2020高考人教数学(理)大一轮复习检测: 任意角的三角函数、同角三角函数关系与诱导公式
大高考2020版高考数学一轮总复习第4章三角函数解三角形第一节三角函数的概念同角三角函数基本关系式及诱导

高考AB卷
学法大视野
知识点二 同角三角函数基本关系式及诱导公式
1.同角三角函数基本关系式
(1)平方关系:sin2α +cos2α =1,其等价形式为:sin2α =1
-cos2α ,cos2α = 1-sin2α.
(2)商数关系:
sin tan cos
,其等价形式为:
sin α =
cos α·tan α
高考AB卷
学法大视野
►两个易误点:三角函数的定义和符号. (4)[已知角终边上一点坐标求三角函数值时,r=|OP|>0]已知 角α终边过点(a,2a)(a≠0),则角α的余弦值是________.
解析 r= 5|a|,x=a,y=2a,
当 a>0 时,cos
α=xr=
a= 5a
55,
当 a<0 时,cos
高考AB卷
学法大视野
方程思想在三角函数求值中的应用
【示例】 已知 sin θ +cos θ =173,θ ∈(0,π ),则 tan θ =________.
高考AB卷
学法大视野
解析 法一 因为 sin θ+cos θ=173,θ∈(0,π), 所以(sin θ+cos θ)2=1+2sin θcos θ=14699, 所以 sin θcos θ=-16609. 由根与系数的关系,知 sin θ,cos θ是方程 x2-173x-16609=0
A.-cos 1
B.cos 1
C. 3cos 1
D.- 3cos 1
(2)(2016·河南邵阳洞口一中模拟)已知 tan(π -α)=-2,则
cos
2α
1 +cos2α
=(
)
A.-3
B.25
2020年高考数学(理)一轮复习专题4.1 任意角和弧度制及任意角的三角函数(讲)(解析版)

专题4.1 任意角和弧度制及任意角的三角函数1.了解任意角的概念;了解弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.知识点一 角的概念 1.角的定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 2.角的分类角的分类⎩⎪⎨⎪⎧按旋转方向不同分类⎩⎪⎨⎪⎧ 正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类⎩⎪⎨⎪⎧象限角:角的终边在第几象限,这个角就是第几象限角轴线角:角的终边落在坐标轴上3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合:S ={β|β=α+k ·360°,k ∈Z}或{β|β=α+2k π,k ∈Z}.知识点二 弧度制及应用 1.弧度制的定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.弧度制下的有关公式知识点三 任意角的三角函数考点一 象限角的判断【典例1】(上海市华东师范大学第二附属中学2018-2019学年期中)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 【答案】C【解析】由sin αtan α<0可知sin α,tan α异号,则α为第二象限角或第三象限角.由cos αtan α<0可知cos α,tan α异号,则α为第三象限角或第四象限角.综上可知,α为第三象限角。
【方法技巧】象限角的两种判断方法①图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角; ②转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z)的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.【变式1】(河南省驻马店市2018-2019学年期末) 已知点P (tan α,cos α)在第三象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】因为点P (tan α,cos α)在第三象限,所以⎩⎪⎨⎪⎧tan α<0,cos α<0,所以α为第二象限角。
(精品人教版)2020年高考数学一轮复习 专题4.1 任意角和弧度制及任意角的三角函数(讲)

第01节 任意角和弧度制及任意角的三角函数【考纲解读】【知识清单】1.象限角及终边相同的角 1.任意角、角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). 2.弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值l r与所取的r 的大小无关,仅与角的大小有关. 3.弧度与角度的换算:360°=2π弧度;180°=π弧度. 2.三角函数的定义1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么角α的正弦、余弦、正切分别是:sin α=y ,cos α=x ,tan α=y x,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M .由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.3. 扇形的弧长及面积公式弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.【重点难点突破】考点1 象限角及终边相同的角 【1-1】已知角α=45°,(1)在-720°~0°范围内找出所有与角α终边相同的角β; (2)设集合M=18045,,N=18045,24k k x x k x x k ⎧⎫⎧⎫=⨯+∈=⨯+∈⎨⎬⎨⎬⎩⎭⎩⎭Z Z ,判断两集合的关系. 【答案】(1)β=-675°或β=-315°.(2)M N ⊆.【1-2】终边在直线y =3x 上的角的集合为________. 【答案】{α|α=k π+π3,k ∈Z }【解析】终边在直线y =3x 上的角的集合为{α|α=k π+π3,k ∈Z }.【1-3】若角α是第二象限角,试确定α2,2α的终边所在位置.