几种可调光衰减器的简介

几种可调光衰减器的简介
几种可调光衰减器的简介

几种可调光衰减器的简介

2007-10-7 14:56:46 讯石光通讯咨询网编辑:iccsz

可调节光衰减器(VOA)在光通信中具有广泛的应用,其主要功能是用来减低或控制光信号。光网络的最基本的特性应该是可调,特别是随着DWDM传输系统和EDFA在光通信中的应用,在多个光信号传输通道上必须进行增益平坦化或信道功率均衡,在光接收器端要进行动态饱和的控制,光网络中也还需要对其它信号进行控制,这些都使得VOA成为其中不可或缺的关键器件。此外,VOA产品还具有与其它光通信组件结合并将其推往高阶模块的特性。

几种可调光衰减器的简介

福州高意通讯有限公司李继锋

1.引言

可调节光衰减器(VOA)在光通信中具有广泛的应用,其主要功能是用来减低或控制光信号。光网络的最基本的特性应该是可调,特别是随着DWDM传输系统和EDFA在光通信中的应用,在多个光信号传输通道上必须进行增益平坦化或信道功率均衡,在光接收器端要进行动态饱和的控制,光网络中也还需要对其它信号进行控制,这些都使得VOA成为其中不可或缺的关键器件。此外,VOA 产品还具有与其它光通信组件结合并将其推往高阶模块的特性。

近年来,出现了多种制造可变光衰减器的技术,包括可机械式VOA、磁光VOA、液晶VOA、MEMS VOA、热光VOA和声光VOA等。本文将对各种典型VOA的做一个简要的介绍。

2. 几种常见的VOA简介

2.1. 机械式VOA

该种类型的VOA也有多种具体的实现方式。图1是挡光型光衰减器的原理图,驱动挡光元件拦在两个准直器之间,实现光功率的衰减。挡光元件可以是片状或者锥形,后者可通过旋转来推进,而前者需平推或者通过一定机械结构实现旋转至平推动作的转换。挡光型光衰减器可以制成光纤适配器结构,也可以制成图1所示的在线式结构。

与上面提到的挡光型VOA类似,也有一种机械一电位器形式的EVOA方案。其原理是用步进电机拖动中性梯度滤光片,当光束通过滤光片不同的位置时其输出光功率将按预定的衰减规律变化,从而达到调节衰减量的目的。还有一种机械偏光式光衰减器。其基本原理是从入端口射出的光束被反射片反射到出端口,两端口之间的反射耦合效率由反射片的倾斜角度来控制,从而实现光衰减的调节。而反射片的倾斜则由多种不同的机理来控制。

机械型光衰减器是较为传统的解决方案,到目前为止,已在系统中应用的VOA大多是用机械的方法来达到衰减。该类型的光衰减器具有工艺成熟、光学特性好、低插损、偏振相关损耗小、无需控温等优点;而其缺点在于体积较大、组件多结构复杂、响应速度不高、难以自动化生产、不利于集成等。

2.2. 磁光VOA

磁光VOA是利用一些物质在磁场作用下所表现出的光学性质的变化,例如磁致旋光效应(法拉第效应)等亦可实现光能量的衰减,从而达到调节光信号的目的。一种典型的偏振无关磁光VOA结构如图2所示。

图2中,其中的(a)是实际的光路,为了更好地说明其原理,我们采用(b)中的镜像光路。当光从双芯光纤的一端入射,经透镜准直后(略去光束的厚度),进入到双折射晶体(其光轴垂直于纸面),被分成O光和E光两束光,然后进入法拉第旋转器,光从法拉第旋转器出射后被全反射镜反射,再依次通过法拉第旋转器、双折射晶体和透镜,最后从双芯光纤的另一端输出。因此,通过调制电压控制磁场,可以使进入法拉第旋转器的偏振光的偏振态发生旋转。在法拉第旋转角为0度的情况下,O光仍然是O光,E光仍然是E光,两束光不平行,不能合在一起,如虚线所示,此时衰减程度最大;在法拉第旋转角为45度的情况下,总的法拉第旋转角为90度,O光变成E 光,E光变成O光,两束光平行,通过透镜聚焦后合在一起,此时衰减程度最小。当控制法拉第旋转角在0度和45度之间连续变化时,就可以实现衰减量的连续调节。

利用材料的磁光效应并结合其它的技术,可以制作出高性能、小尺寸、高响应及结构相对简单的光衰减器。这是利用分立微光器件技术制作光衰减器的一个有待进一步开发的领域。

2.3. 液晶VOA

液晶VOA利用了液晶折射率各向异性而显示出的双折射效应。当施加外电场时,液晶分子取向重新排列,将会导致其透光特性发生变化,其工作原理如图3所示。

液晶VOA具体的实现方式如图4所示。由入射光纤入射的光经准直器准直后,进入双折射晶体,被分成偏振态相互垂直的O光和E光,经液晶后,O光变成E光,E光变成O光,再由另一块双

折射晶体合束,最后从准直器输出。当液晶材料两端的透明电极上加载电压V时,O光和E光经过液晶后都改变一定的角度,经第二块双折射晶体,每束光又被分成O光和E光,形成了4束光,中间两束最后合成一束从第二块双折射晶体出射,由准直器接收,另外两束从第二块双折射晶体出射后未被准直器接收,从而实现衰减。因此,通过在液晶的两个电极上施加不同的电压控制光强的变化,可以实现不同的衰减。

液晶VOA可以实现光衰减器的小型化、高响应化。但同时液晶材料插入损耗较大,制作工艺相对也较复杂,特别是受环境因素的影响较大,它的优点是成本低,已有批量商用。其它还有些功能材料在强电场作用下光学特性也会发生变化,例如铌酸锂(LiNbO3)晶体的电光效应,因此这也是有可能利用的一个途径。但由于类似这样的电光效应通常需要数千伏乃至上万伏的强电场,所以应用在光通信的无源器件领域有一定限制,至今鲜有相关的信息。

2.4. MEMS VOA

MEMS是此领域中较新的应用技术,经过近几年的发展,MEMS Chip的生产工艺已经趋于成熟,有力地推动了MEMS VOA的应用。在光网络中应用,以MEMS技术为基础的产品也具有明显的价格和性能上的优势。MEMS VOA有反射式VOA和衍射式VOA,如图5所示。

反射式VOA的工作原理如图5(a)所示,它是在硅基上制作一块微反射镜。以unblocking型VOA 为例。光经过双光纤准直器的一端进入,以一定角度入射到微反射镜上,当施加电压时,微反射镜在静电作用下被扭转,倾角改变,入射光的入射角度发生改变,光反射后能量不能完全耦合进双芯准直器的另一端,达到调节光强的目的;而未加电压时,微反射镜呈水平状态,光反射后能量完全耦合进双芯准直器的另一端。

衍射式VOA是基于动态衍射光栅技术,如图5(b)所示。这种动态衍射光栅由平行微栅条阵列构成,微栅条上表面镀以200~300 nm厚的铝膜,起电极和反射光的双重作用,下表面是特殊设计的由Si3N4和SiO2膜形成的双簧结构以提供弹性力,其下刻蚀的空气隙厚度与所欲应用的光谱波段相关。当施加电压信号时,在静电力的作用下相间隔的动栅条位置向下移动以产生衍射光栅效应,工作状态如图5(b)所示。通过调节电压来控制一级衍射光从而达到对光信号衰减量进行调节的目的。这种动态衍射光栅首先在成像及显示技术中得到应用,它在性能上具有响应速度快、衰减控制精度高、消光系数大、抗疲劳磨损等特点,能被用于制作许多其它光通信器件的核心部件,如光开关阵列等。

