光衰减器的原理及应用

光衰减器的原理及应用
光衰减器的原理及应用

光衰减器的原理及应用

作者:钱青、唐旭东 日期:2006-1-6

(上海光城邮电通信设备有限公司)

光纤通信是用光作为信息的载体,以光纤作为传输介质的一种通信方式。由于其比传统的其他通信方式有着巨大的优势,随着信息技术的不断发展和信息化进程的加快,光纤及其光器件的使用范围越来越广,如光纤通信系统、光纤数据网、光纤CATV 等。

信号无论在哪种传输介质中传输都会有损耗,这种损耗可以定义为信号的衰减。光通信中光纤衰减的特性用衰减系数α表示,光信号在光纤中传输时,其功率P 随着传输距离的增加按指数形式衰减,即

= -αP

设起始处(z=0)的信号光功率为P(0),则在光纤中经过距离z 的传播后,其值为衰减系数

α= ln

在同一种介质中传输时,信号的衰减系数比较稳定,一旦介质有所转换,衰减就有突变。

在通常情况下,我们都希望传输线的损耗越小越好,但在有些情况下,由于信号源及传输距离的不确定,线路中的信号强度可能过大,这就需要采取某种措施减小信号。光衰减器就是这样一种用于消除线路中过大信号的器件。

一、光纤衰减的特性

要研制光衰减器,首先要了解光纤传输的基本特性。光在光纤中传输,是通过全反射的原理,确保光不外泄。如图1所示全反射临界入射角为θc ,αc 为临界传播角,纤芯的折射率为n 1,包层的折射率为n 2。

图1 光纤内部光传输

为满足光线在纤芯内的全反射条件,要求n 1>n 2。αc 是光线发生全发射时与光纤纵向轴线之间的夹角,有 αc =arcsin ?????????n n 1212

dP dZ P(z) P(0) 1

Z sin θc = n 1

n 2

要保证光线在光纤内全反射,必须有传输角α<αc 。

除了全反射条件外,光信号在光纤中传输还会有损耗存在,这是由光纤自身特性所决定的,主要有散射损耗、吸收损耗和弯曲损耗等。

1、散射损耗

散射损耗通常是由于光纤材料密度的微观变化,以及所含sio2 、geo2 和p2o5 等成分的浓度不均匀,使得光纤中出现一些折射率分布不均匀的局部区域,从而引起光的散射,将一部分光功率散射到光纤外部引起损耗;或者在制造光纤的过程中,在纤芯和包层交界面上出现某些缺陷、残留一些气泡和气痕等。这些结构上有缺陷的几何尺寸远大于光波,引起与波长无关的散射损耗,并且将整个光纤损耗谱曲线上移。这种散射也称为瑞利散射。

2、吸收损耗

吸收衰耗,包括杂质吸收和本征吸收。

本征吸收是光纤石英材料固有的吸收损耗。而杂质吸收在光纤材料中的杂质如氢氧根离子、过渡金属离子对光的极强的吸收能力,它们是产生光信号衰减的重要因数。

3、弯曲损耗

由于在光纤敷设过程中,不可避免地会遇到需要弯曲的场合,光线从光纤的平直部分进入弯曲部分时,原来的束缚光纤在弯曲部分的入射角减小,使得光纤纤芯和包层界面上的全反射条件遇到破坏,光束的一部分就会从光纤的纤芯中逃离出去,造成到达目的地的光功率比从光源发出的进入光纤时的光功率小,这就是弯曲损耗。

二、各种衰减器的工作原理

根据以上光在线路中传输的特性,可以通过多种原理,完成光衰减器的制作。

1、空气隔离技术

光在光纤中传输受到全反射定律的制约,无法散射出来,保持强度的相对稳定。而一旦其脱离光纤,在光纤与光纤之间加入空气间隔,光就会散射出去,从而引起光的衰减。由于光从普通光纤中入射到空气中散射很强,为此要使衰减量控制一定的范围,就要确保隔离距离及保持两端光纤的对准。

图2 单模光纤空气隔离距离与衰减值曲线

通过这个原理可以制作法兰式固定衰减器和可调衰减器。

法兰式固定衰减器采用隔离衰减片,根据曲线图制作一定厚度的衰减片,将衰减片植入法兰中,就可起到固定光衰减的作用。法兰式可调光衰减器采用机械旋转原理,通过机械旋转调节两端连接器间的距离,可使光衰减在0~30dB 之间。

2、位移错位技术

此方法是将2根光纤的纤芯进行微量平移错位,从而达到功率损耗的效果。

图3光纤错位

通过使用普通尾纤,用熔接机将2根尾纤的纤芯在错位的情况下进行熔接工作,使光在传输过程中发生偏芯损耗,得到连接器式固定衰减器,又称在线固定衰减器。

3、衰减光纤技术

根据金属离子对光有吸收作用,研制出参杂金属离子的衰减光纤,与普通光纤每公里有衰减系数一样,这种衰减光纤也有固定的衰减系数,只不过这种衰减系数不按公里计算,而是按照毫米计算。

图4 衰减光纤

将衰减光纤穿入陶瓷插芯,经过特殊工艺处理,可以制成阴阳式的固定衰减器。

4、吸收玻璃法

经光学抛光的中性吸收玻璃片也可被应用于光衰减器的制作。

利用物质对光的吸收特性,制成片状或条状的中性暗色玻璃,放在光路上,可以将光强衰减。

吸收玻璃以透过率T 及以分贝数表示的衰减率区分。

透过率T=透射光强/入射光强

衰减率η=1/T

以分贝数表示的衰减率β=10 x log η=- 10 x logT ,以分贝数表示的衰减率可方便估算多片组合时的衰减率:将叠加各片的衰减率分贝数相加即为组合衰减片组的衰减率(以分贝数表示)。

片状被制成固定的衰减值;而条状根据其内部连续递增的暗色物质,不同部纤芯内掺金属离子

位的衰减值也不同。

单块片状光吸收玻璃可以制作固定衰减器,多块片状吸收玻璃可以通过轮盘转换制成分档可调试衰减器,而条状吸收玻璃通过连续位移可以制成连续可调衰减器。

5、固态光衰减技术

前面提到的空气隔离和吸收玻璃形式的可调光衰减器都是采用机械式的方法完成衰减的可调性,现在也有少量的采用各种固态光衰减技术,比如可调衍射光栅技术、MEMS 技术、液晶技术、磁光技术、平面光波导技术等。