【答案】角α2的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限.【解析】∵角α是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角α2的终边在第三象限或第四象限或y 轴的负半轴上. (2) ,422k k k Z παπππ+<<+∈,当2 ,k n n Z =∈时, ∴ 22 ,422n n n Z παπππ+<<+∈,∴2α的终边在第一象限.当2 1 ,k n n Z =+∈时, ∴5322 ,422n n n Z παπππ+<<+∈, ∴2α的终边在第三象限.综上所述,2α的终边在第一象限或第三象限.【领悟技法】1.对与角α终边相同的角的一般形式α+k ·360°(k ∈Z )的理解;(1)k ∈Z;(2)α任意角;(3)终边相同的角不一定相等,但相等的角终边一定相同.2.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角3.已知角α的终边位置,确定形如k α,π±α等形式的角终边的方法:先表示角α的范围,再写出k α、π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置 【触类旁通】【变式一】【浙江省杭州第二中学三角函数】若α是第三象限的角, 则2απ-是 ( )A. 第一或第二象限的角B. 第一或第三象限的角C. 第二或第三象限的角D.第二或第四象限的角 【答案】B【变式二】【浙江省东阳中学3月月考】已知且,则角的终边所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】依据题设及三角函数的定义可知角终边上的点的横坐标小于零,纵坐标大于零,所以终边在第二象限,应选答案B.考点2 三角函数的定义【2-1】【浙江省台州中学期中】已知角的终边过点,且,则的值为( )A. B. C. D.【答案】B【解析】分析:利用角的终边过点,结合,判断所在象限,利用三角函数的定义,求出的值即可. 详解:由题意可知,,,是第三象限角,可得,即,解得,故选B.【2-2】【浙江省嘉兴市第一中学期中】已知角的终边与单位圆交于点,则的值为( )A. B. C. D.【答案】B【解析】分析:根据三角函数的定义求解即可.详解:由三角函数的定义可得.故选B.【2-3】【福建省福州市期末】如图,在直角坐标系中,射线交单位圆于点,若,则点的坐标是()A. B. C. D.【答案】A【解析】分析:直接由三角函数的定义得到结果即可. 详解:根据三角函数的定义得到点的坐标为:.故答案为:A.【2-4】已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6B.2π3 C.5π3D.11π6 【答案】D【解析】由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.【领悟技法】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值. 【触类旁通】【变式一】已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]【答案】A【解析】 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.故选A.【变式二】已知角的终边在射线上,则等于( )A.B.C.D.【答案】A点睛:(1)本题主要考查直线的斜率和同角的三角函数关系,意在考查学生对这些知识的掌握水平.(2)在中,存在着“知一求二”的解题规律,即只要知道了其中一个,就可以求出另外两个.考点3 扇形的弧长及面积公式【3-1】【浙江省诸暨中学2017-2018学年第二阶段】已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( )A. 1B. 4C. 1或4D. 2或4 【答案】C【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,,∴解得28r l ==, 或44r l ==, 41lrα==或,故选C .【3-2】【2018届黑龙江省齐齐哈尔八中8月月考】若扇形的圆心角120α=,弦长12AB cm =,则弧长l =__________ cm .【解析】画出图形,如图所示.设扇形的半径为rcm ,由sin60°=6r,得,∴l=n πr 180=2π3cm.【领悟技法】(1)弧度制下l =|α|·r ,S =12lr ,此时α为弧度.在角度制下,弧长l =n πr 180,扇形面积S =n πr2360,此时n 为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.【触类旁通】【变式一】【浙江省杭州第二中学三角函数 单元测试题】若扇形的面积为38π,半径为1,则扇形的圆心角为 ( ) A.32π B. 34π C. 38π D. 316π 【答案】B【解析】设扇形的圆心角为α,则∵扇形的面积为3π8,半径为1, ∴2313824l ππαα=∴=故选B【变式二】【浙江省9+1高中联盟期中联考】如图,以正方形ABCD 中的点A 为圆心,边长AB 为半径作扇形EAB ,若图中两块阴影部分的面积相等,则EAD ∠的弧度数大小为_________.【答案】22π-;【解析】设正方形的边长为a ,由已知可得222112422a a a ππαα-=⇒=- . 【易错试题常警惕】易错典例:已知角α的终边过点(,2)m m ,0m ≠,求角α的的正弦值、余弦值. 易错分析:学生在做题时容易遗忘0m <的情况.正确解析:当0m <时,,sin r αα===当0m >时,,sin r αα===温馨提醒:本题主要考察了三角函数的定义以及分类讨论思想方法,这也是高考考查的一个重点.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。
高考数学一轮总复习 专题18 任意角的三角函数、同角关系式与诱导公式检测 理-人教版高三全册数学试题

3
MN ,从而可以得到 NMR 60 ,从而得到 NMF 30 ,所以有点 F 到
2
的定义,可得 NR NF
直线 MN 的距离为 d 4sin30 2 ,故选 D.
