第2章整式的加减易错点分析

合集下载

初中数学 整式的加减法运算的错误分析是什么

初中数学 整式的加减法运算的错误分析是什么

初中数学整式的加减法运算的错误分析是什么整式的加减法运算是初中数学中的重要知识点,但是在学习过程中,学生常常会犯错。

这些错误可能是因为对概念理解不清,计算粗心或缺乏练习等原因造成的。

本文将针对初中数学中整式的加减法运算常见的错误进行分析,并提供纠正错误的方法,帮助初中生更好地掌握这一知识点。

错误一:未识别同类项同类项是指变量和变量的指数相同的项。

在整式加减法运算中,同类项是必须要进行合并的。

例如:2x + 3y + 4z+ 5x + 2y - 3z如果没有识别同类项,可能会直接将两个整式相加,得到:2x + 3y + 4z + 5x + 2y - 3z = 7x + 5y + z这个结果是错误的,因为同类项没有合并。

正确的做法是按照相同的变量进行合并,得到:(2x + 5x) + (3y + 2y) + (4z - 3z) = 7x + 5y + z解决这个错误的方法是加强对同类项的识别和区分,将相同变量的项画上相同的颜色或符号,以便更好地进行合并。

错误二:忽略括号运算在整式的加减法运算中,括号内的整式是必须要进行运算的。

例如:3x + 2y+ (4x - y)如果忽略括号运算,直接将两个整式相加,得到:3x + 2y + 4x - y = 7x + y这个结果是错误的,因为括号内的整式没有进行运算。

正确的做法是先计算括号内的整式,得到:3x + 2y + 4x - y = 7x + y解决这个错误的方法是加强对括号运算的理解和掌握,将括号内的整式看作一个整体,先计算括号内的整式,然后再进行合并。

错误三:减法运算错误在整式的减法运算中,要注意被减数中每一项都要乘以-1。

例如:3x + 2y - 4z- (5x + 3y - z)如果没有将被减数中的每一项乘以-1,直接将两个整式相加,得到:3x + 2y - 4z - 5x - 3y + z = -2x - y - 3z这个结果是错误的,因为没有进行减法运算。

“整式的加减”易错点剖析

“整式的加减”易错点剖析

“整式的加减”易错点剖析作者:邹兴平来源:《语数外学习·上旬》2013年第10期同学们在学习整式的加减时,由于对所学的知识理解得不透彻,计算不仔细,常常在解题中出现一些错误.现将常见的错误归纳如下,以引起同学们的重视.易错点一:对有关概念理解出现错误同学们如果对单项式的概念、系数和次数,多项式的概念和次数,同类项的概念不善辨别,就不容易理解这些概念的内涵.正解:选B.点评:单项式是只含有数与字母的积,其含义解析:①不含加减运算;②字母不出现在分母里;③单独的一个数或字母也是单项式.易错点二:在项的移动过程中,项动符号不动而出错同类项应为所含字母相同,并且相同字母的指数分别相同的项叫做同类项.同类项必须同时具备两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.两个条件缺一不可.几个常数项也叫同类项.同类项与系数无关,与字母的排列顺序无关.合并同类项时,系数相加是关键,字母及其指数都不变.例2 计算:2x2+4y3-y3-5-3y3-4x2+3.错解:原式=(2x2+4x2)+(4y3-y3+3y3)+(5+3)=6x2+6y3+8.诊断:此题解法的错误在于移动项时没有把该项前面的符号一起移动,特别是“-”号.正解:原式=(2x2-4x2)+(4y3-y3-3y3)+(-5+3)=-2x2-2.点评:整式的加减实质上是合并同类项.移动项时,要将项的符号一起移动,项的系数是“-”号时,一定不要遗漏“-”号.易错点三:去括号时,照顾不全而符号出错例3 化简:-3(a2b+2b2)+(3a2b-13b2).错解:原式=-3a2b+2b2+3a2b-13b2=-11b2.诊断:错误的原因在于第一步应用乘法分配律时,2b2这一项漏乘了-3.正解:原式=-3a2b-6b2+3a2b-13b2=-19b2.点评:整式的加减中去括号是至关重要的一环.去括号的法则是:括号前是“+”号时,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都要改变符号,不能漏掉任何一项.易错点四:忽略分数线的作用点评:分数线不但具有除号的作用,而且还有括号的作用.。

