单相电机电容启动
单相电机启动电容 运行电容

单相电机启动电容运行电容单相电机是一种常见的电动机类型,它广泛应用于家用电器、工业设备等领域。
在单相电机的运行过程中,启动电容和运行电容起到了重要的作用。
本文将详细介绍单相电机启动电容和运行电容的作用原理以及其在单相电机中的应用。
一、启动电容启动电容是单相电机启动过程中必不可少的元件。
在单相电机启动时,由于只有一个相供电,无法产生旋转磁场,因此需要通过启动电容来产生一个相位差,从而实现单相电机的启动。
启动电容通过与电动机的起动线圈并联连接,形成一个电路,当电机启动时,启动电容的电压与电源电压反相,从而形成了一个相位差,使得电机能够启动。
启动电容的容值和电路设计对电机的启动性能有着重要影响,合理的启动电容容值能够提高电机的启动转矩和启动效果。
二、运行电容运行电容是单相电机运行过程中的辅助元件。
在单相电机启动后,由于只有一个相供电,无法产生恒定的旋转磁场,因此需要通过运行电容来产生一个恒定的相位差,以维持电机的运行。
运行电容通过与电机的运行线圈并联连接,形成一个电路,当电机运行时,运行电容的电压与电源电压相位差90度,从而形成了一个恒定的相位差,使得电机能够持续运行。
运行电容的容值和电路设计对电机的运行性能有着重要影响,合理的运行电容容值能够提高电机的效率和稳定性。
三、单相电机中的应用在单相电机中,启动电容和运行电容是不可或缺的元件,它们的作用是为了解决单相电机无法自启动和无法形成恒定旋转磁场的问题。
启动电容在电机启动阶段起到关键作用,通过产生一个相位差,使得电机能够启动。
启动电容的容值需要根据具体电机的特性和负载情况进行选择,容值过大或过小都会对电机的启动性能产生不利影响。
运行电容在电机运行阶段起到辅助作用,通过产生一个恒定的相位差,维持电机的运行。
运行电容的容值也需要根据具体电机的特性和负载情况进行选择,容值过大或过小都会对电机的运行性能产生不利影响。
总结:单相电机的启动电容和运行电容是保证电机正常启动和运行的重要元件。
单相、三相电机启动及运行电容计算

单相、三相电机启动及运行电容
计算(总2页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
单相、三相电机启动及运行电容计算
一、单相电机选配公式1:
C=8JS式中,C为配用的电容量,单位为微法(uF);J为电机启动绕组电流密度,一般选5~7A/(mm2);S为启动绕组导线截面积(mm2 )。
例如:电机启动绕组线圈绕制后,测出启动绕组线径为
0.17mm2 ,则截面积S= ,选J=7A/mm2 ,所以C=8×7×≈,实际选配1-4倍C,参数为1.±5%,耐压500V的电容。
另外应注意电容的耐压值一定要高于400V,以防击穿。
二、单相电机选配公式2:
单相运行电容公式:C=1950×I/U×COSφ (I为电机额定电流,U为电源电压COSφ为功率因数为~间),启动电容为1-4倍的C。
例如:一台单相电机,额定电流为功率为370W 如何选择它的电容值 C=1950×I/U×COSφ=1950×220×≈15(μF)
* 单相电动机工作电容按每100W 1-4uf选用
三、三相电机选配公式3:
三相电动机,电容器容量公式:C2=1950I/(U*COSφ) 耐压公式:U (电容)大于或等于*U C为容量;I为电流;U为电压;COSφ为功率因数取~。
四、选配公式:耐压:U(电容)大于或等于(2~)×U 启
动电容容量:C=(~)×C(运转)耐压:U(电容)大于或等于×U 电容选得太大造成电机电流过大,起动转矩大。
电机 启动电容

