七年级数学平行线的判定及性质(相交线与平行线)基础练习(含答案)
相交线与平行线(常考考点专题)(基础篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)

专题5.19 相交线与平行线(常考考点专题)(基础篇)(专项练习)一、单选题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角1.如图所示,∠1和∠2一定相等的是()A.B.C.D.2.下列四个图中,1∠互为邻补角的是()∠与2A.B.C.D.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段3.如图,直线AB,CD相交于点O,EO∠CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.如图,90∠=︒,点B到线段AC的距离指的是下列哪条线段的长度()AA .AB B .BC C .BD D .AD【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角 5.图中1∠与2∠是同位角的有( )A .1个B .2个C .3个D .4个6.如图,下列判断正确的是( )A .3∠与6∠是同旁内角B .2∠与4∠是同位角C .1∠与6∠是对顶角D .5∠与3∠是内错角【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离7.如图,P 为直线l 外一点,A ,B ,C 在l 上,且PB ∠l ,下列说法中,正确的个数是( )∠P A ,PB ,PC 三条线段中,PB 最短;∠线段PB 叫做点P 到直线l 的距离;∠线段AB 的长是点A 到PB 的距离;∠线段AC 的长是点A 到PC 的距离.A .1个B .2个C .3个D .4个8.如图,12l l ∥,AB CD ∥,2CE l ⊥,2FG l ⊥.则下列结论正确的是( ).A .A 与B 之间的距离就是线段ABB .AB 与CD 之间的距离就是线段AC 的长度C .1l 与2l 之间的距离就是线段CE 的长度D .1l 与2l 之间的距离就是线段CD 的长度【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法9.下列选项中,过点P 画AB 的垂线CD ,三角尺放法正确的是( )A .B .C .D .10.已知三角形ABC ,过AC 的中点D 作AB 的平行线,根据语句作图正确的是( )A.B.C.D.【考点六】相交线与平行线➽➼➵作图➻➼平移11.下列平移作图不正确的是()A.B.C.D.12.将如图图案剪成若干小块,再分别平移后能够得到∠,∠,∠中的()A.0个B.1个C.2个D.3个【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理13.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD l 于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A .两点确定一条直线B .两点之间,直线最短C .两点之间,线段最短D .垂线段最短14.下列说法中,正确的是( )∠两点之间的所有连线中,线段最短;∠过一点有且只有一条直线与已知直线垂直;∠平行于同一直线的两条直线互相平行;∠直线外一点到这条直线的垂线段叫做点到直线的距离.A .∠∠B .∠∠C .∠∠D .∠∠【考点八】相交线与平行线➽➼➵平行线的判定15.如图,下面哪个条件不能判断EF DC 的是( )A .12∠=∠B .4C ∠=∠ C .13180∠+∠=︒D .3180C ∠+∠=︒16.如图,下列结论不成立的是( )A .如果∠1=∠3,那么AB CD ∥B .如果∠2=∠4,那么AC BD ∥C .如果∠1+∠2+∠C =180°,那么AB CD ∥D .如果∠4=∠5,那么AC BD ∥17.在同一平面内,a ,b ,c 是直线,下列关于它们位置关系的说法中,正确的是( ) A .若a b ⊥,b c ⊥,则a c ⊥B .若a b ⊥,b //c ,则a //cC .若a //b ,b //c ,则a c ⊥D .若a //b ,b //c ,则a //c18.如图,将木条a ,b 与c 钉在一起,170=︒∠,250∠=︒,要使木条a 与b 平行,木条a 需顺时针旋转的最小度数是( )A .10︒B .20︒C .50︒D .70︒【考点九】相交线与平行线➽➼➵平行线的性质19.将一块直角三角板与两边平行的纸条如图所示放置,若155∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .65︒20.将一副直角三角板按如图所示的方式叠放在一起,若AC DE ∥.则BAE ∠的度数为( )A .85︒B .75︒C .65︒D .55︒【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系 21.如图,将一直角三角板与两边平行的纸条,如图所示放置,下列结论(1)12∠=∠;(2)34∠∠=;(3)2+4=90∠∠︒;(4)5290∠-∠=︒,其中正确的个数是( )A .1个B .2个C .3个D .4个22.如图,在五边形ABCDE 中,AE BC ,延长DE 至点F ,连接BE ,若∠A =∠C ,∠1=∠3,∠AEF =2∠2,则下列结论正确的是( )∠∠1=∠2 ∠AB CD ∠∠AED =∠A ∠CD ∠DEA .1个B .2个C .3个D .4个【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小 23.如图,直线a ,b 被直线c 所截,若a b ,∠1=50°,则∠2的度数是( )A .50°B .100°C .120°D .130°24.如图,AB CD ∥,AE 平分CAB ∠交CD 于点E .若50C ∠=︒,则AEC ∠的大小为( )A .55︒B .65︒C .70︒D .80︒【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 25.如图,AB CD ,则123∠+∠+∠等于( )A .90︒B .180︒C .210︒D .270︒26.如图,已知4490AB CD BAE E ∠=︒∠=︒∥,,,点P 在CD 上,那么EPD ∠的度数是( ).A .44°B .46°C .54°D .不能确定.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明 27.如图,给出下列条件.∠3=4∠∠;∠12∠=∠;∠4180BCD ∠+∠=︒,且4D ∠=∠;∠35180∠+∠=︒其中,能推出AD BC ∥的条作为( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠28.如图,若∠1=∠2,DE BC ∥,则∠FG DC ∥;∠∠AED =∠ACB ;∠CD 平分∠ACB ;∠∠1+∠B = 90°;∠∠BFG =∠BDC ,其中正确的结论是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用29.某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是( )A .第一次向左拐 30︒,第二次向右拐 30︒B .第一次向左拐 45︒,第二次向右拐 135︒C .第一次向左拐 60︒,第二次向右拐 120︒D .第一次向左拐 53︒,第二次向左拐 127︒30.如图,小刀的刀片上下是平行的,刀柄外形是一个直角梯形(下底挖去一个小半圆,则12∠+∠的度数为( )A .60︒B .75︒C .90︒D .不能确定【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题31.下列选项中,可以用来证明命题“若a >b ,则|a |>|b |”是假命题的反例是( )A .a =1,b =0B .a =-1,b =2C .a =-2,b =1D .a =1,b =-332.下列命题都是真命题,其中逆命题也正确的是( )A .若a b =,则22a b =B .若a b >,则22a b >C .若a b <,则22a b <D .若a b =±,则22a b =【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理33.下列说法正确的是()A.命题是定理,定理是命题B.命题不一定是定理,定理不一定是命题C.真命题有可能是定理,假命题不可能是定理D.定理可能是真命题,也可能是假命题34.下列定理中,没有逆定理的是()A.两直线平行,同位角相等B.全等三角形的对应边相等C.全等三角形的对应角相等D.在角的内部,到角的两边距离相等的点在角的平分线上【考点十七】平移➽➼➵性质35.如图,将周长为8的∠ABC沿BC方向平移1个单位得到∠DEF,则四边形ABFD 的周长为()A.6B.8C.10D.1236.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°【考点十八】平移➽➼➵应用37.如图所示是某酒店门前的台阶,现该酒店经理要在台阶上铺上一块红地毯,则这块红地毯至少需要()A.23平方米B.90平方米C.130平方米D.120平方米38.如图所示,在长为50米,宽为40米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是()A.50平方米B.40平方米C.90平方米D.89平方米二、填空题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角39.如图是一把剪刀的示意图,我们可想象成一个相交线模型,若∠AOB+∠COD=72°,则∠AOB=_______.40.如果两个角有一条公共边,它们的另一边互为____________,那么这两个角互为邻补角.图中∠1的邻补角有___________.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段41.如图,直线AB ,CD 相交于点O ,EO ∠AB 于点O ,∠EOD =50°,则∠BOC 的度数为_____.42.如图,ABC 中,CD AB ⊥,M 是AD 上的点,连接CM ,其中AC =10cm ,CM =8cm ,CD =6cm ,CB =8cm ,则点C 到边AB 所在直线的距离是__________cm .【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角43.如图,∠2的同旁内角是_____.44.如图:与FDB ∠成内错角的是______;与DFB ∠成同旁内角的是______.【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离45.如图,AD BC ∥,6BC =,且三角形ABC 的面积为12,则点C 到AD 的距离为________.46.已知A ,B ,C 三地位置如图所示,90C ∠=︒,4AC =,3BC =,则A 到BC 距离是______.若A 地在C 地的正东方向,则B 地在C 地的______方向.【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法47.如图,利用三角尺和直尺可以准确的画出直线AB∠CD ,下面是某位同学弄乱了顺序的操作步骤:∠沿三角尺的边作出直线CD ;∠用直尺紧靠三角尺的另一条边;∠作直线AB ,并用三角尺的一条边贴住直线AB ;∠沿直尺下移三角尺;正确的操作顺序应是:_____.48.如图,一束光线以入射角为50°的角度射向斜放在地面AB 上的平面镜CD ,经平面镜反射后与水平面成30°的角,则CD 与地面AB 所成的角∠CDA 的度数是_____.【考点六】相交线与平行线➽➼➵作图➻➼平移49.作图题:将如图的三角形ABC先水平向右平移4格,再竖直向下平移4格得到三角形DEF.观察线段AB与DE的关系是_____.50.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形变换称为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,则至少需要移动____格.【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理51.如图,点B,C在直线l上,且BC=6cm,△ABC的面积为18cm2.若P是直线l 上任意一点,连接AP,则线段AP的最小长度为_____cm.52.a、b、c是直线,且a∠b,b∠c,则________ .【考点八】相交线与平行线➽➼➵平行线的判定53.如图,点E在AC的延长线上,若要使AB CD,则需添加条件_______(写出一种即可)54.如图所示,请你写出一个条件使得12l l ∥,你写的条件是______.55.如图,∠1=30°,AB ∠AC ,要使AD BC ∥,需再添加的一个条件是____________.(要求:添加这个条件后,其它条件也必不可少,才能推出结论)56.如图,请你添加一个条件______,可以得到DE AC ∥.【考点九】相交线与平行线➽➼➵平行线的性质57.如图,AD 是△ABC 的角平分线,DE ∥AC ,DE 交AB 于点E ,DF ∥AB ,DF 交AC 于点F ,图中∠1与∠2的关系是_________.58.如图,把一张长方形纸条ABCD 沿EF 折叠,若50AEG ∠=︒,则EFG ∠=______°.【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系59.如图,已知AB DE ∥,且∠C =110°,则∠1与∠2的数量关系为__________________ .60.如图,已知AB ∠CD ,请直接写出下面图形中∠APC 和∠P AB 、∠PCD 之间的数量关系式_____.【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小61.如图,39AB CD AED ∠=︒∥,,C ∠和D ∠互余,则B ∠的度数为___________.62.将一个含有45°角的直角三角板如图所示放置,其中一个45°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若a//b ,∠2=∠15°,则∠3的度数为___________°【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 63.如图,已知1100∠=︒,2100∠=︒,370∠=︒,则4∠=______.64.如图,直线 l 1∠l 2,若∠1=40°,∠2 比∠3 大 10°,则∠4=____.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明65.如图,已知GF ∠AB ,∠1=∠2,∠B =∠AGH ,则以下结论:∠GH BC ;∠∠D =∠F ;∠HE 平分∠AHG ;∠HE ∠AB .其中正确的有_____(只填序号)66.将一副三角板按如图放置,则下列结论:∠如果∠2=30°.则AC ∥DE ;∠∠2+∠CAD =180°;∠如果BC ∥AD ,则有∠2=60°;∠如果∠CAD =150°,必有∠4=∠C ;其中正确的结论有____________.【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用67.如图,为某校放置在水平操场上的篮球架的横截面图形,初始状态时,篮球架的横梁EF 平行于AB ,主柱AD 垂直于地面,EF 与上拉杆CF 形成的角度为F ∠,且150F ∠=︒,这一篮球架可以通过调整CF 和后拉杆BC 的位置来调整篮筐的高度.在调整EF 的高度时,为使EF 和AB 平行,需要改变EFC ∠和C ∠的度数,调整EF 使其上升到GH 的位置,此时,GH 与AB 平行,35CDB ∠=︒,并且点H ,D ,B 在同一直线上,则H ∠为______度.68.下图(1)是某学校办公楼楼梯拐角处,从图片抽象出图(2)的几何图形,已知AB GH IJ CD ∥∥∥,AE BF ∥,EC FD ∥,DC EC ⊥,65B ∠=︒,则∠AEC 的度数为______.【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题69.命题“若a b =,那么a b =”的逆命题是:_____;该逆命题是一个 _____命题(填真或假).70.甲:“我没有偷”;乙:“丙是小偷”;丙:“丁是小偷”;丁:“我没有偷”.若四个人里面只有一个人说了真话,则小偷是_____.【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理71.如图所示,90AOB COD ︒∠=∠=,那么AOC ∠=________,依据是__________.72.