(1)高分子可调衍射光栅VOA

高分子可调衍射光栅的制作基于一种薄膜表面调制技术。这种可调衍射光栅(图7)的顶层是玻璃,下面一层是铟锡氧化物(ITO ),中间是空气、聚合物和ITO 阵列,底层是玻璃基底。在未加电信号时,空气与聚合物层的交界面是与结构表面平行的平面。当入射光进入该平面时,不发生衍射。在加电信号后,空气和聚合物的界面随电极阵列的分布而发生周期变化,形成了正弦光栅。当入射光入射至该表面时,形成衍射。施加不同的电信号可以形成不同相位调制度的正弦光栅。

图7 可调衍射光栅

采用高分子可调衍射光栅的VOA 的工作机制是:通过调制表面一层薄的聚合物,使其表面近似为正弦形状,形成正弦光栅。利用这种技术,可以制作出一种周期为10微米,表面高度h 随施加的电信号变化并且最高可到300纳米的正弦光栅。当光入射到被调制的表面上时,形成衍射。施加不同的电信号改变正弦光栅的振幅,即改变h 时,可以得到不同的相位调制度,而不同相位调制度下的衍射光强的分布是不同的。当相位调制度由零逐渐变大时,衍射光强度从零级向更高衍射级的光转移。这种调制可以使零级光的光强从100%连续的改变到0%

,图5 片状吸收

图6 条状吸收

从而,实现对衰减量的控制。并且这种调制的响应时间非常快,在微秒级。

(2)磁光VOA

磁光VOA是利用一些物质在磁场作用下所表现出的光学性质的变化,例如利用磁致旋光效应(法拉第效应)实现光能量的衰减,从而达到调节光信号的目的。一种典型的偏振无关磁光VOA结构如图8左图所示。

图8 偏振无关磁光VOA结构和光路

右图将左图中的镜像光路画在右侧,以利于原理的分析解释。当光从双芯光纤的一端入射,经透镜准直后(略去光束的厚度),进入到双折射晶体(其光轴垂直于纸面),被分成O光和E光两束光,然后进入法拉第旋转器,光从法拉第旋转器出射后被全反射镜反射,再依次通过法拉第旋转器、双折射晶体和透镜,最后从双芯光纤的另一端输出。因此,通过调制电压控制磁场,可以使进入法拉第旋转器的偏振光的偏振态发生旋转。在法拉第旋转角为0度的情况下,O光仍然是O光,E光仍然是E光,两束光不平行,不能合在一起,如图虚线所示,此时衰减程度最大;在法拉第旋转角为45度的情况下,总的法拉第旋转角为90度,O光变成E光,E光变成O光,两束光平行,通过透镜聚焦后合在一起,此时衰减程度最小。

(3)液晶VOA

液晶VOA利用了液晶折射率各向异性而显示出的双折射效应。当施加外电场时,液晶分子取向重新排列,将会导致其透光特性发生变化。

图9 液晶加电前后透光性的变化。

如图9所示,由入射光纤入射的光经准直器准直后,进入双折射晶体,被分成偏振态相互垂直的O光和E光,经液晶后,O光变成E光,E光变成O光,再由另一块双折射晶体合束,最后从准直器输出。当液晶材料加载电压V时,O 光和E光经过液晶后都改变一定的角度,经第二块双折射晶体,每束光又被分

成O光和E光,形成了4束光,中间两束最后合成一束从第二块双折射晶体出射,由准直器接收,另外两束从第二块双折射晶体出射后未被准直器接收,从而实现衰减。因此,通过在液晶的两个电极上施加不同的电压控制光强的变化,可以实现不同的衰减。

(4)MEMSVOA

MEMSVOA有反射式VOA和衍射式VOA(如图10)。

图10 MEMSVOA的结构。

反射式VOA是在硅基上制作一块微反射镜。光经双芯准直器的一端进入,以一定角度入射到微反射镜上,当施加电压时,微反射镜在静电作用下被扭转,倾角改变,入射光的入射角度发生改变,光反射后能量不能完全耦合进双芯准直器的另一端,达到调节光强的目的;而未加电压时,微反射镜呈水平状态,光反射后能量完全耦合进双芯准直器的另一端。

衍射式VOA基于动态衍射光栅技术。当施加电压时,在静电作用下相同间隔的动栅条位置向下移动产生衍射光栅效应,通过电压调节来控制一级衍射光从而达到调节光信号衰减量的目的。

(5)平面光波导VOA

平面光波导VOA也有两种。

一种是基于Mach-Zehnder干涉仪(MZI)原理,并利用热光效应,使材料的折射率发生变化,从而改变MZI的干涉臂的长度,使两臂产生不同的光程差,实现对光衰减量的控制(如图11)。这种方法必须对光束进行分束和耦合,这就会引入较大的插入损耗。

图11 基于MZI原理的平面光波导VOA 另一种直接基于电吸收(EA)调制,利用载流子注入改变吸收系数来实现光功率的衰减。如图12所示,在PN结之间加入一层单模光波导层,当未加电时,从光纤出射的单模光,进入单模光波导层后,仍然是传导模,被限制在这一层中继续传播,并从另一光纤输出;当加载电压时,由于载流子的注入,单模光波导的吸收系数增大,从而部分光被吸收掉。并且随着电压的增加,流过PN结

的电流也随着增加,使得更多的光子被吸收,衰减增大。

图12 利用电吸收调制的平面光波VOA

(6)高光电系数材料VOA

这种VOA采用的是特殊的陶瓷光电材料,类似铌酸锂(LiNbO3),不过比铌酸锂有更大的光电系数。利用这种光电系数足够大的材料制作VOA,不需要做成波导,可以做成自由空间结构,就像隔离器那样。如图13所示,光经由输入准直器端导入,通过由特殊光电材料做成的一块元件,然后从输出准直器输出。调节加在光电材料元件上的电压,使得它的折射率发生改变,从而实现衰减。

图13 使用高光电系数材料制作VOA

三、各种衰减器的优缺点

1、空气隔离技术含量低,实现简单,体积小、成本低。有固定和连续可调式。但由于传导光介质的突变,纤芯与空气界面的折射率不同,输入光在此界面将发生内发射,一部分光沿输入路径反射回去,造成传输线路的回波损耗小。对于高要求线路,很难满足。