电机启动电容1. 什么是电机启动电容?电机启动电容是一种用于启动单相交流电动机的电器元件。
它通过提供额外的电容来改善电机的起动性能,使得电机能够在较低的起动电流下正常启动。
在电机启动过程中,启动电容能够提供额外的电流来帮助电机克服起动阻力,从而实现电机的顺利启动。
2. 电机启动电容的工作原理电机启动电容的工作原理基于电容的特性。
电容是一种能够储存电荷的元件,它可以在电场中储存电能。
当电容与电源相连时,电容会被充电,储存电荷。
当电容与电源断开时,电容会释放储存的电荷,提供电流。
利用电容的这种特性,电机启动电容能够在电机启动过程中提供额外的电流,帮助电机克服起动阻力。
在电机启动时,启动电容与电机的启动线圈并联连接。
启动线圈是电机中的一组线圈,它们与电源相连,用于产生启动磁场。
启动电容通过与启动线圈并联连接,使得电机在启动过程中能够得到额外的电流。
当电机启动时,启动电容会充电,并在启动过程中释放储存的电荷,提供额外的电流给电机。
这样,电机能够在较低的起动电流下正常启动。
3. 电机启动电容的作用电机启动电容主要有以下几个作用:3.1 提供额外的起动电流电机启动电容能够提供额外的电流,帮助电机克服起动阻力。
在电机启动时,由于惯性和摩擦等因素的存在,电机需要克服一定的阻力才能正常启动。
启动电容的引入能够提供额外的电流,增加电机的起动动力,使得电机能够在较低的起动电流下正常启动。
3.2 改善电机的起动性能电机启动电容的引入能够改善电机的起动性能。
在没有启动电容的情况下,电机的起动电流较大,容易引起电网电压的波动。
而启动电容的使用可以减小起动电流,降低对电网的影响,提高电机的起动效果。
3.3 增加电机的启动转矩电机启动电容的作用还包括增加电机的启动转矩。
启动转矩是电机在启动过程中产生的转矩,它能够克服电机的负载转矩,使得电机能够正常启动。
启动电容的引入能够增加电机的启动转矩,提高电机的启动能力。
4. 电机启动电容的选型和安装4.1 选型选择合适的电机启动电容是确保电机正常启动的关键。
单相电机启动方法

单相电机启动方法单相电机是一种简单、可靠、经济的电机,广泛应用于家庭、农业、商业和工业领域。
单相电机启动方式有很多种,如直接启动、自启动、交错启动等等。
本文将介绍几种单相电机启动方式及其原理和特点。
1. 直接启动法直接启动法是一种最简洁的单相电机启动方式,也是一种最常用的方法。
它将电源直接连接到电机的起动电容器上,实现电机的启动。
这种启动方式适用于低功率的单相异步电机。
原理:单相异步电动机由主磁场和由电容器产生的辅助磁场组成,主磁场使电机旋转,辅助磁场提高起动转矩,当电机到达额定转速时,辅助磁场自动消失。
特点:直接启动法简单、经济,但只适用于低功率的单相电机。
这种方法不太适合启动高功率的单相电机,因为它的起动电流很大,容易导致电压降低或损坏电源和电机。
2. 带自启动式运行电容的方法原理:自启动式运行电容法主要是通过运行电容实现电机的启动和运行,运行电容与起动电容并联。
当电机启动时,运行电容与辅助绕组能够产生较强的旋转力矩,提高起动转矩,使电机顺利启动。
当电机达到额定转速时,运行电容与辅助绕组中的电流消失,电机进入正常运行状态。
特点:自启动式运行电容法适用于马力大于1/4的单相电机,启动时电流小,效果好。
但需要选择合适的运行电容和起动电容,否则容易引起电机故障。
原理:交错式启动法通过切换起动线圈和运行线圈来实现电机的启动。
电机起动时,将主线圈分成起动线圈和运行线圈两部分,交错地将电源直接连接到这两个线圈上,使电机产生转矩,最终实现电机的正常运行。
特点:交错式启动法启动电流比直接启动法要小,但是它需要对电机进行特殊设计,增加起动线圈和降低运行电流,因此成本相对较高。
总结单相电机启动方式有很多种,根据不同的需求和实际情况,选择合适的启动方式非常重要。
直接启动法适用于马力较小的单相电机;自启动式运行电容法适用于马力大的单相电机;交错启动法适用于要求起动电流小的单相电机。
同时,需要注意电机的起动电流、电容选择、线圈设计等方面的问题,保证电机的正常运行。
电容启动式电动机电容运转式电动机