MEMS VOA已经很成熟,并已大量生产和规模应用。同时因为成品率的问题,在价格方面也面临着挑战,另外由于是微机电部件,可靠性相对来说有时不够理想。早期的MEMS VOA都采用激光焊接的方式,设备投入较大,而且生产效率低、装配成本高。目前,市场也推出了全胶工艺的MEMS VOA,很好地解决了这一问题。

目前,已经可以大批量生产MEMS VOA的国外厂家主要有:Lightconnect(已被Neophotonics

收购)、JDSU、Oplink、Avanex、Santec、Lightwave2020、AFOP等。在国内,高意通讯有限公司已经具备批量生产MEMS VOA的能力,并且具有激光焊接和全胶的技术平台。主要的产品包括单个VOA器件、4通道和8通道VOA模块,如图6所示。

2.5. 热光VOA

热光VOA主要是利用一些材料在温度场中所具有的光学性质变化特性,如温度变化所导致的热光材料折射率的变化等。按照结构的不同,主要可以分为两大类,泄漏型和开光型VOA。

泄漏型热光VOA的原理如图7(a)所示,其原理是首先将部分光纤原有的外皮包层剥除,用热光材料代以构成外皮层。当对该热光材料外皮层施以温度变化时,由于其折射率的变化而导致原有光传输特性即模场直径(MFD)的变化,有部分的光信号能量将从该处逸出(辐射光),从而达到通过控制温度来调节光衰减量的目的。

对于开光型的热光VOA最典型的就是一种基于Mach-Zehnder干涉仪(MZI)的原理,其具体结构如图7(b)所示。主要工作方式是在Mach-Zehnder干涉仪的其中一个干涉臂上面加上热光材料,并将热光材料置于薄膜加热器上。利用热光效应,使材料的折射率发生变化,从而改变MZI的干涉臂的长度,使两臂产生不同的光程差,进一步使得双光束的干涉光强发生改变,实现对光衰减量的控制。MZI型平面光波导VOA体积小,利于高度集成,但是目前其工艺还处于发展和完善中。

这种方法必须对光束进行分束和耦合,这就会引入较大的插损,因而这种VOA性能还较差,封装难度大。

热光VOA由于加热,冷却装置相对复杂,温度场一光导介质折射率之间的数理函数关系复杂而不易精确量化和控制,尤其是其较长的响应时间阻碍了其在现代光通信中的应用。

2.6. 声光VOA

该种衰减器的基本原理是利用声光晶体在超声波的作用下产生的周期性的应变,从而导致折射率的周期性变化,等同于建立了一块位相光栅,于是即可利用该光栅对光束进行调制。

已有一些公司宣称已开发出采用声光晶体的可调式衰减器(称之为AVOA)。据了解,声光晶体材料的取得没有问题,不过现阶段占整体成本偏高,约占其中的4-5成。

3. 结束语

可变光衰减器(VOA)是光通信系统中重要的光器件之一。长期以来,它一直停留在机械式水平,因为体积大不利于集成,它一般只适合于单通道衰减方式。随着DWDM系统的发展,以及市场对可灵活升级的可重构光分插复用器(ROADM)的潜在的巨大需求,越来越需要通道数多而体积小的可变光衰减器阵列,特别是一些集成型的VOA产品。传统的机械方式已不能解决这些难题。随着光纤网络的发展,VOA的发展趋势是:低成本、高集成、响应时间快以及和其他光通信器件的混合集成。

几种可调光衰减器的简介

几种可调光衰减器的简介 2007-10-7 14:56:46 讯石光通讯咨询网编辑:iccsz 可调节光衰减器(VOA)在光通信中具有广泛的应用,其主要功能是用来减低或控制光信号。光网络的最基本的特性应该是可调,特别是随着DWDM传输系统和EDFA在光通信中的应用,在多个光信号传输通道上必须进行增益平坦化或信道功率均衡,在光接收器端要进行动态饱和的控制,光网络中也还需要对其它信号进行控制,这些都使得VOA成为其中不可或缺的关键器件。此外,VOA产品还具有与其它光通信组件结合并将其推往高阶模块的特性。 几种可调光衰减器的简介 福州高意通讯有限公司李继锋 1.引言 可调节光衰减器(VOA)在光通信中具有广泛的应用,其主要功能是用来减低或控制光信号。光网络的最基本的特性应该是可调,特别是随着DWDM传输系统和EDFA在光通信中的应用,在多个光信号传输通道上必须进行增益平坦化或信道功率均衡,在光接收器端要进行动态饱和的控制,光网络中也还需要对其它信号进行控制,这些都使得VOA成为其中不可或缺的关键器件。此外,VOA 产品还具有与其它光通信组件结合并将其推往高阶模块的特性。 近年来,出现了多种制造可变光衰减器的技术,包括可机械式VOA、磁光VOA、液晶VOA、MEMS VOA、热光VOA和声光VOA等。本文将对各种典型VOA的做一个简要的介绍。 2. 几种常见的VOA简介 2.1. 机械式VOA 该种类型的VOA也有多种具体的实现方式。图1是挡光型光衰减器的原理图,驱动挡光元件拦在两个准直器之间,实现光功率的衰减。挡光元件可以是片状或者锥形,后者可通过旋转来推进,而前者需平推或者通过一定机械结构实现旋转至平推动作的转换。挡光型光衰减器可以制成光纤适配器结构,也可以制成图1所示的在线式结构。 与上面提到的挡光型VOA类似,也有一种机械一电位器形式的EVOA方案。其原理是用步进电机拖动中性梯度滤光片,当光束通过滤光片不同的位置时其输出光功率将按预定的衰减规律变化,从而达到调节衰减量的目的。还有一种机械偏光式光衰减器。其基本原理是从入端口射出的光束被反射片反射到出端口,两端口之间的反射耦合效率由反射片的倾斜角度来控制,从而实现光衰减的调节。而反射片的倾斜则由多种不同的机理来控制。 机械型光衰减器是较为传统的解决方案,到目前为止,已在系统中应用的VOA大多是用机械的方法来达到衰减。该类型的光衰减器具有工艺成熟、光学特性好、低插损、偏振相关损耗小、无需控温等优点;而其缺点在于体积较大、组件多结构复杂、响应速度不高、难以自动化生产、不利于集成等。 2.2. 磁光VOA

衰减器培训投影片(PPT)

光纖衰減器功能屬性 (Fiber Optical Attenuator)?功能: 致光信號衰減,使光信號調節在光接收器動態範圍內,以確保光信號傳輸正確性之光被動元件. ?分類:(以衰減值型式) –固定值衰減器(Fixed Attenuator) –可變值衰減器(Variable Attenuator) ?連續式(Continuously): 0.5~30dB. ?階段式(Discretely): <5dB interval.