如图所示,已知AB FE =,AD FC =,BC ED =.下列结论:∠A F ∠=∠;∠//AB EF ;∠//AD FC .其中正确的结论是________.(填序号)【考点十七】平移➽➼➵性质73.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为 _____m .74.用等腰直角三角板画45AOB ∠=,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22,则三角板的斜边与射线OA 的夹角α为______.【考点十八】平移➽➼➵应用 75.如图,有一块长为a 米,宽为3米的长方形地,中间阴影部分是一条小路,空白部分为草地,小路的左边线向右平移1米能得到它的右边线,若草地的面积为122米,则=a ______.76.如图,某酒店重新装修后,准备在大厅主楼梯上铺设红色地毯.已知这种地毯每平方米售价160元,主楼梯道宽2.5m ,其侧面如图所示,则购买地毯至少需要______元.三、解答题77.如图:已知AO BC ⊥,DO OE ⊥,B ,O ,C 在同一条直线上.(1) AOE ∠的余角是_________,∠BOE 的补角是_________.(2) 如果35AOD ∠=︒,求∠BOE 的度数.(3) 找出图中所有相等的角(除直角外),并对其中一对相等的角说明理由.78.如图,点G 在CD 上,已知180BAG AGD ∠+∠=︒,EA 平分BAG ∠,FG 平分AGC ∠.请说明AE GF ∥的理由.解:因为180BAG AGD ∠+∠=︒(已知),180AGC AGD ∠+∠=︒(______),所以BAG AGC ∠=∠(______). 因为EA 平分BAG ∠, 所以112BAG ∠=∠(______). 因为FG 平分AGC ∠, 所以122∠=______, 得12∠=∠(等量代换), 所以______(______).79.把下面的证明过程补充完整: 已知:如图,12180∠+∠=︒,C D ∠=∠. 求证:A F ∠=∠.证明:∠12180∠+∠=︒(已知), ∠BD ∥_________( ), ∠C ABD ∠=∠( ), ∠C D ∠=∠( ), ∠D ∠=∠_________( ), ∠AC DF ∥( ), ∠A F ∠=∠( ).80.在如图所示的网格图(每个小网格都是边长为1个单位长度的小正方形)中,P,A ∠的边OB,OC上的两点.分别是BOC(1) 将线段OP向右平移,使点O与点A重合,画出线段OP平移后的线段'AP,连接PP',并写出相等的线段;∠相等的角;(2) 在(1)的条件下,直接写出与BOC(3) 请在射线OC上找出一点D,使点P与点D的距离最短,并写出依据.参考答案1.D【分析】根据对顶角,邻补角的定义逐一判断即可.解:选项A中∠1和∠2为邻补角,不一定相等.选项B中∠1和∠2为两个不同的角,不一定相等.选项C中∠1和∠2为两个不同的角,不一定相等.选项D中∠1和∠2为对顶角,一定相等.故选D.【点拨】本题考查的是对顶角,邻补角的定义,熟练掌握对顶角,邻补角的定义是解决问题的关键.2.D【分析】根据邻补角的定义作出判断即可.解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点拨】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.B【分析】根据垂直的定义可得90COE ∠=︒,根据平角的定义即可求解. 解: EO ∠CD ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒, 2180905436∴∠=︒-︒-︒=︒. 故选:B .【点拨】本题考查了垂线的定义,平角的定义,数形结合是解题的关键. 4.A【分析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.根据定义直接可得答案.解:∠90,A ∠=︒∠BA AC ⊥,点B 到线段AC 的距离指线段AB 的长, 故选:A .【点拨】本题主要考查了点到直线的距离的概念.点到直线的距离是是垂线段的长度,而不是垂线段.5.B【分析】根据同位角的定义作答.解:第1个图和第4个图中的1∠与2∠是同位角,有2个, 故选:B .【点拨】本题考查了同位角的识别,两条直线被第三条直线所截,在截线的同侧,在两条被截直线的同旁的两个角是同位角.如果两个角是同位角,那么它们一定有一条边在同一条直线上.6.A【分析】根据同位角、同旁内角、内错角和对顶角的概念解答即可. 解:A 、3∠与6∠是同旁内角,故本选项符合题意; B 、2∠与4∠不是同位角,故本选项不合题意; C 、1∠与6∠不是对顶角,故本选项不合题意; D 、5∠与3∠不是内错角,故本选项不合题意;故选:A.【点拨】本题考查了同位角、内错角、同旁内角的定义,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.7.B【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;从直线外一点到这条直线上各点所连的线段中,垂线段最短.逐一判断.解:∠线段BP是点P到直线l的垂线段,根据垂线段最短可知,P A,PB,PC三条线段中,PB最短;故原说法正确;∠线段BP是点P到直线l的垂线段,故线段BP的长度叫做点P到直线l的距离,故原说法错误;∠线段AB是点A到直线PB的垂线段,故线段AB的长度叫做点P到直线l的距离,故故原说法正确;∠由题意及图形无法判断线段AC的长是点A到PC的距离,故原说法错误;综上所述,正确的说法有∠∠;故选:B.【点拨】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:∠从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.∠从直线外一点到这条直线上各点所连的线段中,垂线段最短.8.C【分析】根据两点间的距离和平行线间的距离的性质逐项判断即可.解:A、A与B之间的距离就是线段AB的长度,不符合题意,故本项错误;B、AB与CD之间的距离就是线段HI的长度,不符合题意,故本项错误;C 、1l 与2l 之间的距离就是线段CE 的长度,符合题意,故本项正确;D 、1l 与2l 之间的距离就是线段CE 或GF 的长度,不符合题意,故本项错误. 故答案为:C .【点拨】本题考查了两点间的距离和平行线间的距离的性质,解决本题的关键是掌握以上基本的性质.9.C【分析】根据P 点在CD 上,CD ∠AB 进行判断.解:过点P 画AB 的垂线CD ,则P 点在CD 上,CD ∠AB ,所以三角尺放法正确的为故选:C .【点拨】本题考查了作图-基本作图,熟练掌握基本作图(过一点画已知直线的垂线)是解决问题的关键.10.B【分析】根据中点的定义,平行线的定义判断即可. 解:过AC 的中点D 作AB 的平行线, 正确的图形是选项B , 故选:B .【点拨】本题考查作图——复杂作图,平行线的定义,中点的定义等知识,解题关键是理解题意,灵活运用所学知识解决问题.11.C【分析】根据平移的概念作选择即可.解:A、B、D符合平移变换,C是轴对称变换.故选:C.【点拨】本题考查了平移的概念,掌握好平移的概念是本题的关键.12.C【分析】根据图形进行剪切拼接可得图形.解:根据左边图形可剪成若干小块,再进行拼接平移后能够得到∠,∠,不能拼成∠,故选C.【点拨】此题主要考查了图形的平移,通过改变平移的方向和距离可使图案变得丰富多彩.13.D【分析】根据垂线段最短解答即可.⊥于点D,将水泵房建在了D处.这样做最节省水管长度,其数学解:过点C作CD l道理是:垂线段最短.故选D.【点拨】本题考查了垂线段的性质,熟练掌握垂线段性质是解答本题的关键.从直线外一点到这条直线上各点所连的线段中,垂线段最短.14.B【分析】根据线段的性质公理判断∠;根据垂线的性质判断∠;根据平行公理的推论判断∠;根据点到直线的距离的定义判断∠.解:∠两点之间的所有连线中,线段最短,说法正确;∠在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;∠平行于同一直线的两条直线互相平行,说法正确;∠直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.【点拨】本题考查了线段的性质公理,垂线的性质,平行公理的推论,点到直线的距离的定义,是基础知识,需熟练掌握.15.C【分析】由平行线的判定定理求解判断即可.∠=∠,根据内错角相等,两直线平行可判定EF DC,故A不符合题意;解:A.由12B .由4C ∠=∠,根据同位角相等,两直线平行可判定EF DC ,故B 不符合题意; C .由13180∠+∠=︒,根据同旁内角互补,两直线平行可判定ED BC ∥,不能判定EF DC ,故C 符合题意;D .由3180C ∠+∠=︒,根据同旁内角互补,两直线平行可判定EF DC ,故D 不符合题意;故选:C .【点拨】本题考查了平行线的判定,熟练掌握“内错角相等,两直线平行”、“同位角相等,两直线平行”、“同旁内角互补,两直线平行”是解题的关键.16.D【分析】根据平行线的判定定理判断求解即可.解:A .如果∠1=∠3,那么能得到AB CD ∥,故本选项结论成立,不符合题意. B .如果∠2=∠4,那么能得到AC BD ∥,故本选项结论成立,不符合题意. C .如果∠1+∠2+∠C =180°,能得到AB CD ∥,故本选项结论成立,不符合题意. D .如果∠4=∠5,那么不能得到AC BD ∥,故本选项结论不成立,符合题意. 故选:D .【点拨】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键. 17.D【分析】根据平行线的判定与性质、平行公理的推论判断求解即可. 解:若a ∠b ,b ∠c ,则a ∠c ,故A 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故B 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故C 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故D 正确,符合题意; 故选:D .【点拨】此题考查了平行线的判定与性质,平行公理的推论,熟练掌握平行线的判定定理与性质定理是解题的关键.18.B【分析】要使木条a 与b 平行,那么∠1=∠2,从而可求出木条a 至少旋转的度数. 解:∠当木条a 与b 平行, ∠∠1=∠2, ∠∠1需变为50°,∠木条a 至少旋转:70º-50º=20º, 故选:B .【点拨】本题考查了旋转的性质及平行线的性质:∠两直线平行同位角相等;∠两直线平行内错角相等;∠两直线平行同旁内角互补;∠夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.19.A【分析】根据题意得到,90ACB AB CD ∠=︒∥,推出1,2ACE BCD ∠=∠∠=∠,进而得到1290∠+∠=︒,即可求出2∠的度数.解:由题意得,90ACB AB CD ∠=︒∥, ∠1,2ACE BCD ∠=∠∠=∠, ∠18090ACE BCD ACB ∠+∠=︒-∠=︒ ∠1290∠+∠=︒ ∠155∠=︒ ∠235∠=︒, 故选:A .【点拨】此题考查了平行线的性质:两直线平行内错角相等,两直线平行同位角相等,熟练掌握平行线的性质是解题的关键.20.B【分析】先根据平行线的性质定理得120CAE ∠=︒,然后由已知得45BAC ∠=︒,再由BAE CAE BAC ∠=∠-∠即可得解.解:AC DE ∥,180E CAE ∴∠+∠=︒,由已知可知:60,45E BAC ∠=︒∠=︒, 180********CAE E ∴∠=︒-∠=︒-︒=︒, 1204575BAE CAE BAC ∴∠=∠-∠=︒-︒=︒;故选:B.【点拨】此题考查了平行线的性质定理与直角三角板的知识,熟练掌握平行线的性质定理是解答此题的关键.21.D【分析】根据平行线的性质即可判断(1)(2),根据平角的定义即可判断(3),根据等量代换即可判断(4).解:∠AB CD,∠123445180==+=︒∠∠,∠∠,∠∠,故(1)(2)正确∠90∠=︒,CAD∠2418090+=︒-=︒∠∠∠,故(3)正确,CAD∠521809090∠∠,故(4)正确;-=︒-︒=︒∠正确的有4个,故选D.【点拨】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.22.C【分析】分别根据平行线的性质以及平行线的判定方法逐一判断即可.解:∠中,∠AE BC,∠∠3=∠2,∠∠1=∠3,∠∠1=∠2,∠∠正确∠中,∠AE BC,∠∠A+∠B=180°,∠∠A=∠C,∠∠C+∠B=180°,∠AB CD;∠∠正确∠中,∠AE BC,∠∠2=∠3,∠A+∠ABC=180°,∠∠1=∠3,∠∠1=∠2=∠3,∠ABC=2∠2,∠∠AEF=2∠2,∠∠A+∠ABC=∠A+2∠2=∠A+∠AEF=180°,∠∠AEF+∠AED=180°,∠∠AED=∠A.∠∠正确∠无条件证明,所以不正确.∠结论正确的有∠∠∠共3个.故选:C.【点拨】此题考查了平行线的判定与性质以及多边形的内角和外角,熟练掌握平行线的判定与性质是解本题的关键.23.D∠∠,再【分析】如图所示,根据平行线的性质:两直线平行,同位角相等,可得3=1根据邻角互补即可得到答案.解:如图所示:a b,∠1=50°,∴∠=∠=︒,3150∠+∠=︒,23180∴∠=︒-∠=︒-︒=︒,2180318050130故选:D.【点拨】本题考查求角度问题,涉及到平行线的性质及邻补角定义,熟练掌握相关定义是解决问题的关键.24.B【分析】根据平行线的性质得出130CAB ∠=︒,根据角平分线的性质以及平行线的性质即可求解.解:∠AB CD ∥,∠180BAC C ∠+∠=︒,∠50C ∠=︒,∠130BAC ∠=︒, ∠AE 平分CAB ∠,∠1652BAE CAE BAC ∠=∠=∠=︒, ∠AB CD ∥,∠65AEC BAE ∠=∠=︒.故选B .【点拨】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质是解题的关键.25.B【分析】过点E 作直线EF AB ∥,根据平行线的判定和性质,以及平角的定义即可得解. 解:过点E 作直线EF AB ∥,交BC 于点F ,则:3AEF ∠=∠,∠AB CD ,∠EF CD ,∠1DEF ∠=∠,∠12322180AEF DEF DEA ∠+∠+∠=∠++=+=︒∠∠∠∠;故选:B .【点拨】本题考查平行线的判定和性质.熟练掌握平行线的判断和性质是解题的关键.遇到拐点问题,通常过拐点作平行线来进行解题.26.B【分析】过点E 作HF //AB ,可证AB //HF //CD ,由平行线的性质可求∠BAE =∠AEH ,∠EPD =∠HEP ,由∠E =90°,由∠HEP =90°−∠AEH 可求解.解:如图,过点E 作HF //AB ,∠AB //CD ,HF //AB ,∠AB //HF //CD ,∠∠BAE =∠AEH ,∠HEP =∠EPD ,∠∠BAE =44°,∠E =90° ∠∠AEH =44°, ∠HEP =90°−∠AEH =90°−44°=46°,∠∠EPD =∠HEP =46°.故选:B.【点拨】本题考查了平行线的判定和性质,添加恰当辅助线构造平行线是本题的关键.27.C【分析】根据平行线的判定定理依次判断即可.解:∠∠34∠=∠,∠AD BC ∥,正确,符合题意;∠∠12∠=∠,∠AB CD ∥,(内错角相等,两直线平行),选项不符合题意;∠∠4180BCD ∠+∠=︒,4D ∠=∠,∠180D BCD ∠+∠=︒,∠AD BC ∥,正确,符合题意;∠∠3518045180∠+∠=︒∠+∠=︒,,∠3=4∠∠,由同位角相等,两直线平行可得AD BC ∥,正确,符合题意;故能推出AD BC ∥的条件为∠∠∠.故选C .【点拨】题目主要考查平行线的判定,熟练掌握平行线的判定定理是解题关键.28.B【分析】根据平行线的性质和判定定理逐项分析判断∠∠∠,结合题意和图形判断∠∠,即可进行解答.∥,解:∠∠DE BC∠∠1=∠DCB,∠∠1=∠2,∠∠DCB=∠2,∥,∠FG DC故∠正确;∥,∠∠DE BC∠∠AED=∠ACB,故∠正确;∥,∠由∠可知:FG DC∠∠BFG=∠BDC,故∠正确,而CD不一定平分∠ACB,∠1+∠B不一定等于90°,故∠,∠错误;【点拨】本题考查了平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质,并能进行推理论证.29.D【分析】根据题意画出图形,由图可知,第一次向左拐,要使最后行驶方向与原来相反,则第二次也要向左拐,再根据平行线的性质即可解答.解:如图,第一次向左拐,要使最后行驶方向与原来相反,则第二次也要向左拐,∠∠1+∠3=180°,∠2=∠3,∠∠1+∠2=180°,故选:D。
人教版初中七年级数学下册第五章《相交线与平行线》经典习题(含答案解析)(2)