2、位移错位技术采用普通光纤,成本低,实现固定衰减,可替换连接器用于线路中。其对光纤的错位处理同样会减少回波损耗。

3、衰减光纤采用特别的设计,在最可能宽的波长范围内提供平坦衰减。超宽带的一致衰减确保了产品在现在以至将来都能与DWDM, CATV 及其它通讯系统完全兼容。衰减光纤几何尺寸与普通单模光纤一致,确保了与陶瓷插芯完美配合,从而实现此类衰减器与连接器一样,有相当高的回波损耗,并有体积小的优点。但只能作为固定衰减器。

4、光吸收玻璃可实现固定和可调。但研制衰减器需要使用光准直器,要求输入、输出端的高度耦合,要求有精度较高的调试设备和配套零件。实现成本较高。

5、采用固态光衰减技术的衰减器可实现连续可调,但这些新技术的技术层面牵涉较广,成本较高,并带有温度影响、可靠性、封装等不同方面的劣势。对于这些技术还需进一步完善。

四、阴阳式固定光衰减器

通过以上对比,考虑技术含量、技术成熟度、成本、以及对线路的影响等方面,衰减光纤研制的阴阳式固定光衰减器的性价比较高,容易产业化。

1、衰减光纤参数

衰减光纤在使用中与普通光纤有很好的匹配性,因为它们的物理结构是一致的。

纤芯直径:8.0±1.0um

包层直径:124.7±1.0um

涂附层直径:250.0±5.0um

由于金属离子被均匀的分布在纤芯内,使得衰减光纤在光学衰减系数方面也有很好的一致性,其系数值根据不同长度的插芯也被制成多种规格,通常有dB/15mm、dB/21mm和dB/24mm。另外,由于采用先进的制作工艺,在1310nm和1550nm波长上,光的衰减系数非常的接近,一般在0.1dB,为此增加了其通用性。

2、衰减器制作工艺

该产品采用进口衰减光纤和一体芯棒,设计高精度专用芯棒压制模具,使用液压机将芯棒压制成如图所示,接近于普通连接器的芯棒。

配制粘合剂,注入芯棒内孔,将衰减光纤直串入芯棒内,在两端各露出少许长度,经高温烘烤后进行端面处理。

使用日本精工研磨机,专用研磨砂纸。将芯棒装入研磨夹具中,通过五道工序进行研磨。

第一道工序:碳化硅除去芯棒上的胶水,以及露出在芯棒上的光纤。用金刚石切割刀将余纤小心除去,尽可能使得光纤端面平整。

第二道工序:金刚石粗略磨去芯棒表面的粘和剂使表面尽可能光滑。

第三道工序:金刚石精磨光纤端面,加入适量研磨液,特别注意金刚石砂纸表面的清洁,如发现砂纸已磨损,应当及时更换砂纸以免损伤光纤。

第四道工序:金刚石精模光纤端面,用显微镜仔细检查光纤端面,应使端面非常光滑,无划伤,无污点,无缺陷。

第五道工序:氧化硅抛光光纤端面,研磨机启动后均速转动10圈,特别注意掌握研磨时间要短,以保证高回波损耗。

研磨好的芯棒配上导向套筒,组装入配套的阴阳结构散件中就可实现此类产品。

3、衰减器技术指标

衰减量:1~15dB等

衰减精度:≤10dB±0.5dB; >10 dB±8%

回波损耗:>50 dB,UPC ; >65 dB, APC

工作波长:1310nm和1550nm(SM)

偏振相关损耗:≤0.1 dB

工作温度:-40℃~70℃

湿度(未封装): 95%RH

符合Telecordia标准,(RG-910-CORE)。可提供连接头类型:FC,SC,ST,LC,以及转接型。

五、结语

随着光通信领域的不断发展,光衰减器的应用也越来越多。为确保线路的高速无误码传输,使各通道信号光功率达到一定值,高精度高回损的光衰减器必不可少。使用衰减光纤研制的光衰减器由于能够与普通光纤连接器很好的匹配,超宽带的一致衰减确保了产品在现在以至将来都能与DWDM, CATV 及其它通讯系统完全兼容,将得到广泛的应用。

参考文献:

1、陈钰清,王静环。激光原理[M]。杭州:浙江大学出版社,1998:180-192

2、王挥。光纤通信[M]。北京:电子工业出版社,2004:11-17

3、马琨,孙莉萍。基于步进电机细分控制技术的小型可变光衰减器[J]。光纤通信技术,2002,3:9-21

4、周日凯,刘文,罗勇。几种可变光衰减器技术及其比较[J]。光波通信,2005

5、曹钟慧,吴兴坤。电控可调光衰减器性能及分析[J]。浙江大学学报:工学版,2005,1552-1556

衰减器培训投影片(PPT)

光纖衰減器功能屬性 (Fiber Optical Attenuator)?功能: 致光信號衰減,使光信號調節在光接收器動態範圍內,以確保光信號傳輸正確性之光被動元件. ?分類:(以衰減值型式) –固定值衰減器(Fixed Attenuator) –可變值衰減器(Variable Attenuator) ?連續式(Continuously): 0.5~30dB. ?階段式(Discretely): <5dB interval.

光纖衰減器分類方式 (Fiber Optical Attenuator) ?分類:(以結構型式) –引線式(In-Line type) ?將衰減器包裝在光纖引線中間,兩端再組裝不同 型式連接器稱之. ATTENUATOR –接頭式(Adaptor type) ?依兩端是插頭(Plug;Male)或插座(Receptacle;Female) 分為公對母(M/F);母對母(F/F);公對公(M/M)三種, 兩端亦可依不同插頭或插座型式設計稱之.