光纖衰減器分類方式 (Fiber Optical Attenuator) ?分類:(以結構型式) –引線式(In-Line type) ?將衰減器包裝在光纖引線中間,兩端再組裝不同 型式連接器稱之. ATTENUATOR –接頭式(Adaptor type) ?依兩端是插頭(Plug;Male)或插座(Receptacle;Female) 分為公對母(M/F);母對母(F/F);公對公(M/M)三種, 兩端亦可依不同插頭或插座型式設計稱之.

光纖衰減器製作原理 ---插座式固定值光纖衰減器--- ?光吸收原理: –濾光片式光纖衰減器 ?利用一片固定光吸收率的濾光片以浮動設計原理 置於光學基準面上,兩端以Ferrule接觸方式進行. –反射損失過大(約-17dB) –濾光片需具抗壓強度(800~1200gf) ?MoT(Sleeve) ?o¥ú¤ù

光纖衰減器製作原理 ---插座式固定值光纖衰減器--- ?光發散原理: –塑膠片式光纖衰減器 ?利用不同厚度造成光斑大小不同的塑膠片置於光 學基準面上,兩端以Ferrule接觸方式進行. ?塑膠片折射率約1.46(接近光纖Core的折射率). ?機械基準面隨塑膠片厚度變化而不同. –反射損失過大(約-30dB) –零件共通性差(零件尺寸隨衰減值變化而不同) –塑膠片需具抗壓強度(800~1200gf)

光可调衰减器通用技术规范

光可调衰减器 通用技术规范 本规范对应的专用技术规范目录 “光可调衰减器”物资采购标准 技术规范使用说明 1、本标准技术规范分为通用部分、专用部分。 2、项目单位根据需求选择所需设备的技术规范,技术规范通用部分条款及专用部分固化的参数原则上不能更改。 3、项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写《项目单位技术差异表》并加盖该网、省公司物资部(招投标管理中心)公章,与辅助说明文件随招标计 划一起提交至招标文件审查会: ①改动通用部分条款及专用部分固化的参数; ②项目单位要求值超出标准技术参数值; ③需要修正污秽、温度、海拔等条件。 经标书审查会同意后,对专用部分的修改形成《项目单位技术差异表》(表4),放入专用部分中, 随招标文件同时发出并视为有效,否则将视为无差异。 4、技术规范的页面、标题、标准参数值等均为统一格式,不得随意更改。 5、技术规范专用部分由项目单位根据工程情况编写,其中带“XX”的文字和技术参数及“项目单位填写”的部分由各项目单

位根据工程实际情况和需要必须全面认真填写;空白部分的参数根据需要选择填写;表格中带下划线的技术参数由项目单位和设计院根据工程具体情况更改,不带下划线的技术参数为固化技术参数,技术规范专用部分技术参数表中项目单位与投标人均不需要填写的部分栏目,项目单位应以“一”表示。 6、投标人应逐项响应技术规范专用部分中相应内容。填写投标人响应部分,应严格按技术规范专用部分的“招标人要求值”一栏填写相应的投标人响应部分的表格。投标人填写技术参数和性能要求 响应表时,如有偏差除填写“表5投标人技术偏差表”外,必要时应提供相应试验报告。 7、货物需求一览表中金具数量各项目单位和设计院必须填写,如不能确定准确数量,可以填写估算数量。

衰减器原理及其设计

衰减器原理及其设计 时间:2012-01-07 来源:作者: 关键字:衰减器原理 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小; (2)在比较法测量电路中,可用来直读被测网络的衰减值; (3)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的四端网络,它的特性阻抗、衰减都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有L型、T型、X型和桥T型等几种结构,其电路形式和计算公式见表5.1-16。

注:RC为特性阻抗;RC1、RC2为两侧特性阻抗,B为固有衰减值N=EB。 其中L型属于不对称衰减器,主要用于阻抗匹配,而T型、X型、桥T型属于对称衰减器,主要用于衰减。一端接地的衰减器称为不平衡衰减器;反之,两端不接地的衰减器称为平衡衰减器。 例:设计一衰减器,匹配于信号源内阻RS-600欧与负载电阻RL=150欧之间,其衰减量为30DB。 解计算过程: (1)因为RS、RL不相等,所以选用一节倒L型和一节对称T型号组成衰减器,如图5.1-19A所示 倒L型电路计算: (2)T型电路计算:由于总衰减量为30DB,所以T型衰减量为 (3)电路简化:对设计电路进行变换,进而得到简化电路,由图5.1-19A变换为图B及图C的形式。

2、可变衰减器的设计 可变衰减器,一般是指特性阻抗值恒定的,而它的衰减值是可变的衰减器,此外,还有一种分压式可变衰减器,由于它的负载往往是高阻抗,因此对这种分压式可变衰减器的特性阻抗就没有什么具体要求。 1)可变桥T型衰减器可变桥T型衰减器的电路结构如图5.1-20所示。

光纤衰减教程

光纤衰减教程 光纤衰减是影响光纤传输性能的主要因素之一,我们也称其为光损耗,即光信号在光纤内传输一段距离后产生的衰减或损耗。我们可以通过测试插入损耗和回波反射来确定光信号的衰减程度。 什么是光纤衰减? 通过测试光纤,我们可以知道光信号在哪里开始衰减。很多因素都会造成光信号加速衰减,例如光纤的物理特征、光纤连接器的端面污染、光纤的熔接和端接等。我们可以利用光功率计和光源、光万用表(光功率计和光源的集合体)或者光时域反射计和手持式光功率计来测量光信号的衰减。 上述三种光纤衰减的测量方法原理基本一致,即利用光源在光纤一端注入类似于发射器的工作波长,然后在另一端用光功率计进行测试。光纤衰减的程度用dB来表示,其计算方法是光纤发射端的功率减去光纤接收端的功率,光功率计的作用就是测量光纤接收端的功率数值。当然,为了更准确地测量光纤衰减,首先要测量出光功率计的基准值,方法是确定入纤功率,直接用对接头把两根使用的跳线连好,两端一边接功率计,一边接光源,测出的接收功率值(dB)作为基准值A;然后松开对接头的跳线端头(注意:光源、光功率计端的跳线头不要动),到待测线路两端,连好跳线,进行测量,测出的值为B,光纤衰减值就是B和A之差。 回波反射(回波损耗)是指后向反射光相对输入光的比率,表示入射功率的一部分被反射回信号源的性能的参数,对整个光纤系统具有重要影响。我们可以通过清洁光连接器的端面来减少反射功率,这样就有更多的功率传送到接收端。尽量将光纤端面加工成球面或斜球面是改进回波损耗的有效方法。 利用光纤衰减器进行光纤衰减 尽管在大多数情况下我们都希望光纤衰减越小越好,但是,为了防止光接收器因光信号的功率过大而造成信号失真,必须使用光纤衰减器将光信号的功率降低到