复习课(整式的加减中的易错题)

复习课(整式的加减中的易错题)
难点
处理复杂的整式加减问题,以及 合并同类项的技巧
学生易错题的原因分析
对整式加减运算规则 理解不透彻,导致计 算错误
计算过程中粗心大意, 导致计算结果出错
对合并同类项的技巧 掌握不够熟练,无法 准确识别和合并同类 项
对学生解题思路的指导建议
强化对整式加减运算规则的理 解,通过多做练习题加深理解
熟练掌握合并同类项的技巧, 通过多做练习题提高识别和合 并同类项的能力
04
练习题与答案
基础练习题
01
02
03
总结词
考察整式加减的基本概念 和运算规则
详细描述
包括整式的加减运算、合 并同类项、去括号等基本 技能的练习题。
示例
计算 (2x + 3y) - (x - y) 的结果。
进阶练习题
总结词
考察整式加减的复杂运算 和变形能力
详细描述
包括整式的乘法、除法、 复杂合并同类项等进阶技 能的练习题。
去括号是整式加减中的重要步骤,需要细心 处理。
详细描述
去括号时,需要注意括号前是加号还是减号 ,因为这会影响到括号内各项的符号。如果 括号前是加号,则直接去掉括号;如果括号 前是减号,则需要将括号内的各项符号都取 反。此外,还需要注意括号内各项的运算优
先级,遵循先乘除后加减的原则。
系数相乘的技巧
要点一
系数相乘时的常见错误
总结词
系数相乘时,学生容易忽略指数的影响 ,导致计算错误。
VS
详细描述
在整式的加减中,当两个整式相乘时,其 系数相乘的结果与字母的指数无关。学生 在计算时,常常会忽略指数的影响,从而 造成计算错误。例如,将“2x^2”和 “3x^3”相乘时,学生可能会错误地得出 “6x^5”,而正确的结果应该是 “6x^5”。

《整式的加减》易错点剖析

《整式的加减》易错点剖析

例 7 写 出三个 多项式 , 各满足下列 三类
8 +…依次下 去 , 你发现 了什么规律? 请根据 情况 中 的一种 :① 用任 意数代 替字母 时 , 只 你发现 的规律写出第 n 项.
得正值 ; ②用任意数代替字母时, 只得负值 ;
解析 : 此题 的规 律特点 如下 : ① 的各 项 ③用任意数代换字母时, 能得正值 , 也能得负 指数从 1 开始 往后为连续整数 ;②后 一项系 值. 数依次为前 一项 系数 的一2 ; 倍 ③奇次项 的符 号为正 , 偶次项 的符号为负.
的次数. 正解 : 的系数是 , 次数是 2 ;

剖 析 : 1 错 误 的原 因是 违 背 了合并 同 () 类 项 的法则 , 合并 同类项 时 , 是字 母 以及 应
字母 的指数不变 , 只是 系数相加 ;2 误认 为 () 3 和 是 同类项 .
正解 :1 3 2 ; ( ) a=5
整 式 的加减 实质 上是 去括 号和 合并 同
类项 , 是做好 整式 的加 减 的关 键 , 中去 也 其
二三× _

的系数是一 0次数是 2 4, .
括号是至关重要的一环. 去括号法则是: 括号
前是“ ” , + 号 把括 号 和 它前 面 的 “ ” 去 + 号 掉, 括号 里各项 都不 变符 号 ; 号前 是 “ 括 一” 号, 把括 号和 它前 面的 “ 号 去掉 , 一” 括号 里
系数是 3 ,次 数是 4 ;二
是一 , 次数是 4 .
合并 同类项时, 系数相加是关键 , 及其指 字母
数都不变.
例 4 合并下列各式的 同类项 : f )a 22 ( )x 2 32 a; 2 3+ x. 1 + 误解 :1 3222 a; 2 3 +x=5 ( )a+a=5 4 ( )x 2 x.