点睛:解决该题的关键是要把握抛物线的定义,将相关量放到一个三角形中去解决即可.
11.函数
A.
的最小正周期为
.
cos 2 x 的最小正周期和振幅分别是(
6
3
B. π, 2
C. 2π,1
)
D. 2π, 2
【答案】B
【解析】分析:
应用诱导公式有 cos 2 x
sin 2 x sin 2 x ,从而函数易化为一个三角函数的形式:
2
6
3
6
3 2
6
word
幅为 2,
故选 B.
点睛:
函数 f x Asin x 的物理意义: A 表示振幅, T
2
为周期, f
为频率, x 为相位,
2
为初相.
21.已知锐角 满足
A.
B.
,则
C.
的值为(
)
D.
【答案】D
点睛:本题主要考查诱导公式的应用以及特殊角的三角函数,属于简单题.对诱导公式的记忆不但要正确理解“奇
变偶不变,符号看象限”的含义,同时还要加强记忆几组常见的诱导公式,以便提高做题速度.
word
二、填空题
23.在如图所示的矩形
边
2023年高考数学(理科)一轮复习—— 任意角和弧度制及任意角的三角函数

考点二 弧度制及其应用
例 1 (经典母题)一扇形的圆心角 α=π3,半径 R=10 cm,求该扇形的面积. 解 由已知得 α=π3,R=10, ∴S 扇形=21α·R2=12×π3×102=503π(cm2).
索引
迁移 1 (变所求)若本例条件不变,求扇形的弧长及该弧所在弓形的面积.
解 l=α·R=π3×10=103π(cm),
索引
常用结论
1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦. 2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量
制必须一致,不可混用. 3.象限角
索引
4.轴线角
索引
诊断自测 1.思考辨析(在括号内打“√”或“×”)
(1)小于90°的角是锐角.( ×) (2)锐角是第一象限角,第一象限角也都是锐角.( × ) (3)角α的三角函数值与其终边上点P的位置无关.( √ ) (4)若α为第一象限角,则sin α+cos α>1.( √ )
索引
分层训练 巩固提升
FENCENGXUNLIAN GONGGUTISHENG
A级 基础巩固
1.下列与角94π的终边相同的角的表达式中正确的是( C )
解析 (1)锐角的取值范围是0,π2. (2)第一象限角不一定是锐角.
索引
2.(易错题)时间经过4h(时),时针转了___-__2_3π__弧度.
索引
3. 在 - 720° ~ 0° 范 围 内 , 所 有 与 角 α = 45° 终 边 相 同 的 角 β 构 成 的 集 合 为
_{_-__6__7_5_°__,___-__3_1_5_°___}_.
解析 设 P(x,y),由题设知 x=- 3,y=m, 所以 r2=|OP|2=(- 3)2+m2(O 为原点),即 r= 3+m2,
2020届高考数学(理)一轮复习训练:考点14任意角和弧度制、任意角的三角函数.pdf

∴- 2<a≤3.
8. 解析:
(1)由角 α的终边过点
P(-
35,-
4 5)
得
4
4
sinα=- 5,所以 sin( α+ π=)- sinα= 5.
(2)由角 α的终边过点
P(-35,-
4 5),得
cosα=- 35,
5
12
由 sin(α+ β)= 13得 cos(α+ β)= ±13.
终边过点
P(- 35,-
4 5).
(1)求 sin( α+ π的)值; (2)若角 β满足 sin( α+ β)= 153,求 cosβ的值.
参考答案
1. 答案: C 解析:令 k= 4m, k= 4m+ 1, k= 4m+ 2, k=4m+ 3, k, m∈ Z.
分别代入选项 C 进行检验:
(1)若 k= 4m,则 φ= 4m· 90=°m· 360;°
高三一轮真题汇编 考点 14 任意角和弧度制、任意角的三角函数
【考情分析】 高考在本考点的常考题型为选择题、填空题,分值 【考纲要求】
5 分,低等难度
1.了解任意角的概念
2.了解弧度制的概念,能进行弧度与角度的互化
3.理解任意角的三角函数 (正弦、余弦、正切 )的定义 一、选择题
1.终边在坐标轴上的角的集合是 ( ) A . { φ|φ= k· 360,°k∈ Z}
由 β=(α+ β)- α得
cosβ= cos(α+ β)cosα+ sin(α+ β)sinα,
56
16
所以 cosβ=- 65或 cosβ= 65.
故以 OB 为终边的角的集合为 { α α= 2kπ+π3, k∈ Z } .
