二元一次方程组导学案

合集下载

人教版七年级下册数学《二元一次方程组》导学案及课后练习

人教版七年级下册数学《二元一次方程组》导学案及课后练习


k
的值等于(
)
A.- 1
B. 1
C. 2
D.- 2
6
6
334.方程5x+2y=-9
与下列方程构成方程组的解为
x y
2, 1 2
的是(
)
A.x+2y=1 二、填空题
B.3x+2y= -8
C.5x+4y= -3
D.3x-4y= -8
|m-2|
5. 已知 方程(2m-6)x +(n-2)
yn2 3
1 x
1 y
9
B.
x y
y z
5 7
C.
x 1 3x 2
y
6
2.下列哪组数是二元一次方程组
x
y
2y 2x
10,
的解(
)
D.
x 2a 3x y
1 0
A.
x
y
4 3
B.
x
y
3 6
C.
x
y
2 4
D.
x
y
4 2
3.若方程
6kx-2y=8
有一组解
x y
3, 2,
6.【答案】
x
-2
-1
0
1
2
3
4
y① -6
-3
0
3
6
9
12
y②
-8 -9/2 -1 5/2
6
19/2 13
人教版七年级下册数学——二元一次方程组导学案及课后练习 导学案
1. 课题名称: 人教版七年级下册数学——二元一次方程组
2. 教学目标: (1)了解二元一次方程,二元一次方程组及其解的概念; (2)会判断一组数是不是某个方程组的解 3. 学习准备:

二元一次方程组导学案

二元一次方程组导学案

第五章 二元一次方程组§5.1认识二元一次方程导学案一、教材学情分析: (明确目标,导引学习方向!) 【学习目标】理解二元一次方程(组)及其解的概念, 能判别一组数是否是二元一次方程(组)的解【学习重点】掌握二元一次方程及二元一次方程组的概念,理解它们解的含义;判断一组数是不是某个二元一次方程组的解.【学习难点】从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想.二、课前准备:(课前热身,奠定学习基础!)一元一次方程的定义: 方程的解:情景一:阅读教材103页,回答下列问题:设老牛驮x 个包裹,小马驮y 个包裹。

老牛的包裹数比小马多2个,由此得方程 ,若老牛从小马背上拿来1个包裹,这时它们各有几个包裹?得方程: 情景二:阅读教材104页,回答下列问题:设他们中有x 个成年人,有y 个儿童,在题目的条件中,我们可以找到的等量关系为:(1)(2)由此我们可以得到方程 和 .三新课探究(设疑诱思,激发学习兴趣!)内容:一、二元一次方程概念:注意:这个定义有两个要求:1、含有 个未知数;2、所含未知数的项的最高次数是 次.练习:1、下列方程有哪些是二元一次方程:(1)093=-+y x ,(2)012232=+-y x ,(3)743=-b a ,(4)113=-y x ,(5)()523=-y x x ,(6)152=-n m . 2、如果方程13221=-+-n m m y x 是二元一次方程,那么m = ,n = .二、如()⎩⎨⎧-=+=-.121,2y x y x ⎩⎨⎧=-=+;03,332y x y x 二元一次方程组概念 :在方程组中的各方程中的同一个字母必须表示同一个对象.判断下列方程组是否是二元一次方程组:(1)⎩⎨⎧=+=-;1253,12y x y x (2)⎩⎨⎧=-=+;53,12y x y x (3)⎩⎨⎧=+=-;153,37z y y x (4)⎩⎨⎧==;2,1y x (5)⎪⎩⎪⎨⎧=+=-;1283,52y x y x (6)⎩⎨⎧=+=-.325,132b ab b a 三、 ,叫做这个二元一次方程的解.如x =6, y =2是方程x + y =8的一个解,记作⎩⎨⎧==2,6y x ;同样,⎩⎨⎧==3,5y x 也是方程8x y +=的一个解,同时⎩⎨⎧==3,5y x 又是方程5334x y +=的一个解. 二元一次方程组中 ,叫做二元一次方程组的解. 例如,⎩⎨⎧==3,5y x 就是二元一次方程组⎩⎨⎧=+=+3435,8y x y x 的解.练习:1.下列四组数值中,哪些是二元一次方程13=-y x 的解?(A )⎩⎨⎧==;3,2y x (B )⎩⎨⎧==;1,4y x (C )⎩⎨⎧==;3,10y x (D )⎩⎨⎧-=-=.2,5y x 2、二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 3、二元一次方程6=+y x 的正整数解为4、如果⎩⎨⎧==2,1y x 是⎩⎨⎧=-=+n y x m y x 3,2的解,那么m = ,n = .四.巩固练习: (相信自己,你是最棒的!)完成书105页随堂练习五.课堂小结:本节的知识点: (梳理盘点,相信你一定收获不小!)六、课后作业:106页,写在书上。

