bezier曲面片则由4× 4 控制点确定。16个控制点组成一个矩阵:
Q00 Q 10 Q20 Q30
B=
Q01 Q 11 Q02 Q12
不易修改 由曲线的混合函数可 看出,其值在开区间 ( 0 , 1 ) 内均不为 零。因此,所定义之曲线在 ( 0 < t < 1) 的区间内的任何一点均要受到全部顶 点的影响,这使得对曲线进行局部修 改成为不可能。 (而在外形设计中,
局部修改是随时要进行的)
为了克服 Bezier 曲线存在的问题, Gordon 等人拓展了 Bezier曲线,就 外形设计的需求出发,希望新的曲线 要:易于进行局部修改;
P14
P04
P03 P02 P01
P11 P21
P31
P(0,v)
P10 P20
P41 P30
P00
P(u,0)
P40
图9.15 Bézier曲面的控制网格
Bézier曲面的矩阵表示是:
P(u, v) [J0,n (u) J1,n (u)
P00 P01
J
n,n
(u)]

P10
P11
角点共线的方法。
Q4
Q1
P1

P0
Q2
Q0
P2 Q3
• 四角点共线
若要使B样条曲线段之间切接入一段直线,可运用四
角点共线的方法。 Q5
Q1
Q2 。P1
P0
Q0
P2
P3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档