河南省七年级数学上册第二章整式的加减易错知识点总结

河南省七年级数学上册第二章整式的加减易错知识点总结

河南省七年级数学上册第二章整式的加减易错知识点总结单选题1、按如图所示程序计算,若开始输入的x值是正整数,最后输出的结果是32,则满足条件的x值为()A.11B.4C.11或4D.无法确定答案:C分析:根据题意列出等式,进而可以求解.解:由题意可得,当输入x时,3x-1=32,解得:x=11,即输入x=11,输出结果为32;当输入x满足3x-1=11时,解得x=4,即输入x=4,结果为11,再输入11可得结果为32,故选:C.小提示:本题考查了程序流程图与代数式求值,根据题意列出等式是解决本题的关键.2、生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是()A.8B.6C.4D.2答案:C分析:利用已知得出数字个位数的变化规律进而得出答案.解:∵21=2,22=4,23=8,24=16,25=32,…,∴尾数每4个一循环,∵2022÷4=505……2,∴22022的个位数字应该是:4.故选:C.小提示:此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.3、下列说法正确的是()A.3πxy的系数是3B.3πxy的次数是3C.−23xy2的系数是−23D.−23xy2的次数是2答案:C分析:分析各选项中的单项式的系数或者次数,即可得出正确选项.A.π是数字,3πxy的系数是3π,不符题意;B.3πxy的次数是2,x,y指数都为1,不符题意;C.−23xy2的系数是−23,符合题意;D.−23xy2的次数是3 ,x,y指数分别为1和2,不符题意.故选C.小提示:本题考查了单项式的系数:单项式的系数是单项式字母前的数字因数,单项式的次数是单项式所有字母指数的和,正确理解和运用该知识是解题的关键.4、一台饮水机成本价为a元,销售价比成本价高22%,因库存积压需降价促销,按销售价的80%出售,则每台实际售价为( )A.(1+22%)(1+80%)a元B.(1+22%)a·80%元C.(1+22%)(1-80%)a元D.(1+22%+80%)a元答案:B分析:先表示出销售价为(1+22%)a,再根据按销售价的80%出售可得实际售价.解:由题意得,实际售价为:(1+22%)a·80%元.故选:B.小提示:本题考查了列代数式,解题的关键是读懂题意,找到关键描述语列出代数式.5、用同样大小的黑色棋子按如图所示的规律摆放,第1个图形有6颗棋子,第2个图形有9颗棋子,第3个图形有12颗棋子,第4个图形有15颗棋子……,以此类推,第()个图形有2022颗棋子.A.672B.673C.674D.675答案:B分析:观察图形,根据给定图形中棋子颗数的变化,找出变化规律:第n个图形有(3n+3)颗棋子,然后计算即可.解:观察图形,可知:第1个图形有6=3×2颗棋子,第2个图形有9=3×3颗棋子,第3个图形有12=3×4颗棋子,第4个图形有15=3×5颗棋子,……,∴第n个图形有3×(n+1)=(3n+3)颗棋子,当3n+3=2022时,解得:n=673,故选:B.小提示:本题考查了规律型:图形的变化类,根据给定图形中棋子颗数的变化情况,找出变化规律是解题的关键.6、小李今年a岁,小王今年(a-15)岁,过n+1年后,他们相差()岁A.15B.n+1C.n+16D.16答案:A分析:用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n+1年后,大李和小王的年龄差仍然不变.解:a﹣(a﹣15)=15(岁)答:他们相差15岁.故选:A.小提示:此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值.7、若|a−2|+|b+3|=0,则b a的值为()A.1B.﹣1C.﹣6D.9答案:D分析:根据绝对值的非负性得到a与b的值,代入求值即可.解:∵|a−2|≥0,|b+3|≥0,∴当|a−2|+|b+3|=0时,∴a﹣2=0,b+3=0,解得a=2,b=﹣3,∴b a=(−3)2=9,故选:D.小提示:本题考查代数式求值,涉及到绝对值的非负性及幂的运算,熟练掌握非负式的和为零的条件是解决问题的关键.8、下列各组数中,是同类项的是()A.−2x2y与13yx2B.−0.5xy2与0.5x2y C.xyz与xyc D.3x与2y答案:A分析:根据同类项的概念求解.解:A.−2x2y与13yx2,字母相同,相同字母的指数也相同,是同类项,符合题意;B.−0.5xy2与0.5x2y,字母相同,相同字母的指数不相同,不是同类项不符合题意;C.xyz与xyc,字母不同,不是同类项,不符合题意;D. 3x与2y,字母不同,不是同类项,不符合题意;故选A.小提示:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.9、下列各式中,不是..整式的是()A.1x B.x-y C.xy6D.4x答案:A分析:利用整式的定义逐项判断即可得出答案.解:A.1x既不是单项式,又不是多项式,不是整式,故本选项符合题意;B.x-y,是多项式,是整式,故本选项不符合题意;C.xy6,是单项式,是整式,故本选项不符合题意;D.4x,是单项式,是整式,故本选项不符合题意;故选A.