2.2《二元一次方程组》导学案

2.2《二元一次方程组》导学案

2.2 二元一次方程组导学案一、学习目标1.懂得什么叫二元一次方程组。

2.理解什么是二元一次方程组的解,学会用尝试的方法求出二元一次方程组的解。

二、回顾与学习1.小红买了面值为0.8元和1.5元的邮票共7张,刚好花了7元钱,求两种面值的邮票各多少张?分析:如果设面值0.8元的买了x张,面值1.5元的买了y张,(1)面值0.8元的买了x张共用去元。

面值1.5元的买了y张共用去元。

(2)根据两种邮票共7张可得方程。

(3)根据两种邮票共花了7元钱又程。

(4)两个方程中的未知数x是表示同一个量吗?y呢?(5)像这样的两个方程,我们把它合起来写成的方程组的形式。

2.在上题中得到的方程组中,整个方程组含有个未知数,且两个方程都是次方程,这样的方程组叫方程组。

3.(1)已知方程x+y=200,填写下表x …85 90 95 100 105 …y ……(2)已知方程y=x+10,填写下表x …85 90 95 100 105 …y ……(3)由上可知,既是方程x+y=200的解,又是方程y=x+10的解,所以是方程组的解。

三、基础巩固1.判断下列方程组是否是二元一次方程组的是()(A )⎩⎨⎧=+=+21z x y x (B) ⎩⎨⎧==+23x y x (C)⎩⎨⎧=-+6y x y x (D) ⎩⎨⎧==+12xy y x 2.方程组 ⎩⎨⎧-=--=+236y x y x 的解是( )(A ) ⎩⎨⎧==15y x (B )⎩⎨⎧==24y x (C ) ⎩⎨⎧-=-=15y x (D ) ⎩⎨⎧-=-=24y x 3.下列方程组中,解是 ⎩⎨⎧-==12y x 的方程组是( )(A ) ⎩⎨⎧=-=+12y x y x (B ) ⎩⎨⎧=+=-0232y x y x (C ) ⎪⎩⎪⎨⎧=-=-22102y x x (D ) ⎩⎨⎧=-=-023y x y x4.某年级共有246名学生,男生比女生的2倍少2人,设男生x 人,女生y 人,则下列方程组正确的是( )A.⎩⎨⎧+==+22246y x y x B⎩⎨⎧+==+22246x y y x C ⎩⎨⎧+==+22246y x y x D ⎩⎨⎧+==+22246x y y x 四、拓展提高1.已知 ⎩⎨⎧==32y x 是方程组⎩⎨⎧-=-=+51by ax y ax 的解,求a 、b 的值。