光纖衰減器製作原理 ---插座式固定值光纖衰減器--- ?光吸收原理: –濾光片式光纖衰減器 ?利用一片固定光吸收率的濾光片以浮動設計原理 置於光學基準面上,兩端以Ferrule接觸方式進行. –反射損失過大(約-17dB) –濾光片需具抗壓強度(800~1200gf) ?MoT(Sleeve) ?o¥ú¤ù

光纖衰減器製作原理 ---插座式固定值光纖衰減器--- ?光發散原理: –塑膠片式光纖衰減器 ?利用不同厚度造成光斑大小不同的塑膠片置於光 學基準面上,兩端以Ferrule接觸方式進行. ?塑膠片折射率約1.46(接近光纖Core的折射率). ?機械基準面隨塑膠片厚度變化而不同. –反射損失過大(約-30dB) –零件共通性差(零件尺寸隨衰減值變化而不同) –塑膠片需具抗壓強度(800~1200gf)

光电耦合器工作原理

光电耦合器工作原理 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装 图二光电耦合器之内部结构图三极管接收型 6脚封装

图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在

数据库原理及应用课程标准

《数据库原理及应用》课程标准 一、课程说明 课程名称:数据库原理及应用 课程代码:PE123037 参考学分:3 参考学时:48 课程管理系部:计算机系 适用专业:计算机应用技术专业 开发人员:职业技术学院计算机系数据库原理及应用教学团队 二、课程概述 (一)课程性质与定位 1.课程性质 《数据库原理及应用》课程是计算机专业的专业核心课程,是培养数据库管理及开发人员的基础支撑课程。 2.课程定位 根据高职计算机专业人才培养模式的要求,培养学生基于当今主流软件开发技术的应用开发能力,确立了本课程作为开发后台数据库在专业课程体系中的地位。如今各类信息系统、动态网站、移动应用的开发都需要使用后台数据库,数据库已成为当今计算机时代中不可或缺的组成部分。通过本课程的学习,要求学生掌握关系型数据库的开发过程,为软件开发、动态网站的创建打下坚实的技术基础。 前导课程:程序设计基础 后续课程:网页设计、JSP动态网页开发、.NET编程技术、高级编程技术 (二)课程设计思路 本课程采用“项目驱动,案例教学,一体化课堂”的教学模式开展教学。整个课程通过一个实际数据库应用开发项目驱动,完成教师与学生互动的讲练结合教学过程。学生在完成各项任务、子任务的过程中,学会数据库的应用技术、原理和工具的使用。 本课程的理论安排在多媒体教室,实践环节安排在设施先进的多媒体机房进行,教学中以学生为中心,教师负责讲授知识,指导项目设计,充分调动师生双方的积极性以达到教学目标。 (1)项目贯穿教学

以学生管理系统等数据库为载体开展教学,贯穿数据库的整个开发过程,包括:概念模型设计、关系模型设计、创建与维护数据库、创建与维护表、对表的查询、建立存储过程、数据库备份与恢复、数据库安全等。 (2)任务分解知识点 明确每堂课的任务、子任务,教学就是完成任务的过程,在这一过程中融入相关知识,以达到“任务完成,知识掌握,本领学会”的教学目的。 (3)“教、学、做”一体化教学 在一体化教室完成教师与学生互动的讲练结合的教学过程。教师讲解项目、分解任务、传授知识、演示示范;学生重复操作过程,学习知识技能;做拓展项目,如“选课管理”数据库、“图书管理”数据库、“活期存单”数据库等可供学生选做。 三、课程的教学目标 表1 四、课程内容与要求 选取难易度适中的案例、项目,加以分解、序化,兼顾从简单到复杂的认知规律和学生的学习兴趣,作为载体,以项目为导向,创设学习情境,学生按照工作流程,合作完成一个小型项目的后台数据库的设计工作。

(完整word版)传感器原理及应用复习题.docx

《传感器原理及应用》复习题 1.静态特性指标其中的线性度的定义是指 2.传感器的差动测量方法的优点是减小了非线性误差、提高了测量灵敏度。 3.对于等臂半桥电路为了减小或消除非线性误差的方法可以采用提高桥臂 比,采用差动电桥的方法。 4.高频反射式电涡流传感器实际是由线圈和被测体或导体两个部分组成的系统,两者之间通过电磁感应相互作用,因此,在能够构成电涡 流传感器的应用场合中必须存在金属材料。 5.霍尔元件需要进行温度补偿的原因是因为其霍尔系数和材料电阻 受温度影响大。使用霍尔传感器测量位移时,需要构造一个磁场。 6.热电阻最常用的材料是铂和铜,工业上被广泛用来测量中低温 区的温度,在测量温度要求不高且温度较低的场合,铜热电阻得 到了广泛应用。 7.现有霍尔式、电涡流式和光电式三种传感器,设计传送带上塑料零件的计数 系统时,应选其中的光电传感器。需要测量某设备的外壳温度,已知其 范围是300~400℃,要求实现高精度测量,应该在铂铑- 铂热电偶、铂电阻和热 敏电阻中选择铂电阻。 8.一个二进制光学码盘式传感器,为了达到1″左右的分辨力,需要采用 或位码盘。一个刻划直径为400 mm的 20 位码盘,其外圈分别间隔 为稍大于μm。 9.非功能型光纤传感器中的光纤仅仅起传输光信息的作用,功能型光纤传感器 是把光纤作为敏感元件。光纤的 NA 值大表明集光能力强。 11.光照使半导体电阻率变化的现象称为内光电效应,基于此效应的器件除光敏 电阻外还有处于反向偏置工作状态的光敏二极管。光敏器件的灵敏度可 用光照特性表征,它反映光电器件的输入光量与输出光电流(电压 )之间 的关系。选择光电传感器的光源与光敏器件时主要依据器件的光谱特性。 12. 传感器一般由敏感元件 _ 、转换元件 ___ 、测量电路及辅助电 源四个部分组成。 13.传感器的灵敏度是指稳态标准条件下,输出变化量与输入变化 量的比值。对线性传感器来说,其灵敏度是一常数。

衰减器原理及其设计

衰减器原理及其设计 时间:2012-01-07 来源:作者: 关键字:衰减器原理 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小; (2)在比较法测量电路中,可用来直读被测网络的衰减值; (3)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的四端网络,它的特性阻抗、衰减都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有L型、T型、X型和桥T型等几种结构,其电路形式和计算公式见表5.1-16。

注:RC为特性阻抗;RC1、RC2为两侧特性阻抗,B为固有衰减值N=EB。 其中L型属于不对称衰减器,主要用于阻抗匹配,而T型、X型、桥T型属于对称衰减器,主要用于衰减。一端接地的衰减器称为不平衡衰减器;反之,两端不接地的衰减器称为平衡衰减器。 例:设计一衰减器,匹配于信号源内阻RS-600欧与负载电阻RL=150欧之间,其衰减量为30DB。 解计算过程: (1)因为RS、RL不相等,所以选用一节倒L型和一节对称T型号组成衰减器,如图5.1-19A所示 倒L型电路计算: (2)T型电路计算:由于总衰减量为30DB,所以T型衰减量为 (3)电路简化:对设计电路进行变换,进而得到简化电路,由图5.1-19A变换为图B及图C的形式。