小提示:本题考查整式的定义,整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母.10、古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,….我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”其中的“落一形”堆垛就是每层为“三角形数”的三角锥的锥垛(如图所示顶上一层1个球,下一层3个球,再下一层6个球),若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为()A.55B.220C.285D.385答案:B分析:“三角形数”可以写为:1,3=1+2,6=1+2+3,10=1+2+3+4,15=1+2+3+4+5,所以第n层“三角形数”为n(n+1)2,再把n=10代入计算即可.解:∵“三角形数”可以写为:第1层:1,第2层:3=1+2,第3层:6=1+2+3,第4层:10=1+2+3+4,第5层:15=1+2+3+4+5,∴第n层“三角形数”为n(n+1)2,n层时,垛球的总个数为:12+22+⋯+n22+1+2+⋯+n2=n(n+1)(2n+1)12+n(n+1)4∴若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为10×11×2112+10×114=220故选:B.小提示:本题考查了等腰三角形的性质以及数字变化规律,得出第n层“三角形数”为n(n+1)2是解答本题的关键.11、如图,将图1中的长方形纸片前成①号、②号、③号、④号正方形和⑤号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是()A.只需知道图1中大长方形的周长即可B.只需知道图2中大长方形的周长即可C.只需知道③号正方形的周长即可D.只需知道⑤号长方形的周长即可答案:B分析:先设①号正方形的边长为a,②号正方形的边长为b,则③号正方形的边长为a+b,④号正方形的边长为2a+b,⑤号长方形的长为3a+b,宽为b-a,再求出阴影图形的周长6(a+b),然后分别求出图1、图2,③,⑤的周长看是否能求出a+b即可解:设①号正方形的边长为a,②号正方形的边长为b,则③号正方形的边长为a+b,④号正方形的边长为2a+b,⑤号长方形的长为3a+b,宽为b-a,如图,AD=b-a+b+a=2b,AB=a+b+2a+b-b=3a+b∴矩形ABCD的周长为2(AB+AD)=2(3a+b+2b)=6(a+b) ,∴阴影部分图形的周长=6(a+b)A.图1中大长方形的周长为:2(b+a+b+a+b+2a+b)=8(a+b),只需知道图1中大长方形的周长,可求a+b,便可求出阴影部分图形的周长=6(a+b) ,故选项A正确,不合题意;B.图2中大长方形的周长为2(b-a+b+2a+b+3a+2b)=2(4a+5b) ,只需知道图2中大长方形的周长,无法求出a+b,故选项B不正确,符合题意;C.③号正方形周长为:4(a+b),只需知道③号正方形的周长可求a+b,便可求出阴影部分图形的周长=6(a+b) ,故选项C正确,不合题意;D.⑤号正方形周长为:2(3a+b+b-a)=4(a+b),只需知道⑤号长方形的周长可求a+b,便可求出阴影部分图形的周长=6(a+b) ,故选项D正确,不合题意;所以答案是:B.小提示:此题考查整式加减的应用,解题的关键是设出未知数,列代数式表示各线段进而解决问题.12、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)=−5xy+52y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.4x2−5y B.2y−x C.5x D.4x2答案:D分析:根据题意易得(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2,然后进行求解即可.解:由题意得:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2=−x2+3xy−12y2+5x2−8xy+3y2+5xy−52y2 =4x2故选:D.小提示:本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.13、下列去括号或添括号的变形中,正确的是()A.2a-(3b-c)=2a-3b-c B.3a+2(2b-1)=3a+4b-1C.a+2b-3c=a+(2b-3c)D.m-n+a-b=m-(n+a-b)答案:C分析:由去括号和添括号的法则可直接判断各个选项的正误,进而得到答案.解:2a−(3b−c)=2a−3b+c,故选项A错误,不符合题意;3a+2(2b−1)=3a+4b−2,故选项B错误,不符合题意;a+2b−3c=a+(2b−3c),故选项C正确,符合题意;m−n+a−b=m−(n−a+b),故选项D错误,不符合题意;故选:C.