几种可变光衰减器技术及其比较

几种可变光衰减器技术及其比较 为了实现DWDM系统的长距离高速无误码传输,必须使各通道信号光功率一致,即需要对多通道光功率进行监控和均衡。因此出现了动态信道均衡器(DCE)、可调功率光复用器(VMUX)、光分插复用器(OADM)等光器件,这些器件的核心部件都是阵列可变光衰减器(VOA)。灵活地调节VOA,可以使各个通道的功率处于理想的大小。 近年来,出现了多种制造可变光衰减器的新技术,包括可调衍射光栅技术、MEMS技术、液晶技术、磁光技术、平面光波导技术等。 高分子可调衍射光栅VOA 高分子可调衍射光栅的制作基于一种薄膜表面调制技术。起初,这种技术的开发是为了替代放映机和投影仪中的液晶显示屏(LCD)和数字光处理器(DLP)。这种可调衍射光栅(图1)的顶层是玻璃,下面一层是铟锡氧化物(ITO),中间是空气、聚合物和ITO阵列,底层是玻璃基底。在未加电信号时,空气与聚合物层的交界面是与结构表面平行的平面。当入射光进入该平面时,不发生衍射。在加电信号后,空气和聚合物的界面随电极阵列的分布而发生周期变化,形成了正弦光栅。当入射光入射至该表面时,形成衍射。施加不同的电信号可以形成不同相位调制度的正弦光栅。 高分子可调衍射光栅。 采用高分子可调衍射光栅的VOA的工作机制是:通过调制表面一层薄的聚合物,使其表面近似为正弦形状,形成正弦光栅。利用这种技术,可以制作出一种周期为10微米,表面高度h随施加的电信号变化并且最高可到300纳米的正弦光栅。当光入射到被调制的表面上时,形成衍射。施加不同的电信号改变正弦光栅的振幅,即改变h时,可以得到不同的相位调制度,而不同相位调制度下的衍射光强的分布是不同的。当相位调制度由零逐渐变大时,衍射光强度从零级向更高衍射级的光转移。这种调制可以使零级光的光强从100%连续的改变到0%,从而,实现对衰减量的控制。并且这种调制的响应时间非常快,在微秒级。 磁光VOA 磁光VOA是利用一些物质在磁场作用下所表现出的光学性质的变化,例如利用磁致旋光效应(法拉第效应)实现光能量的衰减,从而达到调节光信号的目的。一种典型的偏振无关磁光VOA结构如图2左图所示。

实验十__可调光衰减器参数测量实验

实验十 可调光衰减器参数测量实验 一、 实验目的 1.了解光衰减器、性能参数及其用途; 2.实验操作可调光衰减器参数测量。 二、 实验仪器用具 手持式光源1套;手持式光功率计一台;可调光衰减器1只;单模光纤跳线(FC/PC)2根。 三、 学习和实验内容 1.光衰减器简介 光衰减器是一种用来降低光功率的光无源器件。根据不同的应用,它分为可调光衰减器和固定光衰减器两种。在光纤通信中,可调光衰减器主要用于调节光线路电平,在测量光接收机灵敏度时,需要用可调光衰减器进行连续调节来观察光接收机的误码率;在校正光功率计和评价光传输设备时,也要用可调光衰减器。固定光衰减器结构比较简单,如果光纤通信线路上电平太高就需要串入固定光衰减器。光衰减器不仅在光纤通信中有重要应用,而且在光学测量、光计算和光信息处理中也都是不可缺少的光无源器件。 可调光衰减器一般采用光衰减片旋转式结构,衰减片的不同区域对应金属膜的不同厚度。根据金属膜厚度的不同分布,可做成连续可调式和步进可调式。为了扩大光衰减的可调范围和精度,采用衰减片组合的方式,将连续可调的衰减片和步进可调衰减片组合使用。可变衰耗器的主要技术指标是衰减范围、衰减精度、衰耗重复性、插入损耗等。 对于固定式光衰减器,在光纤端面按所要求镀上有一定厚度的金属膜即可以实现光的衰耗;也可以用空气衰耗式,即在光的通路上设置一个几微米的气隙,即可实现光的固定衰耗。 2.光衰减器的主要类型及特性参数 (1)固定式光连接型衰减器 特点:高回波损耗、结构简单、最大承载功率(1W )、波长相关性小、低偏振相关损耗、结构紧凑。适用于:光配线架、光纤网络系统、高速光纤传输系统、有线电视(CATV)系统、长途干线密集波分复用(DWDM)系统,光分插复用器(OADM). 主要性能指标: z衰减量: 1,2,3,4,5,6,7,8,9, 10,15,20,25,30dB z衰减精度:≤5dB ±0.3dB; ≤10dB ±0.5dB; >10dB ±10% z回波损耗: PC:>40dB, UPC:>50dB, APC:>60dB z工作波长: 1310nm 和1550nm (SM) 1550nm (DSF) z可提供连接头类型:FC, SC, ST, LC, MU型 (2)1~ 30dB可调式光连接型衰减器 特点:衰减值可调、与波长变化无关、衰减精度高,附加损耗低,性价比优、可实现

光衰减器知识

光衰减器知识 一、概述 (一)用途 光衰减器是光纤通信设备检测中必不可少的测试仪器之一,主要用于光信号的衰减,广泛应用于光纤通信系统、设备和仪器在研制、开发和生产过程中的检测与调试,还可以应用于误码率测量、接收机灵敏度测量、EDFA特性、功率均衡、系统损耗模拟和功率校准及验证等方面。 (二)分类与特点 光衰减器按衰减原理分可分为挡光式和滤光片式两种类型。挡光式光衰减器衰减范围较窄,且线性度较差;而滤光片式光衰减器具有衰减范围大、线性度好、平坦度好,重复性好等特点,在实际使用中得到了广泛的应用。 光衰减器按功能和用途的不同,可分为机械式光衰减器、智能程控式光衰减器和功率控制型智能程控光衰减器。 ●机械式光衰减器的特点 机械式光衰减器的优点是简单易用,价格便宜,但衰减准确度低、重复性和稳定度较差,衰减调节速度慢,只能满足简单的测试需求。 ●智能程控式光衰减器 智能程控式光衰减器的优点是衰减自动调节、针对不同波长衰减数据可进行补偿、具备GPIB远程控制功能,因此其衰减准确度高、重复性好、稳定性高、衰减调节速度快,能够满足科研和生产的需求,并可配合其它光测试仪器搭建自动测试系统,提高测试效率。 ●功率控制型智能程控光衰减器 功率控制型智能程控光衰减器在智能程控光衰减器的基础上增加了输出光功率控制功能,因此其不仅具备了智能程控光衰减器的所有优点,而且还可以对输出光功率实时监视,并对衰减值进行实时调整,进一步提高了测试的准确度和稳定性。 (三)产品国内外现状 国内生产光衰减器的厂家主要有:如中国电子科技集团41所、中国电子科技集团公司第34所等单位。国产光衰减器的衰减准确度和重复性指标都不太高,中国电子科技集团41所的衰减准确度≤±0.4dB,衰减重复性≤±0.04dB。国外的光衰减器主要以Agilent、EXFO和JDSU居多,衰减准确度≤±0.1dB、重复率≤±0.01dB。 (四)技术发展趋势 ●高准确性、高重复性是光衰减器追求的目标; ●集成化、模块化是光衰减器产品主要的发展趋势; ●光功率监视技术将会得到进一步的推广应用。 二、基本工作原理 智能程控光衰减器主要由主控CPU电路、光控CPU电路、操作/显示面板、GPIB接口和光机组件组成。主控CPU电路,用于控制显示和按键,处理GPIB;光控CPU,用于控制光机组件的运行。