2、可变衰减器的设计 可变衰减器,一般是指特性阻抗值恒定的,而它的衰减值是可变的衰减器,此外,还有一种分压式可变衰减器,由于它的负载往往是高阻抗,因此对这种分压式可变衰减器的特性阻抗就没有什么具体要求。 1)可变桥T型衰减器可变桥T型衰减器的电路结构如图5.1-20所示。

光耦合器的作用及其电路

光耦合器的作用及其电路 摘要线性光耦合器是目前国际上正推广应用的一种新型光电隔离器件。文中介绍其性能特点、产品分类,以及它在单片开关电源中的应用。 关键词光耦合器线性电流传输比通信单片开关电源 光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。普通光耦合器只能传输数字(开关)信号,不适合传输模拟信号。近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。 1 光耦合器的类型及性能特点 1.1 光耦合器的类型 光耦合器有双列直插式、管式、光导纤维式等多种封装形式,其种类达数十种。光耦合器的分类及内部电路如图1所示。图中是8种典型产品的型号:(a)通用型(无基极引线); (b)通用型(有基极引线);(c)达林顿型;(d)高速型;(e)光集成电路;(f)光纤型;(g)光敏 晶闸管型;(h)光敏场效应管型。 1.2 光耦合器的性能特点 光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占 空比,达到精密稳压目的。 1.3 光耦合器的技术参数 主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(s at)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。 常用参数: 正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。 正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。 反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。 反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。 结电容CJ:在规定偏压下,被测管两端的电容值。 反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间 的电压降。 输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持I C/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。

数据库原理及应用--课后答案

数据库原理及应用 课后答案 第一章 选择题 1、A。 从数据库管理系统的角度看,数据库系统的结构通常分为三级模式的总体结构,在这种模式下,形成了二级映像,实现了数据的独立性。其中三级模式结构指的是外模式、模式和内模式,二级映像指的是外模式/模式映像、模式/内模式映像。对于外模式/模式映像,当模式改变时,相应的外模式/模式映像作相应的改变,以使外模式保持不变,而应用程序是依据数据的外模式来编写的,外模式不变,应用程序就没必要修改,这保证了数据与程序的逻辑独立性。对于模式/内模式映像,当数据库的存储结构变了,模式/内模式映像会作相应的改变,以使模式保持不变,而模式不变,与模式没有直接联系的应用程序也不会改变,这保证了数据与程序的物理独立性。 数据逻辑独立性指的就是当模式改变时,外模式和应用程序不需要改变,所以选项A正确。C选项的内模式改变,模式不变指的是数据的物理独立性,所以C选项不正确,B选项中前后两句与C选项相比顺序不符,所以B选项不正确。D选项中,应为“模式和应用程序不变”,不应为“外模式”,所以D选项不正确。 2、B。 DB指的是数据库(DataBase),DBMS指的是数据库管理系统(DataBase Management System),DBS指的是数据库系统(DataBase System),DBA指的是数据库管理员(Database Administrator),Data指的是数据。

由书中概念易得DBS(数据库系统)包括DBMS(数据库管理系统),DBMS管理和控制DB(数据库),而DB载入、存储、重组与恢复Data(数据)。所以B选项正确。 3、C。 数据库系统的特点有:⑴、实现数据共享;⑵、减少数据冗余度;⑶、保持数据的一致性; ⑷、数据的独立性;⑸、安全保密性;⑹、并发控制;⑺、故障恢复 由以上可得C选项错误,应改为数据冗余度“低”。 4、C。 DB是长期储存在计算机内、有组织的、可共享的大量数据集合;DBS是实现有组织地、动态地存储大量关联数据,方便多用户访问计算机软件、硬件和数据资源组成的系统;DBMS 是把用户对数据的操作转化为对系统存储文件的操作,有效地实现数据库三级(外模式、模式和内模式)之间的转化;MIS指的是管理信息系统(Management Information System),是一个以人为主导,利用计算机硬件、软件及其他办公设备进行信息的收集、传递、存贮、加工、维护和使用的系统。由以上概念可知,位于用户和数据库之间的一层数据管理软件是DBMS。所以C选项正确。 5、C。 书中图1.6明确指出模式/内模式映像把概念数据库与物理数据库联系起来,所以C选项正确。 6、C。 数据库有这样三层关系,第一层和第三层不能直接发生关系,所以D选项不正确,内模式与外模式没有直接关系,应改为“模式与应用程序不变”。

光镊原理

1.1光镊技术简介 光镊是以激光的力学效应为基础的一种物理工具,是利用强会聚的光场与微粒相互作用时形成的光学势阱来俘获粒子的【4】。1969年,A. Ashkin等首次实现了激光驱动微米粒子的实验。此后他又发现微粒会在横向被吸入光束(微粒的折射率大于周围介质的折射率)。在对这两种现象研究的基础上,Ashkin提出了利用光压操纵微粒的思想,并用两束相向照射的激光,首次实现了对水溶液中玻璃小球的捕获,建立了第一套利用光压操纵微粒的工具。1986年,A. Ashkin等人又发现,单独一束强聚焦的激光束就足以形成三维稳定的光学势阱,可以吸引微粒并把它局限在焦点附近,于是第一台光镊装置就诞生了【5,6】。也因此,光镊的正式名称为“单光束梯度力势阱” (single-beam optical gradient force trap)。 由于使用光镊来捕获操纵样品具有非接触性、无机械损伤等优点,这使得光镊在生物学领域表现出了突出的优势。这些年来,随着研究的深入和技术的不断完善,光镊在生物学的应用对象由细胞和细胞器逐步扩展到了大分子和单分子等。目前,光镊常被用来研究生物过程中的细胞和分子的运动过程【7-10】,也常被用来测量生物过程中的一些力学特征【11-14】。 1.2光镊的原理与特点 众所周知,光具有能量和动量,但是在实际应用中人们经常利用了光的能量,却很少利用光的动量。究其原因,这主要是因为在生活中我们接触到的自然光和照明光等的力学效应都很小,无法引起人们可以直接感受到或观察到的宏观效应。而科学家们利用激光所具有的高亮度和优良的方向性,使得光的力学效应在显微镜下显现了出来,在这里我们要介绍的光镊技术正是以这种光的力学效应为基础发展起来的。 1.2.1光压与单光束梯度力光阱 光与物质相互作用的过程中既有能量的传递,也有动量的传递,动量的传递常常表现为压力,简称光压。1987年,麦克斯韦根据电磁波理论论证了光压的存在,并推导出了光压力的计算公式。1901年,俄国人П.Н.列别捷夫用悬在细丝下的悬体实现了光压的实验测量【15】。此后,美国物理学家尼克尔、霍尔也