小提示:本题考查去括号和添括号,熟练掌握相关知识是解题的关键.14、若x+y=2,z−y=−3,则x+z的值等于()A.5B.1C.-1D.-5答案:C分析:将两整式相加即可得出答案.∵x+y=2,z−y=−3,∴(x+y)+(z−y)=x+z=−1,∴x+z的值等于−1,故选:C.小提示:本题考查了整式的加减,熟练掌握运算法则是解本题的关键.15、下列去括号变形正确的是()A.a+(b−c)=ab−c B.3a−(b+c−d)=3a−b+c−dC.m+4(p+q)=m+4p+q D.12(−x+4y−6z)=−12x+2y−3z答案:D分析:根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以便于选用合适的法则.解:a+(b−c)=a+b−c,故A不符合题意;3a−(b+c−d)=3a−b−c+d,故B不符合题意;m+4(p+q)=m+4p+4q,故C不符合题意;1 2(−x+4y−6z)=−12x+2y−3z,故D符合题意;故选D小提示:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.填空题16、观察下列等式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(x7−1)÷(x−1)=x6+x5+x4+x3+x2+x+1;根据以上等式总结规律并计算,则1+2+22+23+24+25+26+27=______.答案:255分析:根据所给出的等式找到规律,再利用式子的规律进行逆用即可求解.解:由给出等式可知,(x n−1)÷(x−1)=x n−1+x n−2+...+x2+x+1,∴1+2+22+23+24+25+26+27=(28−1)÷(2−1)=255所以答案是:255.小提示:本题考查数字的变化规律,能够根据题中所给式子探索出式子的规律是解题的关键.17、如图,圆的周长为4个单位长度.在该圆周上4等分点处分别标上数字0、1、2、3,让圆周上表示数字0的点与数轴上表示−1的点重合,将该圆沿着数轴的负方向滚动,则数轴上表示数−2022的点对应圆周上的数字是__________.答案:3分析:由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示数字0,3,2,1的点重合.解:∵-1-(-2022)=2021,2021÷4=505…1,∴数轴上表示数-2022的点与圆周上的数字3重合,所以答案是:3.小提示:本题找到表示数-2022的点与圆周上起点处表示的数字重合,是解题的关键. 18、多项式4x 3y 3−5x 4y 3−3x 2−y 2+5x +2的次数是________次. 答案:七分析:根据多项式的次数的定义解答即可.解:根据多项式以及次数的定义,多项式4x 3y 3−5x 4y 3−3x 2−y 2+5x +2含4x 3y 3,−5x 4y 3,−3x 2,−y 2,5x ,2这六项,次数分别为6、7、2、2、1、0,∴多项式4x 3y 3−5x 4y 3−3x 2−y 2+5x +2的次数是七次. 所以答案是:七.小提示:本题主要考查多项式的次数的定义.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数.熟练掌握多项式的次数的定义是解题的关键.19、在代数式a ,π,43ab ,a ﹣b ,a+b 2,x 2+x +1,5,2a ,1+x x中,整式有__个;单项式有__个,次数为2的单项式是_;系数为1的单项式是_. 答案: 8 5 43ab a分析:解决本题关键是搞清整式、单项式、多项式的概念,紧扣概念作出判断; 解:整式有a ,π,43ab ,a ﹣b ,a+b 2,x 2+x +1,5,2a ,共8个;单项式有a ,π,43 ab ,5,2a 共5个,次数为2的单项式是43ab ; 系数为1的单项式是a . 所以答案是:8;5;43ab ;a .小提示:本题考查了整式、单项式的有关概念,注意单个字母与数字也是单项式,单项式的系数是其数字因数,单项式的次数是所有字母指数的和. 20、将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第67个数为______.答案:5151分析:首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第67个能被3整除的数所在组,为原数列中第101个数,解:第①个图形中的黑色圆点的个数为1;=3;第②个图形中的黑色圆点的个数为(1+2)×22=6;第③个图形中的黑色圆点的个数为(1+3)×32=10;第④个图形中的黑色圆点的个数为(1+4)×42……;由此发现,第n个图形中的黑色圆点的个数为n(1+n)2∴这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,……,其中每3个数中,都有2个能被3整除,∵67÷2=33…1,33×3+2=101.=5151.则第67个被3整除的数为原数列中第101个数,即101×1022所以答案是:5151小提示:本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.11。