一、选择题1.如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论① C D ∠=∠,②FG CD ⊥,③EC FD ⊥,正确的是( )A .①②B .②③C .①③D .①②③B解析:B【分析】 由平行线的性质和垂直的定义,逐个判断得结论.【详解】∵∠1=∠3,∠2=∠4,又∵∠1+∠2+∠3+∠4=180°,∴∠1+∠2=∠3+∠4=∠1+∠4=90°,∴∠EFD=∠1+∠2=90°,∴EC ⊥FD ,故③正确;∵AB ∥CD ,∴∠1=∠C ,∴∠FGD=∠4+∠C=∠4+∠1=90°,∴FG ⊥CD ,故②正确;∵∠1不一定等于∠2,∴∠C≠∠D ,故①不正确.故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质及垂直的定义,由相等的角和平角的定义得到互余的角是解决本题的关键.2.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等;A.1个B.2个C.3个D.4个B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.3.下列说法正确的是()A.命题一定是正确的B.定理都是真命题C.不正确的判断就不是命题D.基本事实不一定是真命题B解析:B【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A、命题有真命题和假命题,此项说法错误;B、定理都是经过推论、论证的真命题,此项说法正确;C、不正确的判断是假命题,此项说法错误;D、基本事实是真命题,此项说法错误;故选:B.【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.4.下列所示的四个图形中,∠1和∠2是同位角的是()A .②③B .①②③C .①②④D .①④C解析:C【分析】 根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.5.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.6.下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.7.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质8.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A .75︒B .120︒C .135︒D .无法确定A解析:A【解析】 分析:根据两直线平行,内错角相等,得到∠BFD 的度数,进而得出∠CFD 的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED 交BC 于F .∵DE ∥AB ,∴∠DFB =∠ABF =120°,∴∠CFD =60°.∵∠CDE =∠C +∠CFD ,∴∠C =∠CDE -∠CFD =135°-60°=75°.故选A .点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.9.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
七年级数学下册第五章相交线与平行线专题一平行线的判定与性质作业新版新人教版

解:(1)直线EF与GH的位置关系是平行,理由如下:过点C向右侧作CD∥EF, ∴∠CAE=∠ACD,∵∠ACB=∠ACD+∠BCD=80°,∠CAE+∠CBG= 80°.∴∠BCD=∠CBG,∴CD∥GH,∴EF∥GH
(2)∠APB的大小不会随着点B的运动而发生变化,理由如下:由(1)知∠ACB= ∠CAE+∠CBG=80°,同理∠APB=∠PAF+∠PBH,∠PAF=180°-∠CAE -∠CAP,∠PBH=180°-∠CBG-∠CBP,∵∠CAP=2∠CAE,∠CBP= 2∠CBG,∴∠APB=360°-3(∠CAE+∠CBG)=120°,即∠APB大小为定值 120°
2
类型3 与平行线有关的探究问题 14.如图①,已知∠ACB=80°,点A在直线EF上,点B在直线GH上,且 ∠CAE+∠CBG=80°. (1)试判断直线EF与GH的位置关系,并说明理由; (2)如图②,若点B在直线GH上运动,作∠CAP=2∠CAE,作∠CBP= 2∠CBG,试判断∠APB的大小是否会随着点B的运动而发生变化?若不变,求出 ∠APB的大小;若变化,请说明理由.
专题(一) 平行线的判定与性质
类型1 利用平行线的性质求角度 题组1 直接利用平行线的性质与判定求角度 1.(教材P24习题T13(1)变式)如图,AB∥CD,BC∥DE,∠B=72°,则∠D =( C ) A.36° B.72° C.108° D.120°
Байду номын сангаас
2.(教材P23T7(2)变式)(广元中考改)如图,a∥b,M,N分别在a,b上,P为两平 行线间一点,那么∠1+∠2+∠3= __3_6_0_°___.
12.已知:如图,∠1=∠2,∠A=∠F.求证:∠C=∠D.
证明:∵∠1=∠2,∠1=∠3, ∴∠2=∠3,∴BF∥AE,∴∠F=∠AED, 又∵∠A=∠F, ∴∠A=∠AED,∴AC∥DF,∴∠C=∠D
(必考题)初中数学七年级数学下册第二单元《相交线与平行线》检测卷(有答案解析)(1)

一、选择题1.如图,////,//AB CD EF CG AF ,那么图中与∠AFE 相等的角的个数是( )A .4B .5C .6D .72.已知一个角是这个角的余角的13,则这个角的度数是( ). A .45︒ B .60︒ C .67.5︒ D .22.5︒ 3.如图所示,已知//AB CD ,则( ).A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+ 4.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( )A .70︒B .60︒C .30D .20︒ 5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70° 6.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个7.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450°8.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒9.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角10.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .6011.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等12.如图,直线AD //BC ,AC 平分∠DAB ,若∠1=65°,则∠2的度数为( )A .65°B .50°C .60°D .70°二、填空题13.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.14.如图,直线a ∥b ,直线a 、b 被直线c 所截,若∠2=60°,则∠1的度数为_____.15.如图,已知AB ∥CD ,∠1=120°,则∠C =____.16.已知直线//a b ,将一个含有45度角的直角三角板(90︒∠=C )按如图位置摆放,若160∠=︒,则2∠的度数是_____________.17.如图所示,直线PQ ∥MN ,C 是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且∠ECF =90°,如果∠FBQ =50°,则∠ECM 的度数为__________;18.如图是一汽车探照灯纵剖面,从位于O 点的灯泡发出的两束光线OB ,OC 经过灯碗反射以后平行射出,如果62ABO ∠=︒,46DCO ∠=︒,则BOC ∠的度数是________︒.19.如图,要把池中的水引到D 处,可过D 点作CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据:______.20.如图,直线a ∥b ,点A ,B 位于直线a 上,点C ,D 位于直线b 上,且AB :CD =1:2,如果△ABC 的面积为10,那么△BCD 的面积为_____.三、解答题21.如图,180,AEM CDN EC ︒∠+∠=平分AEF ∠.若62EFC ︒∠=,求C ∠的度数.根据提示将解题过程补充完整.解:180CDM CDN ︒∠+∠=(平角的意义),180AEM CDN ︒∠+∠=(已知), AEM CDM ∴∠=∠//AB CD ∴(___________________)AEF ∴∠+(________)180︒=(两直线平行,同旁内角互补)62EFC ︒∠=,118AEF ︒∴∠= EC 平分AEF ∠,59AEC ︒∴∠=(_________)//AB CD ,59C AEC ︒∴∠=∠=(___________________)22.已知:如图,BD 平分ABC ∠,BE 将ABC ∠分为2:3两部分,12DBE ∠=︒,求ABC ∠的度数和ABE ∠的补角的度数.23.已知一个角的补角比这个角的余角的2倍大10°,求这个角的度数.24.(1)计算:(﹣3)2﹣(32)2×29﹣6÷23; (2)α∠的余角比这个角少20°,则α∠的补角为多少度? 25.如图,AE //CF ,∠A =∠C .(1)若∠1=35°,求∠2的度数;(2)判断AD 与BC 的位置关系,并说明理由.26.已知:如图,∠BAP +∠APD =180°,∠1=∠2.试说明:∠E =∠F .(请在横线处填理由)解:∵∠BAP +∠APD =180°,∴AB ∥CD .( ),∴∠BAP =∠APC ( ),∵∠1=∠2(已知)由等式的性质得:∴∠BAP ﹣∠1=∠APC ﹣∠2,即 ,∴AE ∥FP ( ),∴∠E =∠F ( ).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据CD ∥EF 得出∠CGE=∠GCD ,再由CG ∥AF 得出∠CGE=∠AFE ,根据AB ∥CD ∥EF 可得出∠AFE=∠DHF=∠AHC=∠BAH ,由此可得出结论.【详解】解:∵CD ∥EF ,∴∠CGE=∠GCD ,∠AFE=∠DHF .∵CG ∥AF ,∴∠CGE=∠AFE .∵AB ∥CD ,∴∠BAH=∠DHF ,∴∠AFE=∠CGE=∠AFE=∠DHF=∠AHC=∠BAH .故选:B .【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,同位角相等,内错角相等. 2.D解析:D【分析】设这个角的度数为x ,则它的余角为90°-x ,再根据题意列出方程,求出x 的值即可;【详解】解:设这个角的度数为x ,则它的余角为90°-x , 依题意得:()1903x x =︒- , 解得:x=22.5,故选:D .【点睛】 本题考查的是余角的定义,能根据题意列出关于x 的方程是解题的关键.3.A解析:A【分析】根据平行线的性质,得3ABO ∠=∠;根据补角的性质,得1801AOB ∠=-∠;根据角的和差的性质计算,即可得到123∠=∠+∠,从而完成求解.【详解】∵//AB CD∴3ABO ∠=∠∵1801AOB ∠=-∠又∵1802ABO ABO ∠=-∠-∠∴312∠=∠-∠∴123∠=∠+∠故选:A .【点睛】本题考查了平行线、角的知识;解题的关键是熟练掌握平行线、补角、角的和差的性质,从而完成求解.4.C解析:C【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得.【详解】 A ∠与B 互补,且120A ∠=︒,18060B A ∴∠=︒-∠=︒,又B ∠与C ∠互余,9030C B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.5.C解析:C【分析】由平行线的性质可得∠ADC =∠BAD =35°,再由垂线的定义可得△ACD 是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD 的度数.【详解】∵AB ∥CD ,∠BAD=35°,∴∠ADC =∠BAD =35°,∵AD ⊥AC ,∴∠ADC+∠ACD =90°,∴∠ACD =90°﹣35°=55°,故选:C .【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.6.D解析:D【分析】依据AD EF BC BD GF ∥∥,∥,即可得到1,1ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,再根据BD 平分ADC ∠,即可得到ADB CDB CFG ∠=∠=∠.【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,,又∵BD 平分ADC ∠,∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个,故选:D.【点睛】此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.7.C解析:C【分析】首先过点D 作DF ∥AE ,交AB 于点F ,由AE ∥BC ,可证得AE ∥DF ∥BC ,然后由两直线平行,同旁内角互补,证得∠A+∠B =180°,∠E+∠EDF =180°,∠CDF+∠C =180°,继而证得结论.【详解】过点D 作DF ∥AE ,交AB 于点F ,∵AE ∥BC ,∴AE ∥DF ∥BC ,∴∠A+∠B =180°,∠E+∠EDF =180°,∠CDF+∠C =180°,∴∠C+∠CDE+∠E =360°,故选C .【点睛】本题考查了平行线的性质,解题时掌握辅助线的作法,注意数形结合思想的应用. 8.A解析:A【分析】先由直线a ∥b ,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a ∥b ,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A .【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.9.D解析:D【详解】解:∠3与∠4是同旁内角.故选:D10.B解析:B【分析】根据内错角相等,两直线平行,得AB ∥CE ,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB ∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.11.D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.12.B解析:B【分析】根据平行线性质得出∠1=∠DAC =65°,∠2+∠BAD=180°,求出∠BAD ,即可得出∠2的度数【详解】解:∵AD ∥BC ,∴∠1=∠DAC =65°,∵AC 平分∠DAB ,∴∠BAD=2∠DAC =130°,∵AD ∥BC ,∴∠2+∠BAD=180°,∴∠2=180°-130°=50°故选:B .【点睛】本题考查了平行线性质和角平分线定义,关键是求出∠BAD 的度数.二、填空题13.20【分析】由已知珠江流域某江段江水流向经过BCD 三点拐弯后与原来相同得AB ∥DE 过点C 作CF ∥AB 则CF ∥DE 由平行线的性质可得∠BCF+∠ABC=180°所以能求出∠BCF 继而求出∠DCF 又由C解析:20【分析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB ∥DE ,过点C 作CF ∥AB ,则CF ∥DE ,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF ,继而求出∠DCF ,又由CF ∥DE ,所以∠CDE=∠DCF .【详解】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为20.【点睛】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.14.120°【分析】根据平行线的性质解答即可【详解】解:∵a∥b∠2=60°∴∠1=180°﹣60°=120°故答案为:120°【点睛】本题考查了平行线的性质解题的关键是掌握两直线平行同旁内角互补的知识点解析:120°【分析】根据平行线的性质解答即可.【详解】解:∵a∥b,∠2=60°,∴∠1=180°﹣60°=120°.故答案为:120°.