2020年高考数学一轮复习专题18任意角、弧度制及任意角的三角函数(含解析)

专题18任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.基础知识融会贯通 1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx(x ≠0). 三个三角函数的性质如下表:三角函数 定义域第一象限符号第二象限符号第三象限符号 第四象限符号sinαR + + - -cosαR + - - +tanα{α|α≠k π+ - + -+π2,k ∈Z }4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r ,cos α=x r,tan α=y x(x ≠0).重点难点突破【题型一】角及其表示 【典型例题】已知集合{α|2k πα≤2k π,k ∈Z },则角α的终边落在阴影处(包括边界)的区域是( )A .B .C .D .【解答】解:集合{α|2k πα≤2k π,k ∈Z },表示第一象限的角,故选:B . 【再练一题】直角坐标系内,β终边过点P (sin2,cos2),则终边与β重合的角可表示成( )A .2+2πk ,k ∈ZB .2+k π,k ∈ZC .2+2k π,k ∈zD .﹣2+2k π,k ∈Z【解答】解:∵β终边过点P (sin2,cos2),即为(cos (2),sin (2))∴终边与β重合的角可表示成2+2k π,k ∈Z ,故选:A .思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置. 【题型二】弧度制 【典型例题】已知扇形的周长是6cm ,面积是2cm 2,试求扇形的圆心角的弧度数( ) A .1B .4C .1或 4D .1或 2【解答】解:设扇形的圆心角为αrad ,半径为Rcm ,则,解得α=1或α=4.故选:C.【再练一题】将300°化成弧度得:300°=rad.【解答】解:∵180°=π,∴1°,则300°=300.故答案为:.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【题型三】三角函数的概念及应用命题点1 三角函数定义的应用【典型例题】已知角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=()A.B.C.1 D.﹣1【解答】解:角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=﹣1,故选:D.【再练一题】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3),则cosα=()A.B.C.D.【解答】解:∵由题意可得:x=2sinα,y=3,可得:r,∴cosα,可得:cos2α,整理可得:4cos4α﹣17cos2α+4=0,∴解得:cos2α,或(舍去),∴cosα.故选:A.命题点2 三角函数线的应用【典型例题】已知,a=sinα,b=cosα,c=tanα,那么a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:作出三角函数对应的三角函数线如图:则AT=tanα,MP=sinα,OM=cosα,则sinα>0,AT<OM<0,即sinα>cosα>tanα,则a>b>c,故选:A.【再练一题】已知a =sin ,b =cos ,c =tan ,则( )A .b <a <cB .c <b <aC .b <c <aD .a <b <c【解答】解:因为,所以cos sin ,tan 1,所以b <a <c . 故选:A .思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.基础知识训练1.【湖南省衡阳市第八中学2018-2019学年高一下学期期中考试】已知角θ的终边经过点()2,3-,则( )A .5B .15-C .15D .5-【答案】A 【解析】由任意角的三角函数定义可知:3 tan2θ=-本题正确选项:A2.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】函数的值域是()A.B.C.D.【答案】C【解析】由题意可知:角的终边不能落在坐标轴上,当角终边在第一象限时,当角终边在第二象限时,当角终边在第三象限时,当角终边在第四象限时,因此函数的值域为,故选:C.3.【安徽省淮北师范大学附属实验中学2018-2019学年高一下学期第二次月考】已知角α的终边上一点P的坐标为,则sinα的值为()A.12B.1-2C3D.3【答案】B 【解析】解:角α的终边上一点P 的坐标为31,22⎛⎫- ⎪ ⎪⎝⎭, 它到原点的距离为r =1,由任意角的三角函数定义知:,故选:B .4.【甘肃省宁县第二中学2018-2019学年高一下学期期中考试】已知点P (sinα+cosα,tanα)在第四象限,则在[0,2π)内α的取值范围是( )A .(2π,34π)∪(54π,32π) B .(0,4π)∪(54π,32π) C .(2π,34π)∪(74π,2π)D .(2π,34π)∪(π,32π)【答案】C 【解析】∵点P (sinα+cosα,tanα)在第四象限, ∴,由sinα+cosα2=sin (α4π+), 得2kπ<α4<π+2kπ+π,k∈Z,即2kπ4π-<α<2kπ34π+π,k∈Z. 由tanα<0,得kπ2π+<α<kπ+π,k∈Z.∴α∈(2π,34π)∪(74π,2π).故选:C .5.【安徽省示范高中2018-2019学年高一下学期第三次联考】若角θ是第四象限角,则32πθ+是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】Q 角θ是第四象限角.,则故32πθ+是第三象限角.故选C. 6.【河南省南阳市第一中学2018-2019学年高一下学期第四次月考】已知且sin 0α>,则下列不等式一定成立的是( ) A . B . C .D .