《二元一次方程组》导学案

《二元一次方程组》导学案
解:喜羊羊.因为若弄污的 x 的系数是 1,消去 x 后方程只含有一 个未知数,不是二元一次方程.
互动探究 2
已知 xm-1+8yn+2=10 是一个二元一次方程,则 m= 2 ,n= -1 . |a|-1 [变式训练]若方程 x +(a-2)y=2 是二元一次方程,求 a 的值.
解:因为 x|a-1|+(a-2)y=2 是二元一次方程, |a|-1 = 1, 所以 所以 a=-2. a-2 ≠ 0,
【归纳总结】1.使二元一次方程两边的值 相等 的两个
未知数 的值叫作二元一次方程的解. 无数个解.
2.一般情况下,一个二元一次方程有
问题探究 2
请你阅读教材“练习”前所有内容,解决下列问题.
1.你所写的方程①的解中,有使方程②2x+y=16成立的未知数的 值吗?你是怎么验证的?
有,x=6,y=4,代入方程②即可验证.
【方法归纳交流】这类问题实际是考查二元一次方程的几个 条件中的“
含有未知数的项的次数都是1
”,在求值过
程中还要考虑其他几个条件,如“未知数的系x = a, 若 y = b 是方程 2x+y=2 的解,则 8a+4b-3 的值为
5
.
互动探究 4
x = 2, 若关于 x,y 的方程组 2x-y = m, 的解是 试求 m、n 的值. y = 1 , x + my = n
第八章
二元一次方程组
8.1
二元一次方程组
1.知道二元一次方程、二元一次方程组的概念及其解的意义.
2.会判断两个未知数的值是否为二元一次方程(组)的解. 3.初步认识二元一次方程组在解决实际问题中的作用,体会数学 来源于生活、应用于生活的思想. 4.重点:二元一次方程(组)的概念,二元一次方程(组)的解.

二元一次方程组(导学案)

二元一次方程组(导学案)

第八章二元一次方程组导学案 8.1二元一次方程组导学目标:1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.导学导学重点:理解二元一次方程组的解的意义.导学导学难点:求二元一次方程的正整数解.导学过程:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程x+y=222x+y=40 表示.上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究:满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.x y上表中哪对x 、y 的值还满足方程②一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 例1 (1)方程(a +2)x +(b -1)y =3是二元一次方程,试求a 、b 的取值范围.(2)方程x ∣a ∣–1+(a -2)y =2是二元一次方程,试求a 的值. 例2 若方程x 2m –1+5y 3n –2=7是二元一次方程.求m 、n 的值 例3 已知下列三对值:x =-6 x =10 x =10 y =-9 y =-6 y =-1 (1) 哪几对数值使方程21x -y =6的左、右两边的值相等? (2) 哪几对数值是方程组 的解? 例4 求二元一次方程3x +2y =19的正整数解. 课堂练习:教科书第94页练习 作业布置:教科书第95页3、4、5题导学案 8.2 消元(第一课时)导学目标:1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想――“消元”.3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.导学重点:用代入消元法解二元一次方程组.导学难点:探索如何用代入法将“二元”转化为“一元”的消元过程. 导学过程:一、知识回顾1、什么是二元一次方程及二元一次方程的解?21x -y =6 2x +31y =-112、什么是二元一次方程组及二元一次方程组的解?二、提出问题,创设情境篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?在上述问题中,我们可以设出两个未知数,列出二元一次方程组.这个问题能用一元一次方程解决吗?三、讲授新课1、那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?2、提出问题:从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?归纳:基本思路:“消元”——把“二元”变为“一元”。

(完整word)导学案.1二元一次方程组(导学案)

(完整word)导学案.1二元一次方程组(导学案)

课题:8.1二元一次方程组(导学案)学习目标:1.知道二元一次方程、二元一次方程组和它的解的概念。

2、会检验一组数是不是某个二元一次方程组的解,并能找出一些简单二元一次方程组的解.一、课前回顾:1.含有_____个未知数,且未知数的次数都是______,等号两边都是的方程叫一元一次方程。

方程中“元”是指_______________,“次"是_______________________。

2.使一元一次方程___ __的未知数的值叫一元一次方程的解。

3.写出一个-元一次方程____________________,并指出它的解是_____________.二、课堂引入例题:在NBA篮球联赛中,比赛规则:每场比赛都要分出胜负,每队胜一场得2分,负一场得1分。