【点睛】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补的知识点.15.60°【解析】∵∠1+∠FEB=180°∠1=120°∴∠FEB=180°-∠1=60°∵AB//CD∴∠C=∠FEB=60°故答案为60°解析:60°【解析】∵∠1+∠FEB=180°,∠1=120°,∴∠FEB=180°-∠1=60°,∵AB//CD,∴∠C=∠FEB=60°,故答案为60°.16.75°【分析】先根据对顶角的性质求得∠4=60°然后由三角形外角的性质得∠5=105°然后根据补角的定义求得∠3最后运用平行线的性质解答即可【详解】解:如图所示∵∠4=∠1=60°∠B=45°∴∠5解析:75°【分析】先根据对顶角的性质求得∠4=60°,然后由三角形外角的性质得∠5=105°,然后根据补角的定义求得∠3,最后运用平行线的性质解答即可.【详解】解:如图所示.∵∠4=∠1=60°,∠B=45°∴∠5=∠4+∠B=60°+45°=105°,∵∠5+∠3=180°∴∠3=180°-∠5=75°∵直线a//b.∴∠2=∠3=75°.故答案为:75°.【点睛】本题考查了等腰直角三角形的性质、平行线的性质、三角形外角的性质等知识:根据三角形外角的性质以及邻补角互补求得∠3的度数是解答本题的关键.17.40°【分析】先根据两直线平行同位角相等求出∠BCN再利用平角定义即可求出【详解】∵PQ∥MN∠FBQ=50°∴∠BCN=∠FBQ=50°又∠ECF=90°∴∠ECM=180°-90°-50°=40解析:40°【分析】先根据两直线平行,同位角相等求出∠BCN,再利用平角定义即可求出.【详解】∵PQ∥MN,∠FBQ=50°,∴∠BCN=∠FBQ=50°,又∠ECF=90°,∴∠ECM=180°-90°-50°=40°.故答案为:40°.【点睛】本题是基础题,主要利用平行线的性质和平角的定义解答.18.【分析】过点O 作OE ∥AB 得到∠EOB=根据OE ∥ABCD ∥AB 推出OE ∥CD 得到∠COE=即可求出∠BOC 【详解】如图过点O 作OE ∥AB ∴∠EOB=∵OE ∥ABCD ∥AB ∴OE ∥CD ∴∠COE=∴解析:108【分析】过点O 作OE ∥AB ,得到∠EOB=62ABO ∠=︒,根据OE ∥AB ,CD ∥AB 推出OE ∥CD ,得到∠COE=46DCO ∠=︒,即可求出∠BOC.【详解】如图,过点O 作OE ∥AB ,∴∠EOB=62ABO ∠=︒,∵OE ∥AB ,CD ∥AB ,∴OE ∥CD ,∴∠COE=46DCO ∠=︒,∴∠BOC=∠EOB+∠COE=62°+46°=108°,故答案为:108.【点睛】此题考查平行线的性质:两直线平行内错角相等,平行线的推论:平行于同一直线的两直线平行.19.垂线段距离最短【分析】过直线外一点作直线的垂线这一点与垂足之间的线段就是垂线段且垂线段最短【详解】解:过D 点引CD ⊥AB 于C 然后沿CD 开渠可使所开渠道最短根据垂线段最短故答案为:垂线段距离最短【点睛 解析:垂线段距离最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段, 且垂线段最短.【详解】解:过D 点引CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,根据垂线段最短. 故答案为: 垂线段距离最短.【点睛】本题主要考查垂线段的应用,解决本题的关键是要掌握垂线段距离最短.20.20【分析】根据条件可得出△ABC 的面积与△BCD 的面积的比再根据已知条件即可得出结论;【详解】解:∵a ∥b ∴△ABC 的面积:△BCD 的面积=AB :CD =1:2∴△BCD 的面积=10×2=20故答案解析:20【分析】根据条件可得出△ABC 的面积与△BCD 的面积的比,再根据已知条件即可得出结论;【详解】解:∵a ∥b ,∴△ABC 的面积:△BCD 的面积=AB :CD =1:2,∴△BCD 的面积=10×2=20.故答案为:20.【点睛】本题主要考查了平行线之间的距离和三角形面积的知识点,准确分析计算是解题的关键.三、解答题21.见解析【分析】根据同角的补角相等可得出∠AEM=∠CDM ,利用“同位角相等,两直线平行”可得出AB ∥CD ,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC 的度数,再利用“两直线平行,内错角相等”即可求出∠C 的度数.【详解】解:∵∠CDM+∠CDN=180°(平角的意义),∠AEM+∠CDN=180°(已知),∴∠AEM=∠CDM ,∴AB ∥CD ,(同位角相等,两直线平行)∴∠AEF+∠EFC=180°,(两直线平行,同旁内角互补)∵∠EFC=62°,∴∠AEF=118°,∵EC 平分∠AEF ,∴∠AEC=59°,(角平分线的定义)∵AB ∥CD ,∴∠C=∠AEC=59°.(两直线平行,内错角相等).【点睛】本题考查了平行线的判定与性质以及角平分线,牢记各平行线的判定与性质定理是解题的关键.22.ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【分析】由角平分线的定义,则∠CBD=∠DBA ,根据BE 分∠ABC 分2:3两部分这一关系列出方程求解.【详解】解:∵BD 平分ABC ∠∴∠CBD=∠DBA由题意,设∠ABE=2x ︒,则∠CBE=3x ︒,∴∠ABC=5x ︒,∠CBD=∠DBA=52x ︒ ∵12DBE ∠=︒ ∴12ABD ABE ∠-∠=︒,52122x x -=,解得:24x = ∴∠ABE=2×24=48︒;∠ABC=5×24=120︒ ∴ABE ∠的补角的度数为18048132︒-︒=︒答:ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【点睛】本题考查一元一次方程的应用及角的运算和补角的定义,正确理解题意,运用方程思想解题是关键.23.10°【分析】设这个角的度数为x°,根据已知条件列出含有x 的方程,解方程即可得到答案 .【详解】解:设这个角的度数为x ,依题意有:()()18029010---=x x解得10x =︒故这个角的度数为10°【点睛】本题考查补角和余角的定义,熟练掌握利用方程解决几何问题是解题关键.24.(1)12-;(2)125° 【分析】(1)先计算乘方,再计算乘除,最后计算加减;(2)根据题意可得关于α∠的方程,求出α∠后再根据互补的定义求解.【详解】 解:(1)原式=9﹣94×29﹣6×32=9﹣12﹣9=﹣12; (2)根据题意,得α∠﹣(90﹣α∠)=20°,解得:α∠=55°,所以α∠的补角为180°﹣55°=125°. 【点睛】本题考查了有理数的混合运算、余角和补角以及一元一次方程的求解等知识,熟练掌握上述知识是解题的关键.25.(1)∠2=145°;(2)BC∥AD,理由见解析.【分析】(1)由平行线的性质求得∠BDC=∠1=35°,再根据邻补角的定义即可求得∠2;(2)由平行线的性质可知:∠A+∠ADC=180°,然后根据∠A=∠C,可证得∠C+∠ADC=180°,从而可证得BC∥AD.【详解】解:(1)∵AE∥CF,∴∠BDC=∠1=35°,又∵∠2+∠BDC=180°,∴∠2=180°-∠BDC=180°-35°=145°;(2)BC∥AD.理由:∵AE∥CF,∴∠A+∠ADC=180°,又∵∠A=∠C,∴∠C+∠ADC=180°,∴BC∥AD.【点睛】本题考查平行线的性质和判定.在本题中能正确识图找出同位角和同旁内角是解题关键.26.同旁内角互补,两直线平行;两直线平行,内错角相等;∠EAP=∠FPA;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定与性质即可说明理由.【详解】解:∵∠BAP+∠APD=180°,∵∠APD+∠APC=180°,∴∠BAP=∠APC(同角的补角相等),∵∠1=∠2(已知),由等式的性质得:∴∠BAP-∠1=∠APC-∠2,即∠EAP=∠FPA,∴AE∥FP(内错角相等,两直线平行),∴∠E=∠F(两直线平行,内错角相等).故答案为:同角的补角相等;∠EAP=∠FPA;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.。
《好题》初中七年级数学下册第五章《相交线与平行线》经典测试(含答案)

一、选择题1.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,其中真命题的个数是( )A .4个B .3个C .2个D .以上都不对B 解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题; ④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,正确,为真命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.2.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键.3.关于平移后对应点所连的线段,下列说法正确的是( )①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A .①③B .②③C .③④D .①②C 解析:C【分析】根据平移的性质,对应点所连的线段一定平行或在一条直线上,对应点所连的线段一定相等,分别求解即可.【详解】①的说法“对应点所连的线段一定相等,但不一定平行”错误;②的说法“对应点所连的线段一定相等,但不一定平行,有可能相交”错误;③的说法“对应点所连的线段平行且相等,也有可能在同一条直线上”正确;④的说法“有可能所有对应点的连线都在同一条直线上”正确;故正确的说法为③④.故选:C .【点睛】本题主要考查了平移的性质:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行或在一条直线上且相等.4.下列说法正确的是( )A .命题一定是正确的B .定理都是真命题C .不正确的判断就不是命题D .基本事实不一定是真命题B解析:B【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A 、命题有真命题和假命题,此项说法错误;B 、定理都是经过推论、论证的真命题,此项说法正确;C 、不正确的判断是假命题,此项说法错误;D 、基本事实是真命题,此项说法错误;故选:B .【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.5.能说明命题“若a b >,则22a b >”是假命题的一个反例..可以是( ) A .0a =,1b =-B .2a =,1b =C .2a =-,1b =-D .0a =,2b = A 解析:A【分析】选取的a 的值满足a b >,但不满足22a b >即可.【详解】解:当a =0,b =﹣1时,满足a >b ,但不满足22a b >,故A 选项符合题意; 当a =2,b =1时,满足a >b ,也满足22a b >,故B 选项不符合题意;当a =﹣2,b =﹣1时,不满足a >b ,故C 选项不符合题意;当a =0,b =2时,不满足a >b ,故D 选项不符合题意;故选:A .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70° 所以3180418011070︒︒︒︒∠=-∠=-= D解析:D【分析】根据平行线的性质结合邻补角的性质对各选项逐一进行分析判断即可得.【详解】A . 因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒,正确,不符合题意;B . //,13,12180a b ︒∴∠=∠∠+∠=,1180218011070︒︒︒︒∴∠=-∠=-=,所以370︒∠=,正确,不符合题意;C . 因为a//b ,所以25∠=∠,又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=,正确 ,不符合题意;D . //,42180a b ︒∴∠+∠=,∴∠4=180°-∠2=180°-110°=70°,43∠=∠,∴∠3=70°,故D 选项错误,故选D .【点睛】本题考查了平行线的性质,熟练掌握“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解题的关键.7.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3B解析:B【分析】 通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A 错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.8.能说明命题“若a>b,则3a>2b“为假命题的反例为()A.a=3,b=2 B.a=﹣2,b=﹣3 C.a=2,b=3 D.a=﹣3,b=﹣2B 解析:B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a=﹣2,b=﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a>b时,3a=2b,∴命题“若a>b,则3a>2b”为假命题,故选:B.【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B.内错角不一定相等C.平行于同一直线的两条直线平行>-,则a一定小于0DD.若数a使得a a解析:D【分析】利用三角形内角和对A进行判断;根据内错角的定义对B进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.二、填空题11.如图,两直线交于点O ,134∠=︒,则2∠的度数为_____________;3∠的度数为_________.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的解析:146︒ 34︒【分析】根据平角的性质及对顶角的性质求解即可.【详解】解:∵134∠=︒∴2∠=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=34︒故答案为:146°;34︒.【点睛】本题主要考查了角的运算,解题的关键是熟练运用平角的性质及对顶角的性质.12.用一组a,b的值说明命题“若a b>,则22>”是错误的,这组值可以是a=____,a bb= ____1(答案不唯一)-2(答案不唯一)【分析】举出一个反例:a=1b=-2说明命题若a>b则a2>b2是错误的即可【详解】解:当a=1b=-2时满足a>b但是a2=1b2=4a2<b2∴命题若a>b则a解析:1(答案不唯一) -2(答案不唯一)【分析】举出一个反例:a=1,b=-2,说明命题“若a>b,则a2>b2”是错误的即可.【详解】解:当a=1,b=-2时,满足a>b,但是a2=1,b2=4,a2<b2,∴命题“若a>b,则a2>b2”是错误的.故答案为:1、-2.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.55或20【分析】根据平行线性质得出∠A+∠B=180°①∠A=∠B②求出∠A=3∠B ﹣40°③把③分别代入①②求出即可【详解】解:∵∠A与∠B的两边分别平行∴∠A+∠B=180°①∠A=∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.14.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.40°【分析】先根据对顶角相等的性质得出∠1=∠2即可求出α的度数【详解】解:∵∠1与∠2是对顶角∠2=50°∴∠1=∠2∵∠2=50°∴α+10°=50°∴α=40°故答案为:40°【点睛】本题考 解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.15.用反证法证明“一个三角形中最大的内角不小于60”时,第一步我们要先假设:______.答案不唯一例如一个三角形中最大的内角小于【分析】根据反证法的步骤从命题的反面出发假设出结论【详解】解:∵用反证法证明在一个三角形中最大的内角不小于60°∴第一步应假设结论不成立即假设最大的内角小于6 解析:答案不唯一,例如一个三角形中最大的内角小于60【分析】根据反证法的步骤,从命题的反面出发假设出结论.【详解】解:∵用反证法证明在一个三角形中,最大的内角不小于60°,∴第一步应假设结论不成立,即假设最大的内角小于60°.故答案为:最大的内角小于60°.【点睛】本题考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.16.如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.15【分析】由长方形的性质和平移的性质即可求出答案【详解】解:根据题意虚线部分的总长为:故答案为:15【点睛】本题考查了长方形的性质平移变换等知识解题的关键是理解题意灵活运用所学知识解决问题属于中考解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意, 虚线部分的总长为:130152AB BC +=⨯=. 