衰减器课程设计的基本原理及电路图

信号衰减器原理及设计 衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路,一般以所引入衰减的分贝数及其特性阻抗的欧姆数来标明。 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小;(2)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的二端口网络,它的特性阻抗、衰减量都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有对称型的T型、∏型、桥T型和倒L型(不对称型)等几种结构,其电路形式和计算公式如下。 图1. T型衰减器 图2. ∏型衰减器 1 2 1 1 2 2 1- = + - = N N R R N N R R C C 1 1 2 1 2 2 1- + = - = N N R R N N R R C C 1 )1 ( 2 1- = - = N R R N R R C C

图3. 桥T 型衰减器 图4. 倒L 型衰减器 式中,Rc 为二端口网络的特性阻抗(对称时),即输入输出阻抗,Rc1和Rc2两侧特性阻抗,分别为非对称衰减器的输入输出阻抗;20 10A N =,为输入电压与输出电压之比,A 为衰减的分贝数。 电压比分贝:dB=20lg (Uo/Ui ) 以上衰减器中,T 型、∏型、桥T 型属于对称衰减器,主要用于衰减。而倒L 型属于不对称衰减器,主要用于阻抗匹配。 倒L 型不对称衰减器构成阻抗匹配器,与对称衰减器所不同的是,不能指定衰减量,其输入输出阻抗确定后,其衰减量也就确定了。其衰减值见下表。 表1 倒L 型衰减器衰减值与输入输出阻抗比的关系 值得注意的是,桥T 型衰减器中,有两个电阻的值即为特性阻抗(输入输出电阻),且计算公式简洁,用于组成可调衰减器非常方便。 例1:设计一衰减器,匹配于信号源内阻R S =800欧与负载电阻R L =150欧之间,其衰减量为30dB 。 解:因为RS 、RL 不相等,所以选用一节倒L 型和一节对称T 型构成衰减器,如图5所示。 (1)倒L 型电路计算: 10.14 8001501111166.41150 800800 150721.11)150800(800)(1 1 1 2 12112 22111=???? ??--=??? ? ? ?--=Ω =-=-=Ω=-?=-=--C C C C C C C C C R R N R R R R R R R R R (2)T 型电路计算: 由于总衰减量A=30dB ,N=10^(30/20)=31.62;所以桥T 型衰减量N 2为 N 2=N/N 1=31.62/10.14=3.1184 计算R1和R2 1 122 11 2 2111112)(-? ???? ?--=-=-=C C C C C C C C C R R N R R R R R R R R R

光衰减器的原理及应用

光衰减器的原理及应用 作者:钱青、唐旭东 日期:2006-1-6 (上海光城邮电通信设备有限公司) 光纤通信是用光作为信息的载体,以光纤作为传输介质的一种通信方式。由于其比传统的其他通信方式有着巨大的优势,随着信息技术的不断发展和信息化进程的加快,光纤及其光器件的使用范围越来越广,如光纤通信系统、光纤数据网、光纤CATV 等。 信号无论在哪种传输介质中传输都会有损耗,这种损耗可以定义为信号的衰减。光通信中光纤衰减的特性用衰减系数α表示,光信号在光纤中传输时,其功率P 随着传输距离的增加按指数形式衰减,即 = -αP 设起始处(z=0)的信号光功率为P(0),则在光纤中经过距离z 的传播后,其值为衰减系数 α= ln 在同一种介质中传输时,信号的衰减系数比较稳定,一旦介质有所转换,衰减就有突变。 在通常情况下,我们都希望传输线的损耗越小越好,但在有些情况下,由于信号源及传输距离的不确定,线路中的信号强度可能过大,这就需要采取某种措施减小信号。光衰减器就是这样一种用于消除线路中过大信号的器件。 一、光纤衰减的特性 要研制光衰减器,首先要了解光纤传输的基本特性。光在光纤中传输,是通过全反射的原理,确保光不外泄。如图1所示全反射临界入射角为θc ,αc 为临界传播角,纤芯的折射率为n 1,包层的折射率为n 2。 图1 光纤内部光传输 为满足光线在纤芯内的全反射条件,要求n 1>n 2。αc 是光线发生全发射时与光纤纵向轴线之间的夹角,有 αc =arcsin ?????????n n 1212 dP dZ P(z) P(0) 1 Z sin θc = n 1 n 2

可调光衰减器设计

课程设计 课程名称光通信原理课程设计题目名称可调光衰减器的设计学院 专业班级 学号 学生姓名 指导教师 2014年10月24日

一、引言 提出了一种基于热光调节的可调光衰减器结构。该衰减器通过腐蚀光纤包层到一定厚度和长度后,在表面涂覆较大热光系数的聚合物材料得到。从模场变化角度分析了传输光束的衰减与涂覆材料折射率的关系,并从实验上测试了使用不同涂覆材料时的衰减。理论分析与实验结果均表明在涂覆材料折射率略大于原光纤包层材料折射率时,涂覆材料折射率微小的变化将引起传播光束衰减的大幅度变化,并且光纤被腐蚀的长度越长或包层材料剩余厚度越小,衰减越大。因此,由热光系数大、折射率略大于光纤包层的聚合物材料所组成的可调光纤衰减器,具有衰减调节范围大且功耗小、插入损耗小、成本低、低偏振特性、易于与其它光纤器件祸合或集成等特点。 可调光衰减器(V OA)的用途是降低或控制光信号,按其工作原理大致可分为以下几类:机械型分立式微光学衰减器、液晶型可调光衰减器、光纤可调光衰减器、微机电系统(MEMS)光衰减器和平面波导型光衰减器等。其中,光纤可调光衰减器具有结构简单、插入损耗小、成本低、可直接与光纤或作为尾纤与其它波导器件对接等突出的优点而具有广泛的应用前景,但有关光纤模场(热光)控制的可调光衰减器研究却很少。 光波导的光场分布主要是由折射率的空间分布和波导的几何结构所决定,因此改变光纤包层折射率,将改变光纤中光束的传输特性。据此本文提出一种结构简单的光纤型热光可调光衰减器的设计方案:通过腐蚀光纤包层,使包层剩余厚度少于一定值后,在其表面涂覆较大热光系数的聚合物材料得到。 二、方案论证 1.工作原理 将单模光纤中某一段的包层腐蚀到一定厚度以后,在其外部涂覆上折射率热光可调的材料。当材料折射率受热光调节发生变化时,经过上述处理的光纤模场发生变化,从而引起模场失配甚至导模能量泄漏衰减。下面从模场变化的角度分析涂覆材料折射率与衰减的关系。 通常用高斯模型来近似描述单模光纤中光能量的分布。模场直径(MFD)定义为光能量降低到exp(-2)时的光斑直径,用符号2w。表示,r为离开光轴的距离,则光纤截面上的光强I(r)按下式分布:

衰减器原理

衰减器原理,用途及设计 - 衰减器原理,用途及设计 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小; (2)在比较法测量电路中,可用来直读被测网络的衰减值; (3)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的四端网络,它的特性阻抗、衰减都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有L型、T型、X型和桥T型等几种结构,其电路形式和计算公式见表5.1-16。