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

光电耦合器及其应用

光电耦合器及其应用 [作者:佚名转贴自:未知点击数:933 更新时间:2006-3-31 【字体:A 】 光电耦合器,是近几年发展起来的一种半导体光电器件,由于它具有体积小、 寿命长、抗干扰能力强、工作温度宽及无触点输入与输出在电气上完全隔离等 特点,被广泛地应用在电子技术领域及工业自动控制领域中,它可以代替继电 器、变压器、斩波器等,而用于隔离电路、开关电路、数模转换、逻辑电路、 过流保护、长线传输、高压控制及电平匹配等。 为使读者了解与应用光电耦合器,今介绍几种光电耦合器件及应用电路,供大 家参考与开拓。 1.器件选择 (1)三极管输出型光电耦合器 三极管输出型光电耦合器电路如图46—1中(a)所示,它是由两部分组成的。其中,1、2端为输入端,通常由发光器件构成; 4、5、6端接一只光敏三极管构成输出端,当接收到发射端发出的红外光后,在三极管集电极中便有电流输出。 图46-1 三极管输出型光电耦合器的特点,是具有很高的输入输出绝缘性能,频率响应可达300kHz,开关时间数微秒。 (2)可控硅输出型光耦合器 可控硅输出型光耦合器的电路如图46?中(b)所示。该器件为六脚双列式封装。当1、2端加入输入信号后,发射管发出的红

外光被接在4、5、6脚的光敏可控硅接收,使其导通。它可应用在低电压电子电路控制高压交流回路的开启。 (3)光耦合的可控硅开关驱动器 图46—2中(a)为光敏双向开关器件;图46?中(b)为过零控制电路及光敏双向开关器件组合体。它们的工作原理是:利用输入端红外光控制输出端的光敏双向开关导通,进而触发外接双向可控硅导通,达到控制负载接入交流220V回路的目的。图中(a)为非过零控制,图中(b)为过零控制。本驱动器有非常好的输入与输出绝缘性,可构成固态继电器的控制电路,其输 出的控制功率由可控允许功率决定。 图46-2 (4)达林顿管输出的光检测器 达林顿管输出的光检测器如图46?中(a)所示。它是由两只管子组成复合管,具有很高的电流放大能力,形成下一级或负载的 驱动电流,有较强的光检测灵敏度。 (5)数字电路光耦合器 数字电路光耦合器电路如图46?中(b)所示。光耦合器输出为施密特触发电路形式,其特点是响应速度快、数字逻辑可靠,应 用于计算机接口、数控电源及电动机控制中。 (6)双向开关触发器输出的光检测器 图46—3中的(c)为双向开关触发器输出的光检测器电路。该图为三端器件,内部是光敏双向开关器件,收到红外光线后,双向开关器件导通,触发外接可控硅导通,使负载接入220V回路中。

数据库原理及应用教程第版习题参考答案

习题参考答案 第1章习题参考答案 一、选择题 1. C 2. B 3. D 4. C 5. D 6. B 7. A 8. B 9. D 10. B 11. C 12. D 13. D 14. D 15. B 16. C 17. D 18. A 19. D 20. A 21. D 22. D 23. C 24. A 25. C 二、填空题 1. 数据库系统阶段 2. 关系 3. 物理独立性 4. 操作系统 5. 数据库管理系统(DBMS) 6. 一对多 7. 独立性 8. 完整性控制 9. 逻辑独立性 10. 关系模型 11. 概念结构(逻辑) 12. 树有向图二维表嵌套和递归 13. 宿主语言(或主语言) 14. 数据字典 15. 单用户结构主从式结构分布式结构客户/服务器结构浏览器/服务器结构 16. 现实世界信息世界计算机世界 三、简答题 1、简述数据库管理技术发展的三个阶段。各阶段的特点是什么 答:数据库管理技术经历了人工管理阶段、文件系统阶段和数据库系统阶段。 (1)、人工管理数据的特点: A、数据不保存。 B、系统没有专用的软件对数据进行管理。 C、数据不共享。 D、数据不具有独立性。(2)、文件系统阶段的特点: A、数据以文件的形式长期保存。 B、由文件系统管理数据。 C、程序与数据之间有一定的独立性。 D、文件的形式已经多样化 E、数据具有一定的共享性 (3)、数据库系统管理阶段特点: A、数据结构化。 B、数据共享性高、冗余度底。 C、数据独立性高。 D、有统一的数据控制功能。 2、从程序和数据之间的关系来分析文件系统和数据库系统之间的区别和联系 答:数据管理的规模日趋增大,数据量急剧增加,文件管理系统已不能适应要求,数据库管理技术为用户提供了更广泛的数据共享和更高的数据独立性,进一步减少了数据的余度,并为用户提供了方便

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

衰减器课程设计的基本原理及电路图

信号衰减器原理及设计 衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路,一般以所引入衰减的分贝数及其特性阻抗的欧姆数来标明。 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小;(2)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的二端口网络,它的特性阻抗、衰减量都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有对称型的T型、∏型、桥T型和倒L型(不对称型)等几种结构,其电路形式和计算公式如下。 图1. T型衰减器 图2. ∏型衰减器 1 2 1 1 2 2 1- = + - = N N R R N N R R C C 1 1 2 1 2 2 1- + = - = N N R R N N R R C C 1 )1 ( 2 1- = - = N R R N R R C C