姚明所在的火箭队在10场比赛中得到16分,那么这个队胜负场数应分别是多少?你能用我们学过的一元一次方程方法解决吗?(如果能请列出方程)思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:的场数+的场数=总场数,场积分+场积分=总积分。

这两个条件可以用方程,表示。

三、自主探究1:阅读课本P88页内容,完成:(温馨提示:时间5分钟—6分钟)。

1、观察上面两个方程可看出,每个方程都含有未知数(x和y),并且含有未知数的项的都是,像这样的方程叫做二元一次方程.思考:在这个概念中应满足哪些条件?(二元一次方程: 2、问题中的x ,y 必须同时满足x +y =10 ① , 2x +y =16②我们把这两个方程合在一起,写成x +y =10 ①2x +y =16 ② 就组成了一个二元一次方程组.有 ,含有每个未知数的项的次数都是 ,并且一共有 方程组成的方程组叫做二元一次方程组。

思考:在这个概念中应满足哪些条件?(二元一次方程组: )【巩固练习一】1、判断下列方程哪些是二元一次方程,哪些不是?是的打“ ”,不是的打“ ” (1) 11x y +=( ) (2)311x π-=( ) (3)260x xy +=( ) (4)1327=+yx ( ) 2、判别下列各方程组是不是二元一次方程组,是的打“ ”,不是的打“ ” (1)⎩⎨⎧=+=+75243y x y x ( ) (2) ⎩⎨⎧=-=521q p pq ( )(3)⎩⎨⎧=++=23k m n m ( ) (4) ⎩⎨⎧=+=823155y x y ( )四、自主探究2:阅读课本P89页内容,完成:(温馨提示:时间5分钟—6分钟)使二元一次方程两边的值 。

《二元一次方程组》导学案

《二元一次方程组》导学案

二元一次方程组学习目标:1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

教学重、难点:1、二元一次方程(组)的含义;2、检验一对数是否是某个二元一次方程(组)的解;3、用一个未知数表示另一个未知数学习过程:一、基本概念1、一元一次方程:只含有____未知数,且未知数的次数都是____的方程。

ax=b(a≠0)2、方程的解:能使方程等号两边相等的_______的值。

3、二元一次方程:方程中含有______未知数,并且_______________的次数都是____。

ax+by=c(a≠0,b≠0)4、二元一次方程组:把具有__________的______二元一次方程用_______合在一起,就组成了一个二元一次方程组。

5、二元一次方程的解:一般地,使二元一次方程两边的值相等的______未知数的值,叫做二元一次方程的解。

二元一次方程有______个解。

6、二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解。

(能使方程组中两个方程等号两边都相等两个未知数的值。

)二元一次方程组有________个解。

二、自学、合作探究1、把3(x+5)=5(y-1)+3化成ax+by=c的形式为_____________。

2、方程3x+2y=6,有______个未知数,且未知数都是___次,因此这个方程是_____元_____次方程。

3、下列式子①3x+2y-1;②2(2-x)+3y+5=0;③3x-4y=z ;④x+xy=1;⑤y²+3y=5x ;⑥4x-y=0;⑦2x-3y+1=2x+5;⑧1x +1y =7中;是二元一次方程的有_________(填序号)4、若x²m-1+5y 3n-2m =7是二元一次方程,则m=______,n=_______。

(完整版)第五章二元一次方程组导学案

(完整版)第五章二元一次方程组导学案

第五章 二元一次方程组导学案§5.1 认识二元一次方程组班级: 姓名: 小组:【学习目标】 1.理解二元一次方程的定义和二元一次方程的解;2.会判断二元一次方程和二元一次方程的解; 3.会求简单的不定方程的解。