【答案】D 【解析】 由于且sin 0α>,故α为第二象限角,故,故D 选项一定成立,故本小题选D. 7.【宁夏石嘴山市第三中学2018-2019学年高一5月月考】半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【答案】D 【解析】由题意,半径1r cm =,中心角,又由弧长公式,故选:D .8.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】与0420-终边相同的角是( ) A .0120- B .0420 C .0660 D .0280【答案】C 【解析】与0420-角终边相同的角为:,当3n =时,.故选:C .9.【安徽省淮北师范大学附属实验中学2018-2019学年高一下学期第二次月考】下列说法正确的是( ) A .钝角是第二象限角B .第二象限角比第一象限角大C.大于90︒的角是钝角D.-165︒是第二象限角【答案】A【解析】解:钝角的范围为,钝角是第二象限角,故A正确;﹣200°是第二象限角,60°是第一象限角,-200°<60°,故B错误;由钝角的范围可知C错误;-180°<-165°<-90°,-165°是第三象限角,D错误.故选:A.10.直角坐标系内,角β的终边过点,则终边与角β重合的角可表示成()A.B.C.D.【答案】A【解析】因为点为第四象限内的点,角β的终边过点,所以β为第四象限角,所以终边与角β重合的角也是第四象限角,而,均为第三象限角,为第二象限角,所以BCD排除,故选A11.【江苏省南通市启东中学2018-2019学年高二5月月考】给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④若,则α与β的终边相同;θ<,则θ是第二或第三象限的角.⑤若cos0其中正确的命题是______.(填序号) 【答案】③ 【解析】 ①43απ=-,则α为第二象限角;3πβ=,则β为第一象限角,此时αβ<,可知①错误;②当三角形的一个内角为直角时,不属于象限角,可知②错误; ③由弧度角的定义可知,其大小与扇形半径无关,可知③正确; ④若3πα=,23πβ=,此时,但,αβ终边不同,可知④错误;⑤当θπ=时,,此时θ不属于象限角,可知⑤错误.本题正确结果:③12.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】与02018-角终边相同的最小正角是______ 【答案】0142 【解析】 解:,即与02018-角终边相同的最小正角是0142, 故答案为:0142.13.【河南省平顶山市郏县第一高级中学2018-2019学年高一下学期第二次5月月考】从8:05到8:50,分针转了________(rad ). 【答案】3π2- 【解析】从8:05到8:50,过了45分钟,时针走一圈是60分钟, 故分针是顺时针旋转,应为负角, 故分针转了32π-. 14.【2017届四川省成都市石室中学高三二诊模拟考试】已知角3πα+的始边是x 轴非负半轴.其终边经过点34(,)55P--,则sinα的值为__________.【答案】433 -+【解析】解:∵点P(1,2)在角α的终边上,∴tanα2=,将原式分子分母除以cosα,则原式故答案为:5.16.【江苏省涟水中学2018-2019学年高二5月月考】欧拉公式(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,3ie-表示的复数在复平面中位于第_______象限.【答案】三【解析】由题e-3i=cos3-i sin3,又cos3<0, sin3>0,故3ie-表示的复数在复平面中位于第三象限.故答案为三17.【甘肃省会宁县第一中学2018-2019学年高一下学期期中考试】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大?【答案】(1)2;(2)当半径为10圆心角为2时,扇形的面积最大,最大值为100.【解析】(1)设扇形的圆心角大小为α()rad,半径为r,则由题意可得:.联立解得:扇形的圆心角2α=.(2)设扇形的半径和弧长分别为r和l,由题意可得240r l+=,∴扇形的面积.当10r =时S 取最大值,此时20l =, 此时圆心角为2lrα==, ∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.18.【上海市徐汇区2019届高三上学期期末学习能力诊断】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB ,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A ,B 分别建有监测站,A 与B 之间的直线距离为100海里.求海域ABCD 的面积;现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B 点海里判断这艘不明船只是否进入了海域ABCD ?请说明理由. 【答案】(1)平方海里; (2)这艘不明船只没进入了海域ABCD ..【解析】,在海岸线外侧20海里内的海域ABCD ,, ,平方海里,由题意建立平面直角坐标系,如图所示; 由题意知,点P 在圆B 上,即,点P也在圆A上,即;由组成方程组,解得;又区域ABCD内的点满足,由,不在区域ABCD内,由,也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.19.已知角β的终边在直线x-y=0上.①写出角β的集合S;②写出S中适合不等式-360°≤β<720°的元素.【答案】①{β|β=60°+n·180°,n∈Z};②-120°,240°,600°.【解析】①如图,直线x-y=0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.②由于-360°≤β<720°,即-360°≤60°+n·180°<720°,n∈Z,解得,n∈Z,所以n可取-2、-1、0、1、2、3.