故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC 可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE ∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC ,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE ∥CF ,∴∠4=∠ADF ,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.18.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA的度数为_____时,可以使∠OEB=∠OCA.60°【分析】设∠OCA=a∠AOC=x利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a∠AOC=x已知CB∥OA∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.19.如图,∠AOB=60°,在∠AOB的内部有一点P,以P为顶点,作∠CPD,使∠CPD的两边与∠AOB的两边分别平行,∠CPD的度数为_______度.60或120【分析】根据题意分两种情况如图所示(见解析)再分别根据平行线的性质即可得【详解】由题意分以下两种情况:(1)如图1(两直线平行同位角相等)(两直线平行内错角相等);(2)如图2(两直线平 解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:(1)如图1,//,//PC OB PD OA ,60AOB PDB ∴=∠=∠︒(两直线平行,同位角相等),60PDB CPD ∴=∠=∠︒(两直线平行,内错角相等);(2)如图2,//,//PC OB PD OA ,60AOB PDB ∴=∠=∠︒(两直线平行,同位角相等),180120C P B P D D ∠=︒-∴∠=︒(两直线平行,同旁内角互补);综上,CPD ∠的度数为60︒或120︒,故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.(n ﹣1)×180【分析】分别过P1P2P3作直线AB 的平行线P1EP2FP3G 由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠ 解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.解析:(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒,∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠,∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.22.如图,已知在每个小正方形的网格图形中,ABC 的顶点都在格点上,, , A B C 为格点.(1)先将ABC 先向左平移2个单位,再向上平移3个单位,请在图中画出平移后DEF ,(点A ,B ,C 所对应的顶点分别是D ,E ,F )(2)求出DEF 的面积;(3)连结 AD ,BE ,直接说出 AD 与BE 的关系(不需要理由).解析:(1)见解析;(2)8;(3)AD=BE且AD∥BE【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点D、E、F,再依次连接即可;(2)根据三角形的面积公式计算;(3)根据平移的性质回答.【详解】解:(1)如图,△DEF即为所作;(2)S△DEF=1442⨯⨯=8;(3)如图,由平移可知:AD=BE且AD∥BE.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.如图,已知∠1=∠2,∠A=29°,求∠C的度数.解析:∠C的度数是151°.【分析】根据对顶角相等,等量代换得∠1=∠3,根据同位角相等判断两直线平行,再由两直线平行得同旁内角互补则可解答.【详解】解:如图,∵∠1=∠2又∵∠2=∠3∴∠1=∠3∴AB∥CD∴∠A+∠C=180°,又∵∠A=29°∴∠C=151°答:∠C的度数是151°.【点睛】本题考查了对顶角的性质、平行线的性质和判定,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度数.解析:(1)证明见解析;(2)30°【分析】(1)根据平行线的判定求出AE∥FG,根据平行线的性质得出∠A=∠2,求出∠A=∠1,根据平行线的判定得出即可;(2)根据平行线的性质得出∠D+∠CBD+∠3=180°,根据∠D=∠3+50°和∠CBD=70°求出∠3=30°,根据平行线的性质得出∠C=∠3即可.【详解】(1)证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠2;又∵∠2=∠1,∴∠A=∠1,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+50°,∠CBD=70°,∴∠3=30°,∵AB∥CD,∴∠C=∠3=30°.【点睛】本题考查了平行线的性质和判定,垂直定义等知识点,能灵活运用定理进行推理是解题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.25.平移三角形ABC,使点A移动到点A′,画出平移后的三角形A′B′C′.解析:见解析【分析】先分别确定A、B、C平移后的对应点A′、B′、C′,然后再顺次连接即可.【详解】解:如图:连接AA′,在AA′在一条直线上CC′=AA′,得到C′;再作BB′∥AA′且BB′=AA′,最后顺次连接得到△A′B′C′即为所求三角形.【点睛】本题主要考查了平移作图,根据题意确定A、B、C平移后的对应点A′、B′、C′是解答本题的关键.26.分别指出下列图中的同位角、内错角、同旁内角.解析:图1中同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有:∠3与∠6,∠4与∠5;同旁内角有:∠3与∠5,∠4与∠6.;图2中同位角有:∠1与∠3,∠2与∠4;同旁内角有:∠3与∠2.【分析】根据两直线被第三条直线所截,两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角是同位角,可得同位角;两个角在截线的两侧,被截两直线的中间的角是内错角,可得内错角;两个角在截线的同侧,被截两直线的中间的角是同旁内角,可得同旁内角.【详解】解:如图1,同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有:∠3与∠6,∠4与∠5;同旁内角有:∠3与∠5,∠4与∠6.如图2,同位角有:∠1与∠3,∠2与∠4;同旁内角有:∠3与∠2.【点睛】本题考查了同位角、内错角,同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.27.如图,已知12∠=∠,C D ∠=∠,求证:A F ∠=∠.解析:证明见解析【分析】根据平行线的判定与性质即可得证.【详解】解:∵12∠=∠,∴//BD CE ,∴C ABD ∠=∠,∵C D ∠=∠,∴D ABD ∠=∠,∴//AC DF ,∴A F ∠=∠.【点睛】本题考查平行线的判定与性质,熟练运用平行线的判定与性质定理是解题的关键. 28.如图所示,12180∠+∠=︒,A C ∠=∠,请说明//AD BC ,先填空,再把说理过程补充完整.解:2180CDB ∠+∠=︒,又12180∠+∠=︒,1CDB ∴∠=∠(______),//AB CD ∴(______),3C ∴∠=∠(______).请补充余下说理过程: 解析:填空和余下说理过程见解析.【分析】∠=∠,再根据平行线的判定与性质可得先根据平角的定义、同角的补角相等可得1CDB∠=∠,然后根据等量代换可得33C∠=∠,最后根据平行线的判定即可得.A【详解】2180∠+∠=︒,CDB∠+∠=︒,又121801CDB∴∠=∠(同角的补角相等),∴(同位角相等,两直线平行),//AB CDC∴∠=∠(两直线平行,内错角相等),3∠=∠(已知),A C∴∠=∠(等量代换),A3AD BC∴(同位角相等,两直线平行).//【点睛】本题考查了平角的定义、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.。
初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
人教版初中七年级数学下册第五章《相交线与平行线》经典题(含答案解析)(1)

一、选择题1.下列语句是命题的是( )A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗?B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB 上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.2.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180°D 解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 3.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240°C解析:C【分析】 根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.4.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm A解析:A【分析】 由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.5.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④C解析:C【分析】 根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.6.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④D解析:D【分析】 根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB ∥CD ,不符合题意;②∵∠3=∠4,∴BC ∥AD ,符合题意;③∵AB ∥CD ,∴∠B+∠BCD =180°,∵∠ADC =∠B ,∴∠ADC+∠BCD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; ④∵AB ∥CE ,∴∠B+∠BCD =180°,∵∠BCD =∠BAD ,∴∠B+∠BAD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; 故能推出BC ∥AD 的条件为②③④.故选:D .【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.7.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°C解析:C【分析】 如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 8.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC 沿着直线BC 的方向平移2.5cm 后得到DEF ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个D解析:D【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC 沿着直线BC 的方向平移2.5cm 后得到△DEF ,∴AB//DE ,AC//DF ,AD//CF ,CF=AD=2.5cm ,故①②③正确.∵∠BAC=90°,∴AB ⊥AC ,∵AB//DE DE AC ∴⊥,故④正确.综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.9.如图,已知AB CD ∕∕,AF 交CD 于点E ,且,40BE AF BED ⊥∠=︒,则A ∠的度数是( )A .40︒B .50︒C .80︒D .90︒B【分析】直接利用垂线的定义结合平行线的性质得出答案.【详解】解:∵,40BE AF BED ⊥∠=︒,∴50FED ∠=︒,∵AB CD ∕∕,∴50A FED ∠=∠=︒.故选B .【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出FED ∠的度数是解题关键. 10.如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积D解析:D【分析】 根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n , 根据平行线之间的距离相等可得:△ABC 与△PBC 是同底等高的三角形,故△ABC 的面积等于△PBC 的面积.故选D .【点睛】本题考查平行线之间的距离;三角形的面积.二、填空题11.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A 解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.12.在平面内,若OA ⊥OC ,且∠AOC ∶∠AOB =2∶3,则∠BOC 的度数为_______________;45°或135°【分析】根据垂直关系可得∠AOC=90°再由∠AOC :∠AOB=2:3可得∠AOB 然后再分两种情况进行计算即可【详解】解:如图∠AOC 的位置有两种:一种是∠AOC 在∠AOB 内一种是在解析:45°或135°根据垂直关系可得∠AOC=90°,再由∠AOC :∠AOB=2:3,可得∠AOB ,然后再分两种情况进行计算即可.【详解】解:如图,∠AOC 的位置有两种:一种是∠AOC 在∠AOB 内,一种是在∠AOB 外.∵OA ⊥OC ,∴∠AOC=90°,①当∠AOC 在∠AOB 内,如图1,∵∠AOC :∠AOB=2:3,∴∠BOC=12∠AOC=45°, ②当∠AOC 在∠AOB 外,如图2,∵∠AOC :∠AOB=2:3,∴∠AOB=32∠AOC=135°, ∴∠BOC=360°-∠AOB-∠AOC=135°.故答案为:45°或135°.【点睛】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.13.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.【分析】过作过作根据平行线的性质可知然后根据平行线的性质即可求解;【详解】如图过作过作∴∴∵∴∴∴∴∴故答案为:【点睛】本题考查了平行线的性质两直线平行同位角相等两直线平行内错角相等正确理解平行线的解析:90x y z +-=︒过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;【详解】如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∵90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;14.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___ 130cm2【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD 那么GH=CDBC=FG 观察可知梯形EFMD 是两个梯形的公共部分那么阴影部分的面积就等于梯形MGHD 再根据梯形的面积计算公式计算即可【解析:130cm 2.【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD ,那么GH=CD ,BC=FG ,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD ,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH 是由直角梯形ABCD 平移得到的,∴梯形EFGH ≌梯形ABCD ,∴GH=CD ,BC=FG ,∵梯形EFMD 是两个梯形的公共部分,∴S 梯形ABCD -S 梯形EFMD =S 梯形EFGH -S 梯形EFMD ,∴S 阴影=S 梯形MGHD =12(DM+GH )•GM=12(28-4+28)×5=130(cm 2). 故答案是130cm 2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等. 15.