图3. 桥T 型衰减器 图4. 倒L 型衰减器 式中,Rc 为二端口网络的特性阻抗(对称时),即输入输出阻抗,Rc1和Rc2两侧特性阻抗,分别为非对称衰减器的输入输出阻抗;20 10A N =,为输入电压与输出电压之比,A 为衰减的分贝数。 电压比分贝:dB=20lg (Uo/Ui ) 以上衰减器中,T 型、∏型、桥T 型属于对称衰减器,主要用于衰减。而倒L 型属于不对称衰减器,主要用于阻抗匹配。 倒L 型不对称衰减器构成阻抗匹配器,与对称衰减器所不同的是,不能指定衰减量,其输入输出阻抗确定后,其衰减量也就确定了。其衰减值见下表。 表1 倒L 型衰减器衰减值与输入输出阻抗比的关系 值得注意的是,桥T 型衰减器中,有两个电阻的值即为特性阻抗(输入输出电阻),且计算公式简洁,用于组成可调衰减器非常方便。 例1:设计一衰减器,匹配于信号源内阻R S =800欧与负载电阻R L =150欧之间,其衰减量为30dB 。 解:因为RS 、RL 不相等,所以选用一节倒L 型和一节对称T 型构成衰减器,如图5所示。 (1)倒L 型电路计算: 10.14 8001501111166.41150 800800 150721.11)150800(800)(1 1 1 2 12112 22111=???? ??--=??? ? ? ?--=Ω =-=-=Ω=-?=-=--C C C C C C C C C R R N R R R R R R R R R (2)T 型电路计算: 由于总衰减量A=30dB ,N=10^(30/20)=31.62;所以桥T 型衰减量N 2为 N 2=N/N 1=31.62/10.14=3.1184 计算R1和R2 1 122 11 2 2111112)(-? ???? ?--=-=-=C C C C C C C C C R R N R R R R R R R R R

光耦的工作原理

光耦的工作原理 耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦的优点 光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 光耦的种类 光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。 线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:LP632 TLP532 PC614 PC714 PS2031等。常用的4N2 5 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。 光耦的作用

数据库原理及应用(第二版)人民邮电出版社出版——习题参考答案

第1章数据概述 一.选择题 1.下列关于数据库管理系统的说法,错误的是C A.数据库管理系统与操作系统有关,操作系统的类型决定了能够运行的数据库管理系统的类型B.数据库管理系统对数据库文件的访问必须经过操作系统实现才能实现 C.数据库应用程序可以不经过数据库管理系统而直接读取数据库文件 D.数据库管理系统对用户隐藏了数据库文件的存放位置和文件名 2.下列关于用文件管理数据的说法,错误的是D A.用文件管理数据,难以提供应用程序对数据的独立性 B.当存储数据的文件名发生变化时,必须修改访问数据文件的应用程序 C.用文件存储数据的方式难以实现数据访问的安全控制 D.将相关的数据存储在一个文件中,有利于用户对数据进行分类,因此也可以加快用户操作数据的效率 3.下列说法中,不属于数据库管理系统特征的是C A.提供了应用程序和数据的独立性 B.所有的数据作为一个整体考虑,因此是相互关联的数据的集合 C.用户访问数据时,需要知道存储数据的文件的物理信息 D.能够保证数据库数据的可靠性,即使在存储数据的硬盘出现故障时,也能防止数据丢失 5.在数据库系统中,数据库管理系统和操作系统之间的关系是D A.相互调用 B.数据库管理系统调用操作系统 C.操作系统调用数据库管理系统 D.并发运行 6.数据库系统的物理独立性是指D A.不会因为数据的变化而影响应用程序 B.不会因为数据存储结构的变化而影响应用程序 C.不会因为数据存储策略的变化而影响数据的存储结构 D.不会因为数据逻辑结构的变化而影响应用程序 7.数据库管理系统是数据库系统的核心,它负责有效地组织、存储和管理数据,它位于用户和操作系统之间,属于A A.系统软件B.工具软件 C.应用软件D.数据软件 8.数据库系统是由若干部分组成的。下列不属于数据库系统组成部分的是B A.数据库B.操作系统 C.应用程序D.数据库管理系统 9.下列关于客户/服务器结构和文件服务器结构的描述,错误的是D A.客户/服务器结构将数据库存储在服务器端,文件服务器结构将数据存储在客户端 B.客户/服务器结构返回给客户端的是处理后的结果数据,文件服务器结构返回给客户端的是包含客户所需数据的文件

《光镊原理及应用》课程教学大纲

《光镊原理及应用》课程教学大纲 一、课程基本信息 课程中文名称:光镊原理及应用 课程英文名称:Optical tweezers theory and application 开课学期:2 学时:16 学分:1 二、课程目的和任务 激光生物学是多学科交叉的新兴学科,其中以激光微束光阱效应为基础的光镊技术是生命科学和生物工程研究的有力工具,已成为当前生物物理学中新方法和新仪器的研究热点之一。是光子技术和生命科学相互交叉与渗透而形成的一门新的边缘学科,课程教学目标:让光镊在生命学科及其他应用领域中的作用与地位,逐步树立科学的世界观,促进综合素质的提高;帮助学生获得光镊的基本知识,掌握光镊相关技术。通过课程小论文与研讨,让学生了解本学科的发展前沿,培养学生的创造型思维;开放式的教学,提高学生的综合分析和解决问题的能力。 三、教学内容与基本要求 教学主要内容及对学生的要求: 教学主要内容 第一章 光镊技术的产生与发展 光镊技术的理论研究、光镊技术的应用研究 国内外光镊技术的研究现状 第二章 光镊技术及其基本原理 光镊技术的描述、光镊的基本原理、光辐射压力、 梯度力和散射力、二维光学势阱、基于激光微束的三维光学势阱 第三章 光镊的理论分析与计算方法 光镊理论计算的意义、粒子分类与计算方法、光阱力与光操纵束缚条件第四章 光镊的系统构成与技术性能

传统光镊的原理、系统构成、激光器和显微镜的选取、多光镊技术 第五章 光纤光镊技术 远场光纤光镊、近场光镊 第5章 光镊技术的发展应用 光镊技术在生物学方面应用、光镊在分子生物学领域的应用、光镊与其它技术的结合应用 对学生的要求: 1、 对光镊原理方法有明确认识。 2、 对光镊系统的性能、参数能深入了解,并能自由运用。 3、 能够了解光阱力的计算方法。 4、 有查阅外文资料的能力。 五、教学设计及方法 教学方式 1) 教学与科研结合,激发学生的求知欲 2)专家讲授与教师专题讲座相结合,拓展学生知识面 3)理论与实践结合,加强学生实验技能的训练 4)中、英双语教学相结合,提高学生国际交流能力 5)撰写专题调研报告,培养学生的自主创新能力 教学手段 将多种现代的教学手段运用于课程教学之中,多方位多途径地展教学活动,以激发学生学习兴趣,提高教学效果。 1)将多媒体教学与板书相结合,以解决学时少内容多的矛盾 2)课件与电视录像片相结合,以提高学生的自学能力 3)丰富的网络资源为学生学习提供良好的软环境 六、调查、参观、实践、实验内容 七、主要参考资料 [1]《光镊原理、技术和应用》李银妹编译中国科学技术大学出版社1996 [2]《时域有限差分法FDTD Method 》 高本庆 国防工业出版社.1995年 [3][《非均匀介质中的场与波》美]Weng Cho Chew 著聂在平,柳清伙译电子工业出版社,1992年 [4] Ashkin A. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987, 33: 256-