整式的加减易错点剖析

整式的加减易错点剖析

代数式中的错解示例一、例1 用代数式表示:(1) x 除以y 的3倍的商的平方;(2) x 与y 的倒数的和;(3) a 与b 的平方的和除c ;(4) a 的立方与b 平方的倒数的差.错解:(3×x y )2;(2)1x +1y ;(3)a 2+b 2c ;(4)1a 3-1b 2. 错解分析:(1)把“y 的3倍”误认为“3倍的商”;(2)混淆了“x 与y 的倒数的和”与”x 与y 的倒数和”不同的意义,前者是x +1y ;而后者是1x +1y. (3)错误有两点,其一没有把“a 与b 的平方的和”与“a 与b 的平方和”区别开来,前者是a +b 2,而后者是a 2+b 2;其二混淆了“除以”与“除”的不同意义,“a 与b 的平方的和除c ”,其c 应该是被除式.(4)未能正确理解文字语言中的三层关系:第一是“a 的立方”,即a 3,第二是“b 平方的倒数”,应为1b 2;第三是第一部分的结果与第二部分结果的差.正解:(1)(x 3y )2; (2)x +1y ;(3)c a +b 2;(4)a 3-1b 2. 二、例2 用语言叙述下列代数式:(1)3(x +y);(2)ab-c ;(3)a bc ;(4)x -y m;(5)a(x-y)2. 错解:(1) 3乘以x 加y ;(2) a 乘以b 与c 的差;(3) a 除以b 乘以c ;(4) x 减去y 除以m 的商;(5)a 乘以x 减去y 的平方.错解分析:(1) “3乘以x 加y ”,其意义不明确,未能准确表述其运算顺序.正确的说法是“3与x +y 的积”,或“x 与y 的和的3倍”.(2)“a 乘以b 与c 的差”容易使人误解为a(b-c).正确的说法是“ab 与c 的差”或“a 乘以b 的积与c 的差”.(3)“a 除以b 乘以c ”所表示的代数式为a b·c ,显然与题意不符.正确说法应为“a 除以bc 的商”或“a 比bc ”.(4)“x 减去y 除以m 的商”容易使人误解为x-y m.因此,这种说法不妥.正确的说法是“x-y 除以m 的商”或“x 减去y 的差除以m”.(5) “a 乘以x 减去y 的平方”容易误解为(ax -y)2或[a(x -y)]2或ax - y 2.因此这种语言表述不清.正确的说法是“x 减去y 的差的平方与a 的积”.列代数式和说出代数式的意义是用数字、字母表示的符号语言与文字语言之间的互译的两种情况.三.识别单项式、多项式出错例3下列式子中,哪些是单项式?哪些是多项式?0,133,6x -,25m n -,1y -,2ab ,5210.218x x ++. 错解:6x -,25m n -,1y -,2ab 是单项式;0,133,5210.218x x ++是多项式. 错解分析:25m n -包含加减运算,它应该是多项式;1y-的分母中含有字母,所以它既不是单项式,也不是多项式;0和133都是数字,应是单项式.正解: .(请自己填上答案)点拨:判断一个式子是不是单项式,要严格依据定义进行判断,同时注意以下三点:①单独的一个数或一个字母是单项式;②单项式中数与字母只能是相乘的关系;③若分母中出现含字母的式子,则不是整式,而是将来我们要学习的“分式”,如1就是-1与y的商,所以不是单项式.y四、识别单项式的系数和次数出错例4请指出单项式x5y3z的系数和次数.错解:单项式x5y3z的系数是0,次数是8.错解分析:对于单项式x5y3z,系数为省略了的1,而不是0;计算次数时错解误将字母z的指数当成0,实际上是1.正解: .(请自己填上答案)点拨:单项式的系数是指单项式中的数字因数;单项式的次数指单项式中所有字母的指数和.要注意系数和次数中省略的1.五.识别多项式的项和次数出错例5 指出多项式3xy2-2xy+x-5是几次几项式,并指出这个多项式的各项.