【学习重点】 1.会判断二元一次方程和二元一次方程的解。

2.会求简单的不定方程的解。

【学习过程】(一)学习准备: 1.含未知数的等式叫 ,如:312=+x2.若方程中 这样的方程叫 ,如:8743-=+x x3.满足方程左右两边未知数的值叫做方程的4.若2=x 是关于x 一元一次方程82=+ax 的解,则a =5.方程8=+y x 是一元一次方程吗? ;若不是,请你把它取名叫 方程。

(二)课堂探究:阅读教材老牛与小马分析:审题设老牛驮了x 小马驮了y 个包裹。

1.二元一次方程:像方程2=-y x 和)1(21-=+y x 等这类方程中,含有 个未知数,并且所含未知数的项的次数都是 的方程叫做 。

即时练习:下列方程是二元一次方程的是 ①312=+yx ;②015=-xy ;③22=+y x ④03=+-z y x ;⑤32=-y x ;⑥53=+x 2.二元一次方程的解:定义:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个 即时练习:(1)请找出是二元一次方程8=+y x 的解的是:①⎩⎨⎧==80y x ;②⎩⎨⎧==52y x ;③⎩⎨⎧=-=91y x(2)已知⎩⎨⎧-==21y x 是二元一次方程52=-y ax 的解,求a 的值。

3.二元一次方程组及方程组及二元一次方程组的解:定义:共含有 个未知数的两个 方程所组成的一组方程,叫做二元一次方程组。

即时练习:下列是二元一次方程组的是( )①⎩⎨⎧=-=+36y x y x ;②⎩⎨⎧==32y x ;③⎪⎩⎪⎨⎧==12y x y ;④⎩⎨⎧==32y xy ;⑤⎩⎨⎧=-=+43z x y x 。

定义:二元一次方程组中各个方程的 叫做这个二元一次方程组的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八(上)第五章二元一次方程组3.应用二元一次方程组——鸡兔同笼导学案
一、学习目标:
1.能分析简单问题中的数量关系,建立方程组解决问题。

2.经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界数量关系的有效数学模型,发展模型思想和应用意识。

二、例题分析:
“鸡兔同笼”题为:今有鸡兔同笼,上有三十五头, 下有九十四足, 问鸡兔各几何?
(1)“上有三十五头”的意思是什么?“下有九十四足”呢?
(2)你能根据(1)得出怎样的数量关系并列出方程组吗?变式练习:
蜻蜓有6条腿和两对翅膀,蝉有六条腿和1对翅膀,现这两种小虫共有108条腿和20对翅膀,则蜻蜓有多少只?蝉有多少只?
三、合作交流:
以绳测井:若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺. 绳长、井深各几何?
(1)“将绳三折测之,绳多五尺”,什么意思?
(2)“若将绳四折测之,绳多一尺”,又是什么意思?
变式练习:
用一根绳子环绕一棵大树。

若环绕大树三周,则绳子还多4尺;若环绕大树四周,则绳子又少3尺。

设这根绳子X尺,环绕大树一周需要y尺.则方程组为。

四、展示点拨:
1.今有牛五、羊二,直金十两。

牛二、羊五,直金八两。

牛、羊各直金几何?
题目大意是:5头牛、2只羊共价值10两“金”;2头牛、5只羊共价值8两“金”.问每头牛、每只羊各价值多少“金”?
2.某车间有工人54人,每人平均每天加工轴杆15个或轴承24个,一个轴杆与两个轴承配成一套.若分配x个工人加工轴杆,y个工人加工轴承,正好使每天加工的产品成套,则可列方程组为().
3.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,则方程组。

五、小结与收获:经过本节课的学习,你有哪些收获?
六、拓展训练:
张师傅在铺地板时:小明和小红在工地玩,小明用8块大小一样的长方形瓷砖恰好拼成一个大的长方形(如图),小红也用8块这种瓷砖却拼成出了一个正方形,但中间还留下一个2cm×2cm的小正方形(阴影部分).这时张师傅走过来看了看,对小明和小红说,根据你们拼出的图形,你们能求出这些长方形瓷砖的长和宽吗?。

相关文档
最新文档