衰减器原理

衰减器原理,用途及设计 - 衰减器原理,用途及设计 衰减器广泛地应用于电子设备中,它的主要用途是: (1)调整电路中信号的大小; (2)在比较法测量电路中,可用来直读被测网络的衰减值; (3)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。 通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的四端网络,它的特性阻抗、衰减都是与频率无关的常数,相移等于零。 实际应用中,有固定衰减器和可变衰减两大类。 1、固定衰减器的设计 常用的固定衰减器有L型、T型、X型和桥T型等几种结构,其电路形式和计算公式见表5.1-16。

注:RC为特性阻抗;RC1、RC2为两侧特性阻抗,B为固有衰减值N=EB。 其中L型属于不对称衰减器,主要用于阻抗匹配,而T型、X型、桥T型属于对称衰减器,主要用于衰减。一端接地的衰减器称为不平衡衰减器;反之,两端不接地的衰减器称为平衡衰减器。 例:设计一衰减器,匹配于信号源内阻RS-600欧与负载电阻RL=150欧之间,其衰减量为30DB。 解计算过程: (1)因为RS、RL不相等,所以选用一节倒L型和一节对称T型号组成衰减器,如图5.1-19A

所示倒L型电路计算: (2)T型电路计算: 由于总衰减量为30DB,所以T型衰减量为 (3)电路简化: 对设计电路进行变换,进而得到简化电路,由图5.1-19A变换为图B及图C的形式。

上一页1 2 下一页 2、可变衰减器的设计 可变衰减器,一般是指特性阻抗值恒定的,而它的衰减值是可变的衰减器,此外,还有一种分压式可变衰减器,由于它的负载往往是高阻抗,因此对这种分压式可变衰减器的特性阻抗就没有什么具体要求。 1)可变桥T型衰减器

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,

衰减器

功率衰减器是一种能量损耗性射频/微波元件,元件内部含有电阻性材料。除了常用的电阻性固定衰减器外,还有电控快速调整衰减器。衰减器广泛使用于需要功率电平调整的各种场合。 原理 1.技术指标工作频带 2.衰减量 3.功率容量 4.回波损耗 5.功率系数 6.基本构成 7.主要用途 8.相关参数 9.种类位移型光衰减器 10.薄膜型光衰减器 11.衰减片型光衰减器 12.注意事项原理 13.技术指标工作频带 14.衰减量 15.功率容量 16.回波损耗 17.功率系数 18.基本构成 19.主要用途 20.相关参数 21.种类位移型光衰减器 22.薄膜型光衰减器 23.衰减片型光衰减器 24.注意事项 原理: 衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路。一般以所引入衰减的分贝数及其特性阻衰减器抗的欧姆数来标明。在有线电视系统里广泛使用衰减器以便满足多端口对电平的要求。如放大器的输入端、输出端电平的控制、分支衰减量的控制。衰减器有无源衰减器和有源衰减器两种。有源衰减器与其他热敏元件相配合组成可变衰减器,装置在放大器内用于自动增益或斜率控制电路中。无源衰减器有固定衰减器和可调衰减器。 技术指标 工作频带 衰减器的工作频带是指在给定频率范围内使用衰减器,衰减器才能达到指标值。由于射频/

微波数字衰减器结构与频率有关,不同频段的元器件,结构不同,也不能通用。现代同轴结构的衰减器使用的工作频带相当宽,设计或使用中要加以注意。 衰减量 无论形成功率衰减的机理和具体结构如何,总是可以用下图所示的两端口网络来描述衰减器。图中,信号输入端的功率为P1,而输出端得功率为P2,衰减器的功率衰减量为A (dB)。若P1 、P2 以分贝毫瓦(dBm)表示,则两端功率间的关系为P2(dBm)=P1(dBm)-A(dB)可以看出,衰减量描述功率通过衰减器后功率的变小程度。衰减量的大小由构成衰减器的材料和结构确定。衰减量用分贝作单位,便于整机指标计算。 功率容量 衰减器是一种能量消耗元件,功率消耗后变成热量。可以想象,材料结构确定后,衰减器的功率容量就确定了。如果让衰减器承受的功率超过这个极限值,衰减器就会被烧毁。设计和使用时,必须明确功率容量。 回波损耗 回波损耗就是衰减器的驻波比,要求衰减器两端的输入输出驻波比应尽可能小。我们希望的衰减器是一个功率消耗元件,不能对两端电路有影响,也就是说,与两端电路都是匹配的。设计衰减器时要考虑这一因素。 功率系数 当输入功率从10mW变化到额定功率时,衰减量的变化系数表示为dB/(dB*W)。衰减量的变化值的具体算法是将系数乘以总衰减量功率(W)。如:一个功率容量50W,标称衰减量为40dB的衰减器的功率系数为0.001dB/(dB*W),意味着输入功率从10mW加到50W时,其衰减量会变化0.001*40*50=2dB之多! 基本构成 构成射频/微波功率衰减器的基本材料是电阻性材料。通常的电阻是衰减器的一大功率衰减器种基本形式,由此形成的电阻衰减器网络就是集总参数衰减器。通过一定的工艺把电阻材料放置到不同波段的射频/微波电路结构中就形成了相应频率的衰减器。如果是大功率衰减器,体积肯定要加大,关键就是散热设计。随着现代电子技术的发展,在许多场合要用到快速调整衰减器。这种衰减器通常有两种实现方式,一是半导体小功率快调衰减器,如PIN 管或FET单片集成衰减器;二是开关控制的电阻衰减网络,开关可以是电子开关,也可以是射频继电器。 衰减器有以下基本用途:1) 控制功率电平:在微波超外差接收机中对本振输出功率进行控制,获得光敏衰减器最佳噪声系数和变频损耗,达到最佳接收效果。在微波接收机中,实现自动增益控制,改善动态范围。2) 去耦元件:作为振荡器与负载之间的去耦合元

相关文档
最新文档