注:RC为特性阻抗;RC1、RC2为两侧特性阻抗,B为固有衰减值N=EB。 其中L型属于不对称衰减器,主要用于阻抗匹配,而T型、X型、桥T型属于对称衰减器,主要用于衰减。一端接地的衰减器称为不平衡衰减器;反之,两端不接地的衰减器称为平衡衰减器。 例:设计一衰减器,匹配于信号源内阻RS-600欧与负载电阻RL=150欧之间,其衰减量为30DB。 解计算过程: (1)因为RS、RL不相等,所以选用一节倒L型和一节对称T型号组成衰减器,如图5.1-19A

所示倒L型电路计算: (2)T型电路计算: 由于总衰减量为30DB,所以T型衰减量为 (3)电路简化: 对设计电路进行变换,进而得到简化电路,由图5.1-19A变换为图B及图C的形式。

上一页1 2 下一页 2、可变衰减器的设计 可变衰减器,一般是指特性阻抗值恒定的,而它的衰减值是可变的衰减器,此外,还有一种分压式可变衰减器,由于它的负载往往是高阻抗,因此对这种分压式可变衰减器的特性阻抗就没有什么具体要求。 1)可变桥T型衰减器

几种可调光衰原理

为了实现DWDM系统的长距离高速无误码传输,必须使各通道信号光功率一致,即需要对多通 道光功率进行监控和均衡。因此出现了动态信道均衡器(DCE)、可调功率光复用器(VMUX)、光分 插复用器(OADM)等光器件,这些器件的核心部件都是阵列可变光衰减器(VOA)。灵活地调节VOA,可以使各个通道的功率处于理想的大小。 近年来,出现了多种制造可变光衰减器的新技术,包括可调衍射光栅技术、MEMS技术、液 晶技术、磁光技术、平面光波导技术等。 高分子可调衍射光栅VOA 高分子可调衍射光栅的制作基于一种薄膜表面调制技术。起初,这种技术的开发是为了替代放 映机和投影仪中的液晶显示屏(LCD)和数字光处理器(DLP)。这种可调衍射光栅(图1)的顶层是玻璃,下面一层是铟锡氧化物(ITO),中间是空气、聚合物和ITO阵列,底层是玻璃基底。在未加电信号时,空气与聚合物层的交界面是与结构表面平行的平面。当入射光进入该平面时,不发生衍射。在 加电信号后,空气和聚合物的界面随电极阵列的分布而发生周期变化,形成了正弦光栅。当入射光 入射至该表面时,形成衍射。施加不同的电信号可以形成不同相位调制度的正弦光栅。 高分子可调衍射光栅。 采用高分子可调衍射光栅的VOA的工作机制是:通过调制表面一层薄的聚合物,使其表面近 似为正弦形状,形成正弦光栅。利用这种技术,可以制作出一种周期为10微米,表面高度h随施 加的电信号变化并且最高可到300纳米的正弦光栅。当光入射到被调制的表面上时,形成衍射。施加不同的电信号改变正弦光栅的振幅,即改变h时,可以得到不同的相位调制度,而不同相位调制度下的衍射光强的分布是不同的。当相位调制度由零逐渐变大时,衍射光强度从零级向更高衍射级 的光转移。这种调制可以使零级光的光强从100%连续的改变到0%,从而,实现对衰减量的控制。并且这种调制的响应时间非常快,在微秒级。 磁光VOA 磁光VOA是利用一些物质在磁场作用下所表现出的光学性质的变化,例如利用磁致旋光效应(法拉第效应)实现光能量的衰减,从而达到调节光信号的目的。一种典型的偏振无关磁光VOA结 构如图2左图所示。

衰减器

功率衰减器是一种能量损耗性射频/微波元件,元件内部含有电阻性材料。除了常用的电阻性固定衰减器外,还有电控快速调整衰减器。衰减器广泛使用于需要功率电平调整的各种场合。 原理 1.技术指标工作频带 2.衰减量 3.功率容量 4.回波损耗 5.功率系数 6.基本构成 7.主要用途 8.相关参数 9.种类位移型光衰减器 10.薄膜型光衰减器 11.衰减片型光衰减器 12.注意事项原理 13.技术指标工作频带 14.衰减量 15.功率容量 16.回波损耗 17.功率系数 18.基本构成 19.主要用途 20.相关参数 21.种类位移型光衰减器 22.薄膜型光衰减器 23.衰减片型光衰减器 24.注意事项 原理: 衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路。一般以所引入衰减的分贝数及其特性阻衰减器抗的欧姆数来标明。在有线电视系统里广泛使用衰减器以便满足多端口对电平的要求。如放大器的输入端、输出端电平的控制、分支衰减量的控制。衰减器有无源衰减器和有源衰减器两种。有源衰减器与其他热敏元件相配合组成可变衰减器,装置在放大器内用于自动增益或斜率控制电路中。无源衰减器有固定衰减器和可调衰减器。 技术指标 工作频带 衰减器的工作频带是指在给定频率范围内使用衰减器,衰减器才能达到指标值。由于射频/

微波数字衰减器结构与频率有关,不同频段的元器件,结构不同,也不能通用。现代同轴结构的衰减器使用的工作频带相当宽,设计或使用中要加以注意。 衰减量 无论形成功率衰减的机理和具体结构如何,总是可以用下图所示的两端口网络来描述衰减器。图中,信号输入端的功率为P1,而输出端得功率为P2,衰减器的功率衰减量为A (dB)。若P1 、P2 以分贝毫瓦(dBm)表示,则两端功率间的关系为P2(dBm)=P1(dBm)-A(dB)可以看出,衰减量描述功率通过衰减器后功率的变小程度。衰减量的大小由构成衰减器的材料和结构确定。衰减量用分贝作单位,便于整机指标计算。 功率容量 衰减器是一种能量消耗元件,功率消耗后变成热量。可以想象,材料结构确定后,衰减器的功率容量就确定了。如果让衰减器承受的功率超过这个极限值,衰减器就会被烧毁。设计和使用时,必须明确功率容量。 回波损耗 回波损耗就是衰减器的驻波比,要求衰减器两端的输入输出驻波比应尽可能小。我们希望的衰减器是一个功率消耗元件,不能对两端电路有影响,也就是说,与两端电路都是匹配的。设计衰减器时要考虑这一因素。 功率系数 当输入功率从10mW变化到额定功率时,衰减量的变化系数表示为dB/(dB*W)。衰减量的变化值的具体算法是将系数乘以总衰减量功率(W)。如:一个功率容量50W,标称衰减量为40dB的衰减器的功率系数为0.001dB/(dB*W),意味着输入功率从10mW加到50W时,其衰减量会变化0.001*40*50=2dB之多! 基本构成 构成射频/微波功率衰减器的基本材料是电阻性材料。通常的电阻是衰减器的一大功率衰减器种基本形式,由此形成的电阻衰减器网络就是集总参数衰减器。通过一定的工艺把电阻材料放置到不同波段的射频/微波电路结构中就形成了相应频率的衰减器。如果是大功率衰减器,体积肯定要加大,关键就是散热设计。随着现代电子技术的发展,在许多场合要用到快速调整衰减器。这种衰减器通常有两种实现方式,一是半导体小功率快调衰减器,如PIN 管或FET单片集成衰减器;二是开关控制的电阻衰减网络,开关可以是电子开关,也可以是射频继电器。 衰减器有以下基本用途:1) 控制功率电平:在微波超外差接收机中对本振输出功率进行控制,获得光敏衰减器最佳噪声系数和变频损耗,达到最佳接收效果。在微波接收机中,实现自动增益控制,改善动态范围。2) 去耦元件:作为振荡器与负载之间的去耦合元