电容启动式电动机和电容运转式电动机是两种常见的单相感应电动机,它们在家庭和商业场所中被广泛应用。
接下来我们将分别介绍这两种电动机的工作原理、特点、应用范围以及优缺点。
一、电容启动式电动机1. 工作原理电容启动式电动机通过辅助启动电容进行启动,当电动机启动后,电容会自动脱离电路。
2. 特点- 启动转矩大,适用于需要启动转矩较大的负载。
- 结构简单,制造成本低。
- 适用于较大功率范围内的单相感应电动机。
3. 应用范围- 家用洗衣机、风扇、空调等家电产品中的单相感应电动机。
- 商业场所中的泵、风机等设备。
二、电容运转式电动机1. 工作原理电容运转式电动机通过运转电容来提高电动机的功率因素,改善电机的性能。
2. 特点- 功率因数较高,节能环保。
- 适用于低功率的单相感应电动机。
3. 应用范围- 家用小型电动工具、电动饭煲、搅拌机等。
- 商业场所中的小型风扇、小型泵等设备。
在实际应用中,选择电容启动式电动机还是电容运转式电动机取决于具体的使用场景和需求。
需要根据负载的启动特点、运行特点以及功率需求来进行选择。
三、两种电容式电动机的优缺点对比1. 电容启动式电动机的优点- 启动转矩大。
- 结构简单,制造成本低。
2. 电容启动式电动机的缺点- 启动后电容脱离电路,功率因数较低。
3. 电容运转式电动机的优点- 功率因数较高,节能环保。
- 适用于低功率的单相感应电动机。
4. 电容运转式电动机的缺点- 启动转矩相对较小。
在选择电容启动式电动机或电容运转式电动机时,需要综合考虑其优缺点以及具体的使用环境和需求,从而选择最适合的电动机类型。
电容启动式电动机和电容运转式电动机都是常见的单相感应电动机,它们各自具有特定的工作原理、特点和应用范围。
在实际应用中,需要根据具体的需求和使用环境来选择合适的电动机类型,以达到最佳的使用效果。
电容启动式电动机和电容运转式电动机作为单相感应电动机的两种常见类型,在家庭和商业场所的应用非常广泛。
单相电机的启动电容和运转电容

单相电机的启动电容和运转电容2011/07/20 8:03来自:网络整理:nemoium单相双电容电动机接线示意图一。
220V单相双电容电动机有一个启动电容和一个运行电容。
容量较大的是启动电容,容量较小的是运行电容。
电动机启动后离心开关将启动电容从电路中断开。
如果缺少启动电容,电动机启动困难或无法启动(常表现为空载启动正常,加载后无法启动);如果缺少运行电容,电动机可以启动,但输出功率变小(常表现为带负载能力降低)。
二。
接法一般启动电容是串接在单相电机的启动绕组上,与工作绕组并联。
三。
启动电容和运行电容容量计算运行电容容量C=120000 * I / 2.4*f*U*cosφ式中:I为电流;f为频率;U为电压;cosφ为功率因数取0.5~0.7。
运行电容工作电压大于或等于(2~2.3)U。
起动电容容量=(1.5~2.5)运行电容容量。
起动电容工作电压大于或等于1.42 U。
(工作时电容两端电压为311V时为最佳) 工作电容按每100W1-4UF.启动电容是工作电容4-10倍(电动机要求启动转距大取大值).经验数据,如果你的电机不超过200W,启动电容不会超过100uF,如果运转电容,你可以选择几个数值通电试验,看哪一个电容的容量下整机电流最小,则该电容的容量就是最佳数值.)单相分相电机电容器的容量可以用经验公式C=35000I/2PUfcos&算出如;I=250W/220V=1.2AC=35000x1.2/2x1x50x220X0.8=24uf可以选择350V30uf的电容关于所配电容易损.首先应考虑电容器的耐压是否大于1.5倍(包括1.5倍)以上的额定电压:其次是容量是否太小(因为启动电流较大),这要由试验决定。
实际中还没有总结出计算启动、工作电容的简便公式。
表1给出上述《教材》中的“单相电动机启动电容和工作电容范围参考表”供参考。
四。
离心开关装有离心开关的单相电机,也就是双电容的电机,一般都是重负荷启动,需要一个大的启动力矩,离心开关上面串接一个启动电容,当转速达到一定转数时轴套离心器靠离心力顶开离心开关,切断启动电容,完成了启动任务后这个时候还剩一个运行电容持续工作。
单相电机启动电容