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.40°【分析】先根据对顶角相等的性质得出∠1=∠2即可求出α的度数【详解】解:∵∠1与∠2是对顶角∠2=50°∴∠1=∠2∵∠2=50°∴α+10°=50°∴α=40°故答案为:40°【点睛】本题考 解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.16.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.40【解析】根据平行线的性质先求出∠BEF 和∠CEF 的度数再求出它们的差就可以了解:∵AB ∥EF ∴∠BEF=∠ABE=70°;又∵EF ∥CD ∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF 和∠CEF 的度数,再求出它们的差就可以了. 解:∵AB ∥EF ,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.17.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.垂线段最短【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在书写答案解析:垂线段最短【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.18.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为_____.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.19.如图,a∥b,∠1=80°,∠2=45°,∠3=_____.55°【分析】根据平行线的性质和对顶角的性质即可得到结论【详解】解:∵a∥b∴∠1+∠3+∠4=180°∵∠2=∠4∠2=45°∴∠4=∠2=45°∵∠1=80°∴∠3=180°-45°-80°=5解析:55°【分析】根据平行线的性质和对顶角的性质即可得到结论.【详解】解:∵a∥b,∴∠1+∠3+∠4=180°,∵∠2=∠4,∠2=45°,∴∠4=∠2=45°∵∠1=80°,∴∠3=180°-45°-80°=55°,故答案为:55°.【点睛】本题考查了平行线的性质和对顶角的性质,熟记性质并准确识图是解题的关键. 20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.(n ﹣1)×180【分析】分别过P1P2P3作直线AB 的平行线P1EP2FP3G 由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠ 解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.在ABC 中,AB AC =,直线l 经过点A ,且与BC 平行.仅用圆规完成下列画图.(保留画图痕迹,不写作法)(1)如图①,在直线l 上画出一点P ,使得APC ACB ∠=∠;(2)如图②,在直线l 上画出所有的点Q ,使得12AQC ACB ∠=∠.解析:(1)见解析;(2)见解析【分析】(1)以C 为圆心,以CA 为半径画弧,交点即为所求;(2)以A 为圆心,以AC 为半径画弧,交点即为所求.【详解】(1)如图所示,点P 即为所求,理由如下:CP CA =,//l BC ,则APC CAP ACB ∠=∠=∠.(2)如图所示,点12Q Q 、即为所求,理由如下:1AC AQ =,//l BC ,则11112AQ C ACQ BCQ ACB ∠=∠=∠=∠; 12CQ CQ =,则1221CQ Q CQ Q ∠=∠.【点睛】本题考查了基本作图,熟记等腰三角形的性质,平行线的性质是解题的关键.22.如图,已知在每个小正方形的网格图形中,ABC的顶点都在格点上,,,A B C为格点.(1)先将ABC先向左平移2个单位,再向上平移3个单位,请在图中画出平移后DEF,(点A,B,C所对应的顶点分别是D,E,F)(2)求出DEF的面积;(3)连结AD,BE,直接说出AD与BE的关系(不需要理由).解析:(1)见解析;(2)8;(3)AD=BE且AD∥BE【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点D、E、F,再依次连接即可;(2)根据三角形的面积公式计算;(3)根据平移的性质回答.【详解】解:(1)如图,△DEF即为所作;(2)S△DEF=1442⨯⨯=8;(3)如图,由平移可知:AD=BE且AD∥BE.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.如图,已知:AD BC ⊥于D,EG BC ⊥于G,AD 平分BAC ∠.求证:1E ∠∠=.下面是部分推理过程,请你填空或填写理由.证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG ( )∴21∠=∠( ),3∠= ( ).又∵AD 平分BAC ∠(已知),∴23∠∠=( ),∴1E ∠∠=( )解析:同位角相等,两直线平行;两直线平行,内错角相等;∠E ;两直线平行,同位角相等;角平分线的定义;等量代换.【分析】根据垂直的定义、平行线的判定与性质、角平分线的定义以及等量代换进行解答即可.【详解】证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG (同位角相等,两直线平行)∴21∠=∠(两直线平行,内错角相等),3∠=∠E (两直线平行,同位角相等).又∵AD 平分BAC ∠(已知),∴23∠∠=(角平分线的定义),∴1E ∠∠=(等量代换).【点睛】本题主要考查了垂直的定义、平行线的判定与性质和角平分线的定义等知识点,灵活应用平行线的判定与性质成为解答本题的关键.24.如图,DE 平分∠ADF ,DF ∥BC ,点E ,F 在线段AC 上,点A ,D ,B 在一直线上,连接BF .(1)若∠ADF =70°,∠ABF =25°,求∠CBF 的度数;(2)若BF 平分∠ABC 时,求证:BF ∥DE .解析:(1)∠CBF =45°;(2)见解析.【分析】(1)根据平行线的性质和已知条件即可求出∠CBF 的度数;(2)根据平行线的性质可得∠ABC =∠ADF ,再根据BF 平分∠ABC ,DE 平分∠ADF ,可得∠ADE =∠ABF ,再根据同位角相等,两直线平行即可证明BF ∥DE .【详解】解:(1)∵DF ∥BC ,∴∠ABC =∠ADF =70°,∵∠ABF =25°,∴∠CBF =70°﹣25°=45°;(2)证明:∵DF ∥BC ,∴∠ABC =∠ADF ,∵BF 平分∠ABC ,DE 平分∠ADF ,∴∠ADE 12=∠ADF ,∠ABF 12=∠ABC , ∴∠ADE =∠ABF ,∴BF ∥DE .【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 25.如图,已知12∠=∠,C D ∠=∠,求证:A F ∠=∠.解析:证明见解析【分析】根据平行线的判定与性质即可得证.【详解】解:∵12∠=∠,∴//BD CE ,∴C ABD ∠=∠,∵C D∠=∠,∴D ABD∠=∠,∴//AC DF,∴A F∠=∠.【点睛】本题考查平行线的判定与性质,熟练运用平行线的判定与性质定理是解题的关键.26.如图,已知,AB//CD,EF交AB,CD于G、H,GM、HN分别平分∠AGF,∠EHD.试说明GM//HN.解析:证明见解析.【分析】首先根据平行线的性质可得∠BGF=∠DHE,再根据角平分线的性质可证明∠1=∠2,然后根据内错角相等,两直线平行可得HN∥GM.【详解】证明:∵AB∥CD,∴∠AGF=∠DHE,∵GM、HN分别平分∠AGF,∠EHD,∴∠1=12∠AGF,∠2=12∠DHE,∴∠1=∠2,∴GM∥HN.【点睛】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理与性质定理.27.试用举反例的方法说明下列命题是假命题.例如:如果ab<0,那么a+b<0.反例:设a=4,b=-3,ab=4⨯(-3)=-12<0,而a+b=4+(-3)=1>0,所以这个命题是假命题.(1)如果a+b>0,那么ab>0.(2)如果a是无理数,b也是无理数,那么a+b也是无理数.解析:(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b>0,那么ab>0;所举的反例就是,a、b一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如1±2,两数相加就是有理数.【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取a=1+2,b=1-2,a 、b 均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.28.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,FO ⊥CD 于点O ,若∠BOD ∶∠EOB=2∶3,求∠AOF 的度数.解析:45︒.【分析】设2BOD x ∠=,从而可得3EOB x ∠=,先根据角平分线的定义3EOC EOB x ∠=∠=,再根据平角的定义可得求出x 的值,然后根据垂直的定义可得90DOF ∠=︒,最后根据平角的定义即可得.【详解】设2BOD x ∠=,则3EOB x ∠=,∵OE 平分BOC ∠,∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒,233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒,FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.【点睛】本题考查了角平分线的定义、平角的定义、垂直的定义等知识点,熟练掌握并理解各定义是解题关键.。
初中数学相交线与平行线专题训练50题含答案

初中数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,如果104AOD ∠=︒,那么MOC ∠等于( )A .38°B .37°C .36°D .52° 2.如图,在直线l 外一点P 与直线上各点的连线中,P A =5,PO =4,PB =4.3,OC =3,则点P 到直线l 的距离为( )A .3B .4C .4.3D .5 3.如图网格中,每个小方格都是边长为1的小正方形,点A 、B 是方格纸中的两个格点(网格线的交点称格点),在这个7×7的方格纸中,找出格点C ,使△ABC 的面积为3,则满足条件的格点C 的个数是( )A .2 个B .4个C .5个D .6个 4.如图,直线a ,b 穿过正五边形ABCDE ,且//a b ,则αβ∠-∠=( )A .95°B .84°C .72°D .60° 5.如图,某沿湖公路有三次拐弯,如果第一次的拐角120A ∠=︒,第二次的拐角155B ∠=︒,第三次的拐角为C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠的度数是( )A .130︒B .140︒C .145︒D .150︒ 6.如图,下列条件:①①C =①CAF ,①①C =①EDB ,①①BAC +①C =180°,①①GDE +①B =180°,①①CDG =①B .其中能判断AB //CD 的是( )A .①①①①B .①①①C .①①①D .①①① 7.如图,与①α构成同旁内角的角有( )A .1个B .2个C .5个D .4个 8.如图,下列说法中错误的是( )A .①1与①A 是同旁内角B .①3与①A 是同位角C .①2与①3是同位角D .①3与①B 是内错角9.如图,为判断一段纸带的两边a ,b 是否平行,小明在纸带两边a ,b 上分别取点A ,B ,并连接AB .下列条件中,能得到a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=︒D .13180∠+∠=︒ 10.如图,//DE BC BE ,平分ABC ∠,若170=︒∠,则AEB ∠的度数为( )A .20︒B .35︒C .55︒D .70︒ 11.用“垂线段最短”来解释的现象是( )A .B .C .D .12.如图,直线AB ,CD 相交于点O ,OE 平分①AOC ,若①BOD =70°,则①DOE 的度数是( )A .70°B .35°C .120°D .145° 13.下列说法错误的是( )A .同旁内角相等,两直线平行B .旋转不改变图形的形状和大小C .对角线相等的平行四边形是矩形D .菱形的对角线互相垂直14.(1)如果直线a b ,b c ,那么a c ;(2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)在同一平面内如果直线a b ⊥,c b ,那么a c ; (5)两条直线平行,同旁内角相等;(6)两条直线相交,所成的四个角中,一定有一个是锐角.其中真命题有( )A .1个B .2个C .3个D .4个 15.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;①若a>b ,则-2a>-2b ;①如果三条直线a 、b 、c 满足:a①b ,b①c ,那么直线a 与直线c 必定平行;①对顶角相等,其中真命题有( )个.A .1B .2C .3D .416.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;①若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有①C .①①都正确D .①①都不正确 17.如图,在Rt ABC ∆中,90C ∠=︒,3AC =,6BC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于两点,过这两点作直线与AB 相交于点D ,则AD 的长是( )A .3B .1.5CD .18.如图,直线AB 与直线CD 相交于点O.若①AOD =50°,则①BOC 的度数是( )A .40°B .50°C .90°D .130° 19.将一块直角三角板ABC 按如图方式放置,其中①ABC =30°,A 、B 两点分别落在直线m 、n 上,①1=20°,添加下列哪一个条件可使直线m①n( )A .①2=20°B .①2=30°C .①2=45°D .①2=50° 20.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD ,DP ,BD 与CF 相交于点H .给出下列结论:①~BDE DPE ,①35FP PH =,①2DP PH PB =⋅,①tan 2DBE ∠=序号是( )A .①①B .①①①C .①①①D .①①二、填空题21.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.22.如图,直线,则的度数为=______.23.如图所示,A ,B 之间有一座山,一条笔直的铁路要通过A ,B 两地,在A 地测得铁路的走向是北偏东68°20',如果A ,B 两地同时开工,那么在B 地按____方向施工才能使铁路在山中准确接通.24.如图,直线AB ,CD 相交于点O ,若①AOC =20°,则①BOD 的大小为___________(度).25.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是 _____ (填序号).26.如图,直线AB 与直线CD 交于点O ,OE 平分AOC ∠,已知①100AOD =︒,那么EOB ∠=__度.27.如图,直线AB 与CD 相交于点O ,OE AB ⊥于O ,140∠=︒,则2∠=______.28.如图,已知平行线AB ,CD 被直线AE 所截,AE 交CD 于点F ,连接CE ,若20E ∠=︒,CF EF =,则A ∠的度数为______.29.如图,直线a①直线b ,且被直线c 所截,若①1=(3x+70)度,①2=(2x+10)度,则x 的值为________.30.如图,六边形ABCDEF 是正六边形,若l 1①l 2,则①1﹣①2=_____.31.如图,直线a ①b ,在Rt①ABC 中,点C 在直线a 上,若①1=56°,①2=29°,则①A 的度数为______度.32.如图,梯形ABCD 中,AB CD ∥,对角线AC 、BD 相交于点O ,如果ABD △的面积是BCD △面积的2倍,那么DOC △与BOC 的面积之比是______.33.如图,在Rt①ABC 中,AC =6,BC =8,点P 是AC 边的中点,点D 和E 分别是边BC 和AB 上的任意一点,则PD+DE 的最小值为_____.34.如图,AC BC ⊥,90CDA ∠=︒,4,3,5AC BC AB ===,点C 到AB 的距离是______.