二光衰减器的衰减量回波损耗的测试

实验二 光衰减器的衰减量、回波损耗的测试 一. 实验目的和任务 1. 了解光衰减器的原理。 2. 了解光衰减器各参数的概念和测试方法。 3. 对光衰减器的衰减量和回波损耗进行测试。 二. 实验原理 光衰减器是调节光强不可缺少的器件,主要用于光纤通信系统指标测量、短距离通信系统的信号衰减以及系统实验等。它可分为位移型光衰减器、直接镀膜型光衰减器、衰减片型光衰减器、液晶型光衰减器等。对于位移型光衰减器来说,它是通过对光纤的对中精度做适当地调整,来控制其衰减量的。直接镀膜型光衰减器是一种直接在光纤端面或玻璃基片上镀制金属吸收膜或反射膜来衰减光能量的衰减器。衰减片型光衰减器直接将具有吸收特性的衰减片,固定在光纤的端面上或光路中,达到衰减光信号的目的。液晶型光衰减器是通过是光线偏振面的旋转,使一部分光不能被自聚焦透镜耦合进入光纤来实现对光信号的衰减的。耦合器型固定衰减器是有特定的耦合比产生的分束损耗,使通过耦合器实现光衰减器的功能。对光衰减器的要求是:体积小、重量轻、衰减精确度高、稳定可靠、使用方便等。 在实验中,我们使用的是信息产业部电子第41所的耦合器式固定衰减器。 (一) 光衰减器衰减量的测试原理 衰减量是光衰减器的一个主要技术指标。对于固定衰减器来说,其衰减量指标实际上就是光衰减器的插入损耗。即光信号经过光衰减器的输出功率与光衰减器输入功率之比的分贝数。假设光衰减器输入光功率为P 1,输出光功率为P 2,则光衰减器衰减量的计 算公式为: ()dB P P A 2 1lg 10= (2-1) 测量光衰减器衰减量的实验原理图如图2.1所示。 光隔离器 图2.1 光衰减器衰减量测量原理图

信号转换器原理

转换器 开放分类:应用科学建筑材料机电一体化电子 编辑词条分享 ?新知社新浪微博人人网腾讯微博移动说客网易微博开心001天涯MSN ? 1 设备类型 ? 2 转换模式 ? 3 接口类型 ? 4 传输速率 ? 5 网络标准 ? 将一种信号转换成另一种信号的装置。 协议转换器

接口转换器 转换器从原理上可分为协议转换器、接口转换器两大类。从应用上又可以分光纤转换器、光电转换器、视频转换器等等。例如视频转换器就是一种连接电脑和电视的设备,它可以把电脑上的内容转换并显 示在电视机上,让人们可以在电视上学电脑,上网,玩游戏,做商业演示,看股票等等。 典型的转换器常见的转换模式有以下几种: V.35与G.703接口之间的转换; Ethernet(RJ45)与RS232之间的转换; 单模光纤与多模光纤之间的转换; 光纤接口与Ethernet(RJ45)之间的转换; 以太网口与E1的接口转换; USB接口与其他接口之间的转换等等。 转换器典型的接口类型有以太网接口,E1接口、串行接口(RS232)、SC/ST接口、USB接口等。 RJ-45 接口转换器 1.以太网接口 接口标准:IEEE802.3

终端速率:10M/100/1000Mbps 工作模式:全双工、半双工 终端接头:RJ45接口 2.E1接口 网络接口:G.703、G.704、G.823 网络速率:2.048Mbps 网络接头:BNC(75欧姆)等 线路编码:HDB3码 3.串行接口 接口速率:19200bps 接口标准:RS-232 SC/ST接口转换器 4.SC/ST接口 ST接口:10Base-F SC接口:100Base-FX 5.USB接口 USB1.1:12Mbps USB2.0:480Mbps 不同的转换器产品由于转换接口的不同,传输速率也不同,典型接口传输速率如下:

如何利用光衰减器测试

如何利用光衰减器 测试光纤收发器的灵敏度 了解如何测试光纤接收器的灵敏度是一项重要技能。当光输入功率在一定范围内时,光纤接收器的性能最佳。但是如何来判断光纤收发器是否会在最低光输入功率时,提供最佳性能呢?常用的一种方法是使用光衰减器,例如隔板衰减器。通常只需要两个值即可完成测试。该过程包括如下所示的三个步骤。 1.使用功率计测量光纤发射器的光输出功率。请记住,工业标准定义了特定网络标准的发射器和接收器的光输入功率。如果您正在测试100BASE-FX收发器,则应使用100BASE-FX发射器,且发射器的光输出功率应在制造商的数据表所规定的范围内。 2.将发射器连接到接收器,并在发射器可提供的最大光输出功率下验证其是否正常工作。您需要以接收器可以接受的最小光输入功率测试接收器,同时接收器仍然提供最佳性能。为此,您需要从制造商的数据表中获取最低的光输入功率值。

3.计算测试所需的衰减水平。例如:发射器的光输出功率为-17dBm,接收器的最小光功率电平为-33dBm。它们之间的差值为16dB。您可以在接收器的输入端使用16dB的隔板衰减器,并重新测试接收器。如果接收器仍能正常工作,则在规格范围内。 注意:在上面的例子中不考虑光损耗。假设发射器位于接收器10公里处,并且整个光纤链路(包括互连)的损耗为6dB,那么对于您的测试,应使用10dB的隔板衰减器,而不是16dB 的。

光衰减器是一种非常重要的光纤无源器件,它可按用户的要求将光信号能量进行预期地衰减,也可以用来测试光纤收发器的灵敏度。飞速光纤(https://www.360docs.net/doc/0e9390574.html,)提供种类齐全的光衰减器,为光通信的用户带来了方便。

同轴衰减器的原理与用途

概述: 同轴衰减器是一种能量损耗性射频微波元件,元件内部含有电阻性材料。除了常用的电阻性固定衰减器外,还有电控快速调整衰减器。衰减器广泛使用于需要功率电平调整的各种场合。 原理: 衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路。一般以所引入衰减的分贝数及其特性阻抗的欧姆数来标明。在有线电视系统里广泛使用衰减器以便满足多端口对电平的要求。如放大器的输入端、输出端电平的控制、分支衰减量的控制。衰减器有无源衰减器和有源衰减器两种。有源衰减器与其他热敏元件相配合组成可变衰减器,装置在放大器内用于自动增益或斜率控制电路中。无源衰减器有固定衰减器和可调衰减器。 同轴衰减器的技术指标: 1、工作频带:衰减器的工作频带是指在给定频率范围内使用衰减器,衰减器才能达到指标值。由于射频微波结构与频率有关,不同频段的元器件,结构不同,也不能通用。现代同轴结构的衰减器使用的工作频带相当宽,设计或使用中要加以注意。 2、衰减量:无论形成功率衰减的机理和具体结构如何,总是可以用两端口网络来描述衰减器。信号输入端的功率为P1,而输出端得功率为P2,衰减器的功率衰减量为A (dB )。若P1 、P2 以分贝毫瓦(dBm )表示,则两端功率间的关系为:P2(dBm )=P1(dBm )-A (dB ) 1 2 P 1 P 2 可以看出,衰减量描述功率通过衰减器后功率的变小程度。衰减量的大小由构成衰减器的材料和结构确定。衰减量用分贝作单位,便于整机指标计算。 3、功率容量:衰减器是一种能量消耗元件,功率消耗后变成热量。因此,材料结构确定后,衰减器的功率容量就确定了。如果让衰减器承受的功率超过这个极限值,衰减器就会被烧毁。所以,在设计和使用时,必须明确衰减器的功率容量。 4、回拨损耗:回拨损耗就是衰减器的驻波比,要求衰减器两端的输入输出驻波比应尽可能小。 我们希望的衰减器是一个功率消耗元件,不能对两端电路有影响,也就是说,与两端电路都是匹配的。 功率衰减器 A (db )