所以S中适合不等式-360°≤β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°-0×180°=60°;60°+1×180°=240°;60°+2×180°=420;60°+3×180°=600°.20.已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1) 终边落在OA位置上的角的集合为{α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z};(2) {α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.【解析】(1)终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的角及终边与它们相同的角组成的集合,故该区域可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.能力提升训练1.【安徽省芜湖市2019届高三模拟考试】如图,点为单位圆上一点,,点沿单位圆逆时针方向旋转角到点,则()A.B.C.D.【答案】D【解析】∵点A为单位圆上一点,,点A沿单位圆逆时针方向旋转角α到点,∴A(cos,sin),即A(),且cos(α),sin(α).则sinα=sin[(α)]=sin(α)cos cos(α)sin,故选:D.∆中,若,那么2.【黑龙江省大庆实验中学2018-2019学年高一下学期期中考试】在ABC∆是()ABCA.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】A【解析】∆中,,∵在ABC∴,∴,A B为锐角.又,∴,∴,∴C为锐角,∴ABC∆为锐角三角形.故选A.3.【河北省邯郸市2018-2019学年高一下学期期中考试】已知,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】由,得异号,则角是第二或第三象限角,故选:.4.【河南省洛阳市2018-2019学年高一下学期期中考试】已知角α的终边经过点P(-3,y),且y<0,cosα=-,则tanα=()A.B.C.D.【答案】C【解析】由题意,角的终边经过点,且,则,∴,所以,故选:C.5.【四川省攀枝花市2019届高三下学期第三次统考】已知角83πθ=的终边经过点(,3)P x,则x的值为()A.±2B.2 C.﹣2 D.﹣4 【答案】C【解析】∵已知角83πθ=的终边经过点(,23)P x ,∴23x,则2x =-,故选:C .6.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】,则3f π⎛⎫= ⎪⎝⎭( ) A .32B .33C .12D .3【答案】C 【解析】根据题意,,且123π<<,则.故选:C .7.【四川省华文大教育联盟2019届高三第二次质量检测考试】在平面直角坐标系xOy 中,已知02απ<<,点是角α终边上一点,则α的值是___________.【答案】3π【解析】,∵02απ<<,且点P 在第一象限, ∴α为锐角,∴α的值是3π, 故答案为:3π8.【安徽省淮北市第一中学2018-2019学年高一下学期开学考试】函数的定义域为______.【答案】或x k π=,k Z}∈【解析】 因为所以 2sin x 0cosx≥等价于0cosx >或0sinx =所以或x k π=,k Z ∈故答案为:或x k π=,k Z}∈.9.【四川省蓉城名校联盟2018-2019学年上期期末联考高一】在平面直角坐标系中,已知一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),则sinα+cosα的值为___. 【答案】【解析】∵一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12), ∴sinα=则sinα+cosα=-,故答案为:-.10.对于任意实数,事件“”的概率为_______.【答案】 【解析】由于“”,故为第二象限角,故概率为.。
2020届高考数学一轮总复习第四单元三角函数与解三角形第22讲任意角的三角函数练习理含解析新人教A版

第22讲 任意角的三角函数1.(经典真题)若tan α>0,则(C) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0由tan α>0得α是第一、三象限角. 若α是第三象限,则A 、B 都错.由sin 2α=2sin αcos α知sin2α>0,C 正确.α取π3,cos 2α=cos2π3=-12<0,D 错. 2.(2017·河南八市联考)已知函数y =log a (x -1)+3(a >0且a ≠1)的图象恒过定点P ,若角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P ,则sin 2α-sin 2α的值为(D)A.513 B .-513 C.313 D .-313由已知可得点P 的坐标为(2,3), 根据三角函数的定义可得sin α=313,cos α=213.所以sin 2α-sin 2α=913-2×313×213=-313.3. 在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π2后得到向量OQ →,则点Q 的坐标是(A)A .(8,-6)B .(-8,-6)C .(-6,8)D .(-6,-8)|OP →|=10,且设∠xOP =θ, 所以cos θ=610=35,sin θ=45,设OQ →=(x ,y ),则x =10cos(θ+3π2)=10sin θ=8,y =10sin(θ+3π2)=-10cos θ=-6. 