与ACD ∠相等的角是_________.35.如图,直线a ,b ,c 两两相交于A ,B ,C 三点,则图中有________对对顶角;有________对同位角;有________对内错角;有________对同旁内角.36.如图,在长方形ABCD 中,点E 、F 分别在AD 、BC 边上,沿直线EF 折叠后,C 、D 两点分别落在平面内的C '和D 处,若①1=70°,则①2=______.37.如图,将一张长方形纸片ABCD 沿EF 折叠后,点A ,B 分别落在点A ',B '的位置.若155∠=︒,则2∠的度数是__________.38.如图,在①ABC 中,①ABC 与①ACB 的平分线交于点D ,EF 经过点D ,分别交AB ,AC 于点E ,F ,BE =DE ,DF =5,点D 到BC 的距离为4,则①DFC 的面积为_____39.如图,已知AB①CD ,垂足为点O ,直线EF 经过O 点,若①1=55°,则①COE 的度数为______度.40.如图,在ABCD 中,105ABC ∠=︒,对角线,AC BD 交于点,30,4O DAC AC ∠=︒=,点P 从点B 出发,沿着边BC CD 、运动到点D 停止,在点P运动过程中,若OPC 是直角三角形,则CP 的长是___________.三、解答题41.如图,点B ,F ,C ,E 在同一条直线上,BF EC =,AB DE =,DE AB ∥.求证:A D ∠=∠.42.如图,已知AM ①CN ,且①1=①2,那么AB ①CD 吗?为什么? 解:因为AM ①CN ( 已知 )所以①EAM =①ECN又因为①1=①2所以①EAM +①1=①ECN +①2即① =①所以 .43.如图,在ABC 中,ABC ∠的平分线交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若80A ∠=︒,40C ∠=︒,求BDE ∠的度数.44.按要求画图:已知点P 、Q 分别在AOB ∠的边OA ,OB 上(如图所示):(1)①画线段PQ ;①过点P 作OB 的垂线PE ,垂足为E ;①过点Q 作OA 的平行线MN (M 在上,N 在下).(2)在(1)的情况下,若40MQB ∠=︒,求OPE ∠.(不使用三角形的内角和为180°) 45.如图,在ΔABC 中,CD 是高,点E 、F 、G 分别在BC 、AB 、AC 上且EF①AB ,DG①BC ,试判断①1与①2的大小关系,并说明理由.46.(1)如图1,在①ABC 中,BD 是①ABC 的角平分线,点D 在AC 上,DE①BC ,交AB 于点E ,①A =50°,①ADB =110°,求①BDE 各内角的度数;(2)完成下列推理过程.已知:如图2,AD ①BC ,EF ①BC ,①1=①2,求证:DG ①AB .推理过程:因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(________).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (________).因为①1=①2(已知),所以________=________(等量代换).所以DG①AB (内错角相等,两直线平行).47.如图,点A 为直线外一点,点B 是直线l 上一定点,点P 是直线l 上一动点,连接AB ,AP ,若要使2PA PB 1+的值最小,确定点P 的位置,并说明理由.48.如图,在三角形ABC 中,点D ,F 在边BC 上,点E 在边AB 上,点G 在边AC 上,EF 与GD 的延长线交于点H ,1B ∠=∠,23180∠+∠=︒.(1)判断EH 与AD 的位置关系,并说明理由(2)若58DGC ∠=°,且410H ∠=∠+︒,求H ∠的度数.49.已知:直线AB 与直线PQ 交于点E ,直线CD 与直线PQ 交于点F ,∠PEB +∠QFD =180°.(1)如图1,求证:AB ∥CD ;(2)如图2,点G 为直线PQ 上一点,过点G 作射线GH ∥AB ,在∠EFD 内过点F 作射线FM,∠FGH内过点G作射线GN,∠MFD=∠NGH,求证:FM∥GN;(3)如图3,在(2)的条件下,点R为射线FM上一点,点S为射线GN上一点,分别连接RG、RS、RE,射线RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度数.50.如图,四边形ABCD与四边形CEFH均为正方形,点B、C、E在同一直线上,连接BD,DF,BF.(1)观察图形,直接写出与线段CH平行的线段.(2)图中与线段CH垂直的线段共有_______条.(3)点B到点F的最短距离为线段____的长,点B到线段EF的的最短距离为线段____的长.(4)若正方形ABCD的边长为a, 正方形CEFH的边长为2,则线段HD=___,线段BE=___,此时请你求出三角形DBF的面积,你有什么发现?参考答案:1.A【分析】先根据已知条件求出①AOC 的度数,再根据OM 平分①AOC ,即可得到①MOC 的值【详解】解:①104AOD ∠=︒①①AOC =180°−104°=76°①OM 平分①AOC ①①MOC=12AOC ∠ 1762=⨯︒ =38°故选:A【点睛】本题主要考查了领补角及角平分线的定义,熟练掌握定义是解题的关键 2.B【分析】点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.【详解】解:由于OP ①直线l ,根据题意知:点P 到直线l 的距离等于PO 的长,即点P 到直线l 的距离PO =4,故选:B .【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.3.D【分析】利用格点的性质和三角形的面积公式即可得.【详解】由格点的性质和三角形的面积公式得,总共有6个满足条件的格点C ,如图所示:(格点C 均在平行于AB 的直线上)其中,由点12345,,,,C C C C C 与点,A B 分别构成的5个三角形的面积显然是36ABC 的面积为3663AC C BDC ABDC S S S --直角梯形1114633(36)1222=⨯⨯-⨯⨯-⨯+⨯ 991222=--故选:D .【点睛】本题考查了平行线的实际应用,理解题意,结合格点的性质是解题关键. 4.C【分析】延长EA 与直线b 交于点F ,由平行线的性质得①AFG =∠β,再由多边形的内角和定理求出108EAB ∠=︒,进一步得出72GAF ∠=︒,最后由三角形的外角关系可得结论.【详解】解:延长EA 与直线b 交于点F ,如图,①//a b①AFG β∠=∠①五边形ABCDE 是正五边形, ①(52)1801085EAB -⨯︒∠==︒ ①180********GAF EAB ∠=︒-∠=︒-︒=︒又=72AFG GAF αβ∠∠+∠=∠+︒①72αβ∠-∠=︒故选:C【点睛】本题考查的是多边形内角与外角,正五边形的性质,三角形外角的性质,利用数形结合求解是解答此题的关键.【分析】过点B作BH①AM,则BH①CD,利用平行线的性质求解即可.【详解】解:如图,过点B作BH①AM,①AM①CD,①BH①CD,①①ABH=①A=120°,①HBC+①C=180°,①①HBC=①ABC-①ABH=35°,①①C=180°-①HBC=145°,故选:C.【点睛】本题考查平行线的判定与性质,添加平行线是解答的关键.6.A【分析】根据平行线的判定定理逐一排除得出即可.【详解】解:①①C=①CAF,①AB//CD;故①符合题意;∠=∠C EDB//∴AC BD故①不符合题意;①①BAC+①C=180°,①AB//CD;故①符合题意;①①GDE+①B=180°,①GDE+①EDB=180°,①①EDB=①B,①AB//CD;故①符合题意;①①CDG=①B,①AB//CD,故①符合题意;符合题意的有:①①①①故选:A .【点睛】本题考查了平行线的判定,掌握平行线的判定是解题的关键.7.C【详解】试题分析:根据题意可知与①α构成同旁内角的角有如图5个.考点:三线八角点评:本题难度较低,主要考查学生对三线八角的掌握.分析这类题型是,主要抓住已知角两边与第三边相交的构成三线基础,为解题关键.8.B【分析】根据同位角、内错角、同旁内角的定义,可得答案.【详解】A. ①1与①A 是同旁内角,故A 正确;B. ①3与①A 不是同位角,故B 错误;C. ①2与①3是同位角,故C 正确;D. ①3与①B 是内错角,故D 正确;故选B.【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握其性质9.D【分析】根据平行线的判定定理进行判断即可.【详解】解:A 、12∠=∠,1∠和2∠邻补角,不能证明a b ∥;B 、13∠=∠,1∠和3∠是同旁内角,同旁内角相等不能证明a b ∥;C 、14180∠+∠=︒,1∠和4∠属于内错角,内错角互补不能证明a b ∥;D 、①13180∠+∠=︒,①a b ∥(同旁内角互补两直线平行);故选:D .【点睛】本题考查了平行线的判定定理,熟知:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;是解本题的关键.10.B【分析】先根据平行线的性质求得①ABC=70°,①CBE=①AEB,再运用角平分线即可求得①AEB的度数.【详解】解:①//DE BC,①170ABC∠=∠=︒,CBE AEB∠=∠,①BE平分①ABC,①1352CBE AEB ABC∠=∠=∠=︒.故选:B.【点睛】本题考查了平行线的性质和角平分线,灵活应用相关性质定理是解答本题的关键.11.A【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】解:A.体育课上,老师测量某个同学的跳远成绩,利用了垂线段最短,故A符合题意;B.木板上弹墨线,利用了两点确定一条直线,故B不符合题意;C.用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故C不符合题意;D.把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故D不符合题意.故选:A.【点睛】本题主要考查了线段的性质,熟记性质并能灵活过应用是解题关键.12.D【分析】根据对顶角相等求出①AOC,根据角平分线的定义计算,得到答案.【详解】解:①①BOD=70°,①①AOC=①BOD=70°,①OE平分①AOC,①①COE=12①AOC=12×70°=35°,①DOE=①COD-①COE=145°故选:D.【点睛】本题考查的是对顶角、角平分线的定义、平角定义,掌握对顶角相等、角平分线的定义是解题的关键.13.A【分析】依次分析各选项即可得出说法错误的选项.【详解】解:因为同旁内角互补,两直线平行,因此A选项错误;根据旋转的性质,旋转不改变图形的形状和大小,因此B选项内容正确;根据矩形的判定,C选项内容正确;根据菱形的性质,D选项内容正确.故选:A.【点睛】本题综合考查了平行线的判定、旋转的性质、矩形的判定、菱形的性质等内容,解决本题的关键是理解并能灵活运用相关概念,本题考查的是概念基础题,因此侧重考查学生对教材基础知识的理解与掌握等.14.A【分析】分别利用平行线的性质,以及对顶角的定义等分析得出答案.【详解】解:(1)如果直线a b,b c,那么a c,正确,是真命题,(2)相等的角是对顶角,错误,不是真命题;(3)两条直线被第三条直线所截,同位角不一定相等,错误,不是真命题;(4)在同一平面内如果直线a①b,c b,那么a c,错误,不是真命题;(5)两条直线平行,同旁内角互补,错误,不是真命题;(6)两条直线相交,所成的四个角中,一定有一个是锐角,错误,不是真命题;故选:A.【点睛】此题主要考查了命题与定理,正确把握平行线的性质是解题关键.15.C【详解】试题分析:根据基本的数学概念依次分析各小题即可作出判断.解:①在同一平面内,过一点有且只有一条直线与已知直线垂直,①如果三条直线a、b、c 满足:a①b,b①c,那么直线a与直线c必定平行,①对顶角相等,均正确;①若,则,错误;故选C.考点:真假命题点评:本题属于基础应用题,只需学生熟练掌握基本的数学概念,即可完成.16.A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得①错误.【详解】解:①若a①b,b①c,则a①c,说法正确;①若a①b,b①c,则a①c,说法错误,应为同一平面内,若a①b,b①c,则a①c;故选:A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.17.C【分析】利用勾股定理求出AB,证明BD=AD即可解决问题.【详解】解:在Rt①ABC中,AC=3,BC=6,①AB=由作图可知,直线DE垂直平分线段BC,①①BED=①C=90°,①DE①AC,①BE=EC,DE①AC,①BD=AD,故选:C.【点睛】本题考查作图−基本作图,勾股定理,平行线等分线段定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.B【分析】根据对顶角相等,可得答案.【详解】解;①①BOC与①AOD是对顶角,①①BOC=①AOD=50°,故选B.【点睛】本题考查了对顶角与邻补角,对顶角相等是解题关键.19.D【分析】根据平行线的性质即可得到①2=①ABC+①1,即可得出结论.【详解】①直线EF①GH ,①①2=①ABC+①1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.20.C【分析】根据等边三角形的性质和正方形的性质,得到30PCD ∠=︒,于是得到75CPD CDP ∠=∠=︒,证得15EDP PBD ∠=∠=︒,于是得到BDE DPE ∆∆,故①正确;由于FDP PBD ∠=∠,60DFP BPC ∠=∠=︒,推出DFP BPH ∆∆,得到PF DF DF PH PB CD ===①错误;由于30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,推出DPH CPD ∆∆,得到PD PH CD PD=,PB CD =,等量代换得到2PD PH PB =⋅,故①正确;过P 作PM CD ⊥,PN BC ⊥,求得30PCD ∠=︒,根据三角函数的定义得到CM PN ==2PM =,由平行线的性质得到EDP DPM ∠=∠,等量代换得到DBE DPM ∠=∠,于是求得tan 2DBE ∠=①正确.【详解】解:①BPC ∆是等边三角形,BP PC BC ∴==,60PBC PCB BPC ∠=∠=∠=︒,在正方形ABCD 中,①AB BC CD ==,A ADC BCD 90∠=∠=∠=︒30ABE DCF ∴∠=∠=︒,75CPD CDP ∴∠=∠=︒,15PDE ∴∠=︒,①604515PBD PBC HBC ∠=∠-∠=︒-=︒︒,EBD EDP ∴∠=∠,①DEP DEB ∠=∠,BDE DPE ∴∆∆;故①正确;①=PC CD ,=30PCD ∠︒=75PDC ∴∠︒15FDP ∴∠=︒①45DBA ∠=︒60PBD BPC ∴∠=∠=︒①DFP BPH ∆∆PF DF DF PH PB CD ∴===①错误; ①30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,①DPHCPD ∆∆, ∴PD PH CD PD=, 2PD PH CD ∴=•,①PB CD =,2PD PH PB =∴⋅,故①正确;如图,过P 作PM CD ⊥,PN BC ⊥,设正方形ABCD 的边长是4,BPC △为正三角形,60PBC PCB ︒∴∠=∠=,4PB PC BC CD ====,30PCD ∴∠=︒sin 604CM PN PB ︒∴==⋅==,sin302PM PC =︒⋅=, ①//DE PM ,EDP DPM ∴∠=∠,DBE DPM ∴∠=∠,tan tan 2DM DBE DPM PM ∴∠=∠===①正确;故选:C.【点睛】本题考查的正方形的性质,相似三角形的判定和性质,平行线的性质,三角函数定义,等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PM及PN的长.21.40︒∠的度数,根据对顶角相等可得解.【分析】由余角的定义可得BOD⊥【详解】解:EO AB90∴∠=BOE︒∴∠=∠-∠=-=905040BOD BOE EOD︒︒︒∴∠=∠=AOC BOD︒40故答案为:40︒【点睛】本题考查了对顶角,熟练掌握对顶角的性质是解题的关键.22.120°.【详解】试题分析:①①①1=50°①①=70°+①1=120°.考点: 1.平等线的性质;2.对顶角.23.南偏西68°20'【分析】根据平行线的性质:两条直线平行,内错角相等进行解答.【详解】如图所示:由于是相向开工.故角度相等,方向相反.而①1与①2为内错角,所以对B来说是南偏西68°20′.故答案是:68°20′.【点睛】考查了平行线的性质和方向角,注意此类题的结论:角度不变,方向相反.24.20【分析】直接利用“对顶角相等”即可解答.【详解】解:①①AOC 和①BOD 是对顶角①①BOD=①AOC=20°.故答案为20.