光衰减器介绍

光衰减器 介绍 武汉光迅科技股份有限公司

主要内容 ?衰减的定义 ?衰减器分类 ?衰减器应用 ?衰减器的技术指标?光迅科技的衰减器

衰减器的含义 特定(工作)波长的光信号,经由输入到输出的过程中, 输出的光能量(功率)相对于输入光能量的减少。 ?输出光能量功率小于输入光能量功率?不改变信号其他特性 ?线性无源双端口网络器件

理解衰减器 ?Optical Attenuator (OAT) 固定衰减Fixed OAT: 3,5,10,15dB 普通型:OAT-F;高回损型:OAT-HF 可调衰减:Varible Optical Attenuator Manual VOA—手调光可变衰减器Electrical VOA—电调光可变衰减器?输入/输出光端口FC/MU/LC/SC 类型

理解衰减器 ?实现光衰减到特定衰减值 ATT(dB)=abs(10log(PO/PI),其中PO,PI以mW为单位 如: 输入PO=1mW, PI=10mW 时对应ATT=10dB, PO=0.1mW 时对应ATT=20dB,?不改变光信号其他特性(波长复用,电调制)?线性无源:(电源,光源)

衰减器的分类 根据不同工作原理分类: 1.位移型光衰减器 当两段光纤进行连接时,必须达到相当高的对中精度,才能使光信号以较小的损耗传输过去。反过来,如果将光纤的对中精度做适当的调整,就可以控制其衰减量。位移型光衰减器就是根据这个原理,有意让光纤在对接时,发生一定的错位。使光能量损失一些,从而达到控制衰减量的目的, ?横向位移型:是一种比较传统的方法,由于横向位移参数的数量级均在微米级,所以一般不用来制作可变衰减器,仅用于固定衰减器的制作中,并采用熔接或粘接法,到目前仍有较大的市场,其优点在于回波损耗高,一般都大于60dB。 ?轴向位移型:在工艺设计上只要用机械的方法将两根光纤拉开一定距离进行对中,就可实现衰减的目的。这种原理主要用于固定光衰减器和一些小型可变光衰减器的制作。

衰减及阻抗匹配网络的设计

实验二衰减及阻抗匹配网络的设计 一、实验目的 ⒈了解衰减器和网络匹配的特点。 ⒉学习常用衰减器和匹配网络的设计方法。 ⒊学习精确阻值电阻的制作。 二、原理与说明 ⒈衰减器的主要用途 在信号源与负载之间插入衰减器,使信号通过它产生一定大小或可以调节的衰减,以满足负载或下一级网络在正常工作时对输入信号幅度的要求。常用的衰减网络结构有倒L型、T型、П型和桥T型等几种。 ⒉常用衰减器的衰减量有连续可调和按步级衰减两种 衰减器的衰减量,即衰减倍数可直接用输入、输出电压比表示,也可以用它的dB数表示。图2-1和图2-2所示为两种按分压器原理工作的衰减器,其中图2-1所示是一个 电位器,它的分压比连续可调;图2-2 规 律衰减的步级衰减器,这两种衰减器都可等效成倒L型网络, 输入特性阻抗和输出特性阻抗不等,且随衰减量的不同而变 化。此类衰减器常用在对匹配要求不高的场合,并且要求负 载电阻越大越好。图2-1 图2-2 ⒊对称网络衰减器 当要求衰减器的插入不改变前后级匹配状况时,常采用如图2-3所示T型或П型对称网络衰减器。这类对称网络的特点是输入、输出特性阻抗一致且不随衰减档级而变化。

(a) (b) 图2-3 若衰减器的电压衰减倍数12U N U ?? ??? 和特性阻抗C Z 给定,则元件参数可由(2-1)式或(2-2)式决定。 对П型衰减器有 2112C N R Z N -= 21 1 C N R Z N +=- (2-1) 对T 型衰减器有 11 1C N R Z N -=+ 2221 C N R Z N =- (2-2) 图2-4 用多个相同的衰减器级联可构成一个步级衰减器,如图2-4所示。由于其中两个2 R 并联可用一个2R /2来等效,因此还可以用图2-5所示梯形电路构成衰减器。由于是对称

衰减器的特性

题目:衰减器的特性学院:电子工程

一、实验目的 1.了解衰减器的特性,掌握衰减器的测量方法。 2.学会测量衰减器的幅频特性 二、实验设备 1.微波信号发生器 2.衰减器 3.频谱分析仪 三、实验原理 功率衰减器是能量损耗性射频/微波元件,元件内部含有电阻性材料。衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路。一般以所引入衰减的分贝数及其特性阻抗的欧姆数来标明。 四、实验操作步骤 衰减特性测量 1.设置微波信号发生器输出指定频率和功率的单载波信号(如850MHz、-20dBm)。 2.将输入输出电缆短接。用频谱分析仪测量衰减器的输入信号电平,测试数据记录到表格1中。 3.接入被测衰减器。用频谱分析仪测量衰减器的输出信号电平,计算衰减器的衰减量以及与标称值得误差,测试数据记录到表格1中。 分析: 因为我们本次实验使用的衰减器是PIN衰减器,上面标明的衰减量为>=10dB,而实际上要求用的衰减器其衰减量为10dB,因此在计算标称误差的时候,是以标准衰减量10dB来计算的。可见:误差在允许的范围内可以被接受。 幅频特性测量 1.设置微波信号发生器输出指定频率和功率的单载波信号(如850MHz、-20dBm)。 2.将输入和输出电缆短接。用频谱分析仪测量并记录衰减器的输入信号电平。 3.接入被测衰减器。设置频谱分析仪的中心频率为指定频率(如850MHZ),设置合适的扫描带宽(如100MHZ),适当调整参考电平使频谱图显示在合适的位置。 4.设置频谱分析仪的轨迹为最大保持功能(Trace->Trace type Max hold).

5.按照一定的步进(如0.1MHZ),用手动旋钮在指定的频率范围内(如830~870MHZ),调整微波信号发生器的输出频率,在频谱分析仪上显示幅频特性曲线。 6.根据频谱分析仪显示的幅频特性曲线,测量并计算衰减器在指定频带内的最小 最小衰减量=衰减器输入信号电平-衰减后最大输出电平 幅频特性=最小衰减量/带宽 四、实验总结 本实验计算量不大,但是需要时间熟悉频谱分析仪的使用,尤其是调频谱分析仪会比较麻烦。总体来说,整个实验还是很顺利的,队友分工明确,很轻松的完成了实验。

相关文档
最新文档