4. (2018·湖北5月冲刺试题)《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为2π3,弦长为40 3m 的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为(B )(其中π≈3,3≈1.73)A .15 m 2B .16 m 2C .17 m 2D .18 m 2因为圆心角为2π3,弦长为403m ,设半径为R ,则203R =sin π3=32,所以R =40, 圆心到弦的距离d =R cos π3=40×12=20.所以弦=403,矢=R -d =20. 弧田实际面积=13πR 2-12×弦长×d=16003π-4003=908, 由经验公式得:弧田面积=12(弦×矢+矢×矢)=12(403×20+20×20) =4003+200=892. 其误差为908-892=16(m 2).5.设θ是第三象限角,且|cos θ2|=-cos θ2,则θ2是第__二__象限的角.由θ是第三象限的角,知θ2是第二或第四象限角.又因为|cos θ2|=-cos θ2,所以cos θ2≤0,综上知θ2是第二象限的角.6.在(0,2π)内,使sin x>cos x 成立的x 的取值范围为__(π4,5π4)__.利用三角函数线求解,在单位圆找出在(0,2π)内,使sin x =cos x 的x 值,因为sin π4=cos π4=22,sin 5π4=cos 5π4=-22,根据三角函数线的变化规律标出满足条件的角x∈(π4,5π4).7. 如果角α的终边在直线y =3x 上,求cos α与tan α的值.因为角α的终边在直线y =3x 上, 所以角α的终边在第一、三象限,当α的终边在第一象限时,因为直线过点(1,3), 所以r =12+32=10,所以cos α=1010,tan α=3 所以当α的终边在第三象限时,同理可得 cos α=-1010,tan α=3.8.(2018·北京卷·文)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是 (C)A.AB ︵B.CD ︵C.EF ︵D.GH ︵由题知四段弧是单位圆上的第Ⅰ、Ⅱ、Ⅲ象限的弧, 在AB ︵上,tan α>sin α,不满足; 在CD ︵上,tan α>sin α,不满足;在EF ︵上,sin α>0,cos α<0,tan α<0,且cos α>tan α,满足; 在GH ︵上,tan α>0,sin α<0,cos α<0,不满足.9.(2019·成都一诊)在直角坐标系xOy 中,已知任意角θ以坐标原点O 为顶点,以x 轴的非负半轴为始边,若其终边经过点P (x 0,y 0),且|OP |=r (r >0),定义:sicos θ=y 0-x 0r,称sicos θ为“θ的正余弦函数”.若sicos θ=0,则sin(2θ-π3)= 12.因为sicos θ=0,所以y 0=x 0,所以θ的终边在直线y =x 上,所以θ=2k π+π4,或θ=2k π+5π4,k ∈Z . 当θ=2k π+π4,k ∈Z 时,sin(2θ-π3)=sin(4k π+π2-π3)=cos π3=12;当θ=2k π+5π4,k ∈Z 时,sin(2θ-π3)=sin(4k π+5π2-π3)=cos π3=12.综上得sin(2θ-π3)=12.10.要建一个扇环形花园,外圆半径是内圆半径的2倍,周长为定值2l ,问当中心角α(0<α<π)为多少时,扇环面积最大?最大面积是多少?设内圆半径为r ,扇环面积为S ,则外圆半径为2r , 因为αr +α·2r +2r =2l ,所以3α=2l -2rr,所以S =12α·(2r )2-12α·r 2=32α·r 2=12·2l -2r r ·r 2=(l -r )·r =-r 2+lr =-(r -12l )2+14l 2,所以当r =12l 时,S 取最大值,此时3α=2l -2r r =2,α=23.2 3时,S取最大值14l2.即当α=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限时规范训练(限时练·夯基练·提能练)A 级 基础夯实练1.(2018·四川石室中学质检)已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B .3715C.3720D .1315解析:选D.∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sinα+1cos α=-45+53=1315.故选D.2.已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan x 的值为( )A.34 B .-34C.43D .-43解析:选B.因为x ∈⎝ ⎛⎭⎪⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x=sin x cos x =-34.故选B. 3.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B.∵sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0,所以θ是第二象限角,故选B.4.(2018·石家庄市二模)已知角α(0°≤α<360°)终边上一点的坐标为(sin150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C.因为sin 150°=12>0,cos 150°=-32<0,所以角α终边上一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以该点在第四象限,由三角函数的定义得sin α=-32,又0°≤α<360°,所以角α的值是300°,故选C.5.(2018·河北省衡水金卷)已知曲线f (x )=23x 3在点(1,f (1))处的切线的倾斜角为α,则sin 2α-cos 2α2sin αcos α+cos 2α=( )A.12 B .2 C.35D .-38解析:选C.由f ′(x )=2x 2,得tan α=f ′(1)=2,所以sin 2α-cos 2α2sin αcos α+cos 2α=tan 2α-12tan α+1=35.