小功率的设备正常启动后可以将电容断开,例如风扇电容!大功率的不行,例如空调压缩机电容!单相交流电动机的旋转原理单相交流电动机只有一个绕组,转子是鼠笼式的。
当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。
这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。
当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。
这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。
要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。
这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。
因此,起动绕组可以做成短时工作方式。
但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变电容器串接的位置来实现。
单相电机配用电容的不是越大越好,及计算公式电风扇、排气扇、吸油烟机、洗衣机、电冰箱、空调器、农用小型水泵、木工电动刨床、家庭保健摇摆机等电器上,常使用单相电容运转式电动机。
在家电维修实践中,电容损坏是造成电机运转失常的常见故障,但有的修理员对运转电容的选配不很注意,甚至有“运转电容越大越好”的错误认识。
单相、三相电机启动及运行电容计算

单相、三相电机启动及运行电容计算
一、单相电机选配公式1:
C=8JS式中,C为配用的电容量,单位为微法(uF);J为电机启动绕组电流密度,一般选5~7A/(mm2);S为启动绕组导线截面积(mm2 )。
例如:电机启动绕组线圈绕制后,测出启动绕组线径为0.17mm2 ,则截面积S= ,选J=7A/mm2 ,所以C=8×7×≈,实际选配1-4倍C,参数为1.±5%,耐压500V的电容。
另外应注意电容的耐压值一定要高于400V,以防击穿。
二、单相电机选配公式2:
单相运行电容公式:C=1950×I/U×COSφ(I为电机额定电流,U为电源电压COSφ为功率因数为~间),启动电容为1-4倍的C。
例如:一台单相电机,额定电流为功率为370W 如何选择它的电容值C=1950×I/U×COSφ=1950×220×≈15(μF)
* 单相电动机工作电容按每100W 1-4uf选用
三、三相电机选配公式3:
三相电动机,电容器容量公式:C2=1950I/(U*COSφ) 耐压公式:U (电容)大于或等于*U C为容量;I为电流;U为电压;COSφ为功率因数取~。
四、选配公式:耐压:U(电容)大于或等于(2~)×U 启
动电容容量:C=(~)×C(运转)耐压:U(电容)大于或等于×U 电容选得太大造成电机电流过大,起动转矩大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
220V交流单相电机起动方式大概分以下几种:
第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。
运转速率大致保持定值。
主要应用于电风扇,空调风扇电动机,洗衣机等电机。
第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。
起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。
第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。
而运行电容串接到起动绕组参与运行工作。
这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。
如图3。
带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。
电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般大于400V。
正反转控制:
电机启动时有很高的(反峰浪涌)
对固态继电器有冲击,
偶见过的固态只控制阻性负载,
或小功率电机,
如果非用不可,控制启停偶觉得还凑合,要正反转,估计会爆的,
当然关键还是在选型上有出入的
图4是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。
一般洗衣机用得到这种电机。
这种正反转控制方法简单,不用复杂的转换开关。
图1,图2,图3,正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。
对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。
一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。