【点睛】本题考查了对顶角的定义和性质,正确识别对顶角是解答本题的关键. 25.①.【分析】利用线段的性质进行解答即可.【详解】解:图①利用垂线段最短;图①利用两点之间线段最短;图①利用两点确定一条直线;故答案为:①.【点睛】本题主要考查了线段的性质,熟悉相关性质是解题的关键.26.140【分析】根据角平分线的定义和对顶角的性质解答即可.【详解】解:①100AOD ∠=︒,①18010080AOC ∠=︒-︒=︒,①OE 平分AOC ∠, ①1402COE AOC ∠=∠=︒, ①100BOC AOD ∠=∠=︒,①10040140EOB BOC COE ∠=∠+∠=︒+︒=︒.故答案为:140.【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握相关的定义和性质是解答本题的关键.27.50°【分析】先根据垂直的定义、角的和差求出BOD ∠的度数,再根据对顶角相等即可得.【详解】OE AB ⊥90BOE1904050BOE BOD ∠∠=∴=∠-︒-︒=︒由对顶角相等得:520BOD ∠=∠=︒故答案为:50︒.【点睛】本题考查了垂直的定义、对顶角相等等知识点,熟记对顶角的性质是解题关键. 28.40°【分析】根据等腰三角形性质,得到20C E ∠=∠=︒,再根据三角形外交定理求得40DFE C E ∠=∠+∠=︒,最后根据平行线的性质求出①A 的度数.【详解】:CF EF =,20E ∠=︒,20C E ∴∠=∠=︒,40DFE C E ∴∠=∠+∠=︒.//AB CD ,40A DFE ∴∠=∠=︒.故答案为40°.【点睛】本题主要考查了平行线的性质、等腰三角形和三角形外角等有关知识,属于常考基础题型.29.20【分析】因为两直线平行,所以①2与①1的补角互为内错角,通过两直线平行内错角相等,建立一个关于x 的方程,解方程即可.【详解】①直线a①直线①21801∠=︒-∠即210180(370)x x +=-+解得20x故答案为20【点睛】本题主要考查平行线的性质,掌握平行线的性质并利用方程的思想列出方程是解题的关键.30.60°【分析】首先根据多边形内角和180°•(n -2)可以计算出①F AB =120°,再过A 作l ①l 1,进而得到l ①l 2,再根据平行线的性质可得①4=①2,①1+①3=180°,进而可以得出结果.【详解】解:如图,过A 作l ①l 1,则①4=①2,①六边形ABCDEF是正六边形,①①F AB=120°,即①4+①3=120°,①①2+①3=120°,即①3=120°﹣①2,①l1①l2,①l①l2,①①1+①3=180°,①①1+120°﹣①2=180°,①①1﹣①2=180°﹣120°=60°,故答案为60°.【点睛】此题主要考查了正多边形和平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.31.27【分析】如图,①3=①1,由①3=①2+①A计算求解即可.【详解】解:如图①a①b,①1=56°①①3=①1=56°①①3=①2+①A,①2=29°①①A=①3﹣①2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.32.1:2【分析】先根据∥DC BA 得到BN DM =,根据=2ABD BCD S S 得到1=2DO BO ,再根据12DOC S DO CH =,12BOC S BO CH =可得到1==2DOCBOC S DO BO S . 【详解】解:过点D 作DM AB ⊥,垂足为M ,过点B 作BN DC ⊥,交DC 的延长线于点N ,过点C 作CH DB ⊥与点H ,①∥DC BA ,①BN DM =,①=2ABD BCD SS , ①11=222AC DM DC BN ⨯⨯⨯, ①2AB DC =,①∥DC BA ,①==CDO OBA DCO OAB ∠∠∠∠,, ①DCO AOB ∽,①1==2DC DO AB BO , ①12DOC SDO CH =,12BOC S BO CH =, ①1==2DOCBOC SDO BO S , 故答案为:1:2.【点睛】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.33.365【分析】作点P 关于BC 的对称点F ,过F 作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,求得AF =9,根据勾股定理得到AB =10,根据相似三角形的性质得到EF =365,于是得到结论. 【详解】解:作点P 关于BC 的对称点F ,过F作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,①CF =CP ,①点P 是AC 边的中点,①AP =PC =3,①AF =9,①在Rt △ABC 中,AC =6,BC =8,①AB =10,①①AEF =①ACB =90°,①①A+①B =①A+①F ,①①B =①F ,①①ABC①①AFE , ①AF AB =EF BC , ①910=8EF , ①EF =365, ①PD+DE 的最小值为365, 答案为:365.【点睛】本题考查了轴对称-最短路线问题,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.34. 125B ∠ 【分析】根据等面积法求得线段CD 的长度,即可求得点C 到AB 的距离,再根据三角形内角和定理即可求得与ACD ∠相等的角.【详解】解:①90CDA ∠=︒,①CD AB ⊥.点C 到AB 的距离为线段CD 的长度. 由题意可得:1122ABC SAC BC AB CD =⨯=⨯ ①125AC BC CD AB ⨯==, ①AC BC ⊥,①90ACB ∠=︒,①90180DCB B CDB DCB B ∠+∠+∠=∠+∠+︒=︒,①90ACD DCB DCB B ∠+∠=︒=∠+∠,①ACD B ∠=∠. 故答案为:125,B ∠. 【点睛】此题考查了点到直线的距离,三角形内角和的性质,以及等面积法求三角形的高,解题的关键是掌握相关基础知识.35.6;12;6;6【详解】每两条直线的交点处有两对对顶角,共有对顶角有6对.①两条直线被第三条直线所截,可得到4对同位角,2对内错角,2对同旁内角, ①三条直线两两相交于三点,可分解成三个“三线八角”的基本图形,则同位角共有12对,内错角有6对,同旁内角有6对.36.125︒【分析】根据矩形的性质可得AD ①BC ,再利用平行线的性质可得①BFC ′=70°,从而利用平角定义求出①CFC ′=110°,然后根据折叠的性质可求出①CFE 的度数,最后利用平行线的性质,即可解答.【详解】解:①由题意可知:AD ①BC ,①①1=①BFC ′=70°,①①CFC ′=180°-①BFC ′=110°,由折叠得:①CFE =①C ′FE =12①CFC ′=55°,①AD ①BC ,①①2=180°-①CFE =125°,故答案为:125°【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.37.70°【分析】首先根据折叠可得①1=①EF B'=55°,再求出①B'FC的度数,然后根据平行线的性质可得①2=①B'FC=70°.【详解】解:根据折叠可得①1=①EF B',①①1=55°,①①EF B'=55°,①①B'FC=180°-55°-55°=70°,①AD//BC,①①2=①B'FC=70°,故答案为:70°.【点睛】本题主要考查了平行线的性质以及折叠的性质,关键是掌握两直线平行,同位角相等.38.10【分析】过点D作DG①BC于G,DH①AC于H,根据等腰三角形的性质得到①EBD=①EDB,根据角平分线的定义得到①EBD=①DBC,进而得到①DBC=①EDB,证明EF BC,求出DF=FC,根据角平分线的性质求出DH,根据三角形的面积公式计算,即可求出结果.【详解】解:如图,过点D作DG①BC于G,DH①AC于H,①BE=DE,①①EBD=①EDB,①BD平分①ABC,①①EBD=①DBC,①①DBC=①EDB,①EF BC,①①FDC=①DCB,①CD平分①ACB,①①FCD=①DCB,①①FDC=①FCD,①FC=DF=5,①CD平分①ACB,DG①BC,DH①AC,①DH=DG=4,①①DFC的面积=12FC·DH=12×5×4=10.故答案为:10.【点睛】本题考查的是角平分线的性质、平行线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.39.125【分析】根据邻补角的和是180°,结合已知条件可求①COE的度数.【详解】①①1=55°,①①COE=180°-55°=125°.故答案为125.【点睛】此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.40【分析】在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,P点一共有三种情况,①当①OP1C=90°时,①当①OP2C=90°时,①当①P3OC=90°时,根据三角函数的值即可求得CP的长度.【详解】解:如图所示,P点可以有以下三种情况,在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,①当①OP 1C=90°时,①ACB=30°,OC=2,①1P C=OC cos30=2⋅︒①当①OP 2C=90°时,①ACD=45°,OC=2,①2P C=OC cos45=2⋅︒①当①P 3OC=90°时,①ACB=30°,OC=2,①3OC P C==2cos30︒【点睛】本题主要考查了平行四边形的动点问题、平行线的性质、三角形内角和为180°、三角函数,解题的关键在于进行分类讨论,并用三角函数求出最后的答案.41.见解析【分析】先根据平行线的性质证得E B ∠=∠,再根据线段和求得EF BC =,然后SAS 证明EDF BAC △△≌,即可由全等三角形的性质得出结论.【详解】证明:①DE AB ∥,①E B ∠=∠①BF EC =,①BF CF EC CF +=+①EF BC =在EDF 与BAC 中,ED BA E B EF BC =⎧⎪∠=∠⎨⎪=⎩①()SAS EDF BAC ≌①A D ∠=∠【点睛】本题考查三角形全等的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.42.两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB ①CD .【分析】利用两直线平行,同位角相等即可得到一对同位角相等,利用等式的性质得到另一对同位角相等,最后利用同位角相等,两直线平行即可得证.【详解】解:因为AM //CN (已知),所以①EAM =①ECN (两直线平行,同位角相等),又因为①1=①2(已知),所以①EAM +①1=①ECN +①2(等式性质),即①BAE =①DCE ,所以AB //CD .故答案为:两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB //CD .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.43.30°##30度【分析】由三角形内角和可得60ABC ∠=︒,然后根据角平分线的定义可得1302ABD CBD ABC ∠=∠=∠=︒,进而根据平行线的性质可求解. 【详解】解:①80A ∠=︒,40C ∠=︒,①60ABC ∠=︒,①ABC ∠的角平分线交AC 于点D , ①1302ABD CBD ABC ∠=∠=∠=︒, ①DE BC ∥,①30EDB CBD ∠=∠=︒,故BDE ∠的度数为30°. 【点睛】本题主要考查角平分线的定义、三角形内角和及平行线的性质,熟练掌握三角形内角和是解题的关键.44.(1)①见解析;①见解析;①见解析(2)50°【分析】(1)①连接PQ即可;①利用直角三角板画垂线即可;①利用直尺和直角三角板画OA的平行线MN即可;∥,根据平行线的性质求出①APF=①AOE=①MQB=40°,(2)过点P作PF OB①FPE=①PEO=90°,然后根据平角定义即可求解.(1)解:①连接PQ,如图,线段PQ即为所求.①如图,直线段PE即为所求.①如图,直线MN即为所求.(2)∥解:①MN OA①①AOE=①MQB,又①MQB=40°,①①AOE=40°,∥,如图,过点P作PF OB①①APF=①AOE=40°,①FPE=①PEO,又PE①OB,①①PEO=①FPE=90°,①①OPE=180°-①APF-①FPE=180°-40°-90°=50°.【点睛】本题考查了基本作图,平行线的性质等,添加辅助线PF是解第2问的关键.45.见解析【分析】由DG①BC,根据“两直线平行,内错角相等”得到①1=①DCE,由CD是高,EF①AB,得到①CDB=①EFB=90°,根据平行线的判定得到CD①EF,由平行线的性质:两直线平行,同位角相等,得到①DCE=①2,即可得到①1=①2.【详解】解:相等,理由如下:①CD 是高,①CD ①AB ,①①CDB=90°① EF①AB, ①①EFB=90°①①CDB=①EFB ,①EF①CD①①2= ①DCB① DG①BC ①①1= ①DCB①①1=①2【点睛】本题考查了平行线的判定与性质以及垂直的定义,熟练掌握相关的定理和定义是解题的关键.46.(1)①ABD =20︒,BDE ∠=20º,BED ∠=140º;(2)垂直的定义;两直线平行,同位角相等;BAD ∠,2∠【分析】(1)由①BDC-①A 求出①ABD 的度数,由BD 为角平分线得到①DBC 的度数,再由DE 与BC 平行,利用两直线平行内错角相等求出①BDE 的度数,利用三角形的内角和定理即可求出①BED 的度数;(2)由AD 垂直于BC ,EF 垂直于BC ,利用垂直的定义得到一对直角相等,利用同位角相等两直线平行得到EF 与AD 平行,利用两直线平行同位角相等得到一对角相等,再由已知一对角相等,利用等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】(1)因为50A ∠=︒,70BDC ∠=︒,所以20ABD BDC A ∠=∠-∠=︒,因为BD 是ABC ∆的角平分线,所以20DBC ABD ∠=∠=︒.因为//DE BC ,所以20BDE DBC ∠=∠=︒(两直线平行,内错角相等),所以180140BED EBD EDB ∠=︒-∠-∠=︒(三角形内角和定理);(2)因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(垂直的定义).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (两直线平行,同位角相等).因为①1=①2(已知),所以BAD ∠=2∠(等量代换).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学平行线的判定及性质(相交线与平行
线)基础练习
试卷简介:全卷共5道题,分值100分,测试时间30分钟。
主要考察了大家对平行线的判定以及性质的掌握情况
一、单选题(共5道,每道20分)
1.如图,∠1=∠A,则下列结论一定成立的是()
A.AB//FD
B.ED//AC
C.∠B=∠1
D.∠3=∠1
答案:B
解题思路:解:由∠1=∠A,根据同位角相等,两直线平行的DE∥AC故选B.
易错点:不能够准确的找准同位角,内错角与同旁内角。
试题难度:三颗星知识点:平行线的判定与性质
2.如图2,直线a与直线b互相平行,则的值是
( )
A.30
B.20
C.50
D.60
答案:B
解题思路:解:由a∥b知x=30,因为3y+x=180,可得y=50,所以=20故选B
易错点:同学们不能够根据平行的到x,y的值
试题难度:三颗星知识点:平行线的性质
3.如图3,直线l1//l2,则∠α=()
A.100°
B.110°
C.120°
D.130°
答案:D
解题思路:解:由l1//l2得,∠1=180°-110°=70°,所以70°+60°=130°故选D.
易错点:找不对同旁内角去转移角度。
试题难度:三颗星知识点:平行线的性质
4.如图4,AB//CD,∠BAE=120°,∠DCE=30°,则∠AEC=()
A.90°
B.150°
C.75°
D.60°
答案:A
解题思路:过E做EF∥AB,则∠BAE+∠AEF=180°,所以∠AEF=60°,EF∥CD,所以
∠FEC=∠C=30°,所以∠AEC=90°
易错点:同学不能够把这些条件通过做平行线集中
试题难度:四颗星知识点:平行线的判定与性质
5.如图5,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,∠1=∠3.下列正确的结论有()个.
①DE//BF;②AB//CD;③∠1=∠2;④∠A=∠C.
A.1
B.2
C.3
D.4
答案:D
解题思路:由∠1=∠3得,DE∥BF,由∠2=∠ADF,∠1=∠ABC,∠ADF=∠ABC的,
∠1=∠2=∠3,所以AB∥CD,所以∠A+∠ADF=∠C+∠ABC,所以∠A=∠C
易错点:不能够利用角平分线怎么利用。
试题难度:四颗星知识点:平行线的判定与性质。