故选C.6.(2018·安徽淮南十校联考)已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝⎛⎭⎪⎫α+π6的值是( )A .-13B .13C.223D .-223解析:选A.∵sin ⎝ ⎛⎭⎪⎫α-π3=13,∴cos ⎝⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫α-π3=-sin ⎝ ⎛⎭⎪⎫α-π3=-13,故选A.7.(2018·辽宁沈阳模拟)若1+cos αsin α=2,则cos α-3sin α=( )A .-3B .3C .-95D .95解析:选C.∵1+cos αsin α=2,∴cos α=2sin α-1,又sin 2α+cos 2α=1,∴sin 2α+(2sin α-1)2=1,5sin 2α-4sin α=0,解得sin α=45或sin α=0(舍去),∴cos α-3sin α=-sin α-1=-95.故选C.8.(2018·武汉模拟)已知角α的顶点在原点,始边为x 轴正半轴,终边与圆心在原点的单位圆交于点A (m ,3m ),则sin 2α=________.解析:由题意得|OA |2=m 2+3m 2=1,故m 2=14.由任意角三角函数定义知cos α=m ,sin α=3m ,由此sin 2α=2sin αcos α=23m 2=32.答案:329.已知sin x +3cos x3cos x -sin x =5,则sin x cos x +cos 2x =________.解析:由已知,得tan x +33-tan x=5,解得tan x =2,所以sin x cos x +cos 2x =sin x cos x +cos 2x sin 2x +cos 2x =tan x +1tan 2x +1=2+122+1=35.答案:3510.(2018·上饶模拟)若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________.解析:由题意知:sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得:m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5. 答案:1- 5B 级 能力提升练11.(2018·河北衡水中学质检)已知cos α1+sin α=3,则cos αsin α-1的值为( )A.33 B .-33C. 3D .- 3解析:选B.因为cos α1+sin α=3,所以cos αsin α+1=1-sin αcos α,所以cos αsin α-1=-33.故选B. 12.(2018·青岛二中质检)已知sin α>sin β,那么下列命题成立的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β解析:选D.作出α,β的图象如图,由三角函数线可知选D.13.(2018·昆明二模)已知cos ⎝ ⎛⎭⎪⎫5π12+α=13且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=( )A.223B .13解析:选D.因为-π<α<-π2,所以-7π12<5π12+α<-π12,故cos ⎝ ⎛⎭⎪⎫π12-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫5π12+α=sin ⎝ ⎛⎭⎪⎫5π12+α=-1-⎝ ⎛⎭⎪⎫132=-223.14.(2018·皖江联考)已知在锐角△ABC 中,角α+π6的终边过点P (sin B -cos A ,cos B -sin A ),且cos ⎝⎛⎭⎪⎫α+π6=33,则cos 2α的值为( )A.3-26B .-23-16C.12-36D .-63-16解析:选D.∵△ABC 是锐角三角形,∴A +B >π2⇒π2>B >π2-A >0⇒sin B>sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,即sin B -cos A >0,同理,cos B -sin A <0,∴角α+π6为第四象限角,∴sin ⎝ ⎛⎭⎪⎫α+π6=-63,∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝⎛⎭⎪⎫α+π6sin π6=12-66,∴cos 2α=2cos 2α-1=-63-16,故选D.15.(2018·辽宁大连质检)现有如下命题:①若点P (a ,2a )(a ≠0)为角α终边上一点,则sin α=255;②同时满足sin α=12,cos α=32的角有且仅有一个;③设tan α=12且π<α<3π2,则sin α=-55;④设cos(sin θ)·tan(cos θ)>0(θ为象限角),则θ在第一象限. 则其中正确的命题是________.(将正确命题的序号填在横线上) 解析:①中,当α在第三象限时,sin α=-255,故①错误;②中,同时满足sin α=12,cos α=32的角为α=2k π+π6(k ∈Z),有无数个,故②错误;③正确;④θ可能在第一象限或第四象限,故④错误.综上选③.答案:③C 级 素养加强练16.(2018·河北衡水调研)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于C (2,1)时,OP→的坐标为________.解析:如图所示,过圆心C 作x 轴的垂线,垂足为A ,过P 作x 轴的垂线与过C 作y 轴的垂线交于点B .因为圆心移动的距离为2,所以劣弧PA ︵=2,即圆心角∠PCA =2,则∠PCB =2-π2,所以|PB |=sin ⎝ ⎛⎭⎪⎫2-π2=-cos 2,|CB |=cos ⎝⎛⎭⎪⎫2-π2=sin 2,所以x P =2-|CB |=2-sin 2,y P =1+|PB |=1-cos 2, 所以OP→=(2-sin 2,1-cos 2). 答案:(2-sin 2,1-cos 2)。