错解:这个多项式是六次四项式,各项分别为:三次项3xy2,二次项2xy,一次项x,常数项5.错解分析:错解是把多项式中所有字母的指数和当成了多项式的次数,而且在写多项式的项时忽略了符号.正解: .(请自己填上答案)点拨:多项式中每一个单项式称为多项式的项,这里要注意的是每一项都包括前面的符号.在多项式里,次数最高的项的次数是多项式的次数,也就是说多项式的次数实际上是用一个次数最高的单项式的次数来代表的.整式易错点示例一、对概念理解不透例1 指出单项式3xy ,221b -,a ,42z xy -的系数和次数. 错解: 3xy 的系数是1,次数是1; 221b -的系数是21,次数是2; a 的系数是0,次数是0;42z xy -的系数是0,次数是4.错解分析: 错误的原因是不理解什么是单项式的系数和次数,当系数和指数为1时,在单项式中省略不写,因而误认为这时的系数和指数为O ,单项式的系数包括它前面的符号.正解: 3xy 的系数是31,次数是2; 221b -的系数是-21,次数是2; a 的系数是1,次数是1;42z xy -的系数是-1,次数是7.注:单项式和多项式中的“+”和“-”号在确定系数时不能遗漏.例2 试指出下列说法的错误:y x 34,b a 34,32ab -,3yx 是同类项;3a -,331b 为同类项.错解分析: 由于同类项必须同时满足:①项中所含字母相同;②相同字母的次数分别相同.而本题中y x 34与b a 34由于字母不同,因此它们不是同类项;b a 34与32ab -虽然所含字母相同,但由于相同的字母的次数不相同,因此,它们也不是同类项.同样地,3a -与331b ,y x 34与32ab -也都不是同类项.正确答案是只有y x 34与3yx 是同类项.例3 多项式abc c b a 3333+--由哪几项组成?错解:多项式abc c b a 3333+--是由3a ,3b ,3c ,abc 3四项组成. 错解分析:此解漏掉了各项的符号,必须注意,多项式的项都包括它前面的符号,正确答案是由3a ,3b -,3c -,abc 3四项组成.例4 整式32+-a 是几次几项式?错解: 32+-a 是三次二项式.错解分析:这里第一项a -的次数是l ,系数是-1,后面一项32的指数虽然是3,但底数不含有字母,因而仍是常数项.所以这个整式是一次二项式.例5 多项式522+-b ab 是几次式?错解: 522+-b ab 是二次式.错解分析: 这个多项式中,次数最高的项是第一项,它的次数为1十2=3,所以多项式522+-b ab 是三次式.例6 在代数式m ,-2,24ab ,x 1,5y x +中,单项式有( ). A.2个 B.3个 C.4个 D.5个错解:选C .单项式有m ,24ab ,x 1,5y x +. 错因分析:因为单独的一个数字和一个字母也是单项式,所以-2是单项式;x 1表示l 与x 的商,它不是单项式;5y x +表示51与y x +的积,它应当属于多项式.正解:选 B .单项式有m ,-2,24ab .点拨:单项式中数字与字母之间都是乘积关系,所以包含其他的运算形式的代数式就不是单项式,应严格按照单项式的概念判断.二、判断单项式系数、次数出错例7 单项式332xy π-的系数是________,次数是________.错解:-3,6或31-,6.错因分析:此题中出现了π,因圆周率π是常数,当单项式中出现π时,应将其看作数字系数,所以系数为32π-;数字的指数不能加在字母的指数上算作单项式的次数,所以单项式的次数为x ,y 的指数的和.正解:系数是32-,次数是4.点拨:在解答此类问题时经常由于未分清字母与数字导致出错,应正确理解与分析单项式的系数与次数.三、判断多项式项数、次数出错例8 已知m ,n 都是正整数,多项式n m n m y x +-+32的次数是( )A.mB.n m +C.n m 22+D.不能确定错解:B .错因分析:题中多项式各项次数最高的是n m +3,但由于底数为3,所以此项为常数项.应比较含有字母的单项式的次数,所以主要分析m ,n 的大小.题目已知条件没有给出m ,n 的大小关系,所以无法确定.正解:D .点拨:在比较各项次数时,一定要分清数字的指数,还是字母的指数,把每项的次数都写出来,再进行选择即可.四、对同类项概念理解出错例9 已知单项式b a b a y x +--43与3261x y 是同类项,则代数式2 011()a b -的值为( ) A.1 B.-1 C.0 D.±1错解: B .错因分析:根据同类项的定义可知,相同字母的指数应对应相等,由于题目中x ,y 的先后位置不同,致使出现24=-b a ,3=+b a 的错误等式,通过仔细观察可得34=-b a ,2=+b a ,解得1=a ,1=b ,所以代数式 2 011()a b -的值为0.正解: C .点拨:通过对定义分析可知,两个式子若是同类项,所含的字母和指数必须对应相等.五、合并同类项出错例10 下列运算中,正确的是( )A.m n mn 77=-B.ab b a 1046=+C.633523a a a =+D.022=-ba b a错解:C .错因分析:在给出的选项中,mn 7和n ,a 6和b 4都不是同类项,所以不能合并;33a 和32a 是同类项,但是结果中的字母指数发生了变化,结果应为35a ;b a 2和2ba 都包含着字母a ,b ,且对应的指数也都相等,所以应选D .正解: D .点拨:合并同类项的前提首先是几个单项式必须是同类项,其次是将同类项的系数相加作为结果的系数,字母和字母的指数保持不变.若两项不是同类项,就不能进行合并,应保留原来形式.六、应用去括号法则出错例11 化简:)]3(2)25([52222a a a a a a ---+-.错解:原式=)3(2)25(52222a a a a a a ---+-=2224a 5a 2a 2a 6a +--+=27a a.+4错因分析:题中的错误主要是去掉中括号时,括号内的每项都要变号,特别是带有小括号的项.先去中括号时,要把每个小括号看作一个整体,作为一项,一般是先去小括号,再去中括号.正解:原式=]6225[52222a a a a a a +--+-=a a a a a a 622552222-++--=a a 42-.点拨:将代数式中的括号去掉时,应注意变号.去括号的法则是:括号前面是正号,去掉括号和前面的符号,括号内每项都不变号;括号前面是负号,去掉括号和前面的符号,括号内每项都变号.去括号时要由内到外或由外到内依次进行,以免出错.例12 去括号:)32(523--+x y x .错解:)32(523--+x y x =32523--x y x .错解分析:在去括号时,如果括号前面是“+”号,只需要去掉括号和这前面的“+”号,把括号中每一项照抄下来就行了.但由于原括号中第一项的“+”号省略,因此,在去掉括号后应把它补上.正确答案是:32523--+x y x .例13 计算:)21(3)325(22x x x x +--+-.错解:原式=2223325x x x x +--+-=x x 462-.错解分析:上述解法错误有:(l)根据去括号法则,括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都变号,而不能单改变第一项的符号或其中部分项的符号,错解中只改变了第一项的符号,其余各项的符号均未改变;(2)去括号时,括号前面的系数应乘以括号内的每一项,错解中仅用括号前面的系数去乘括号内的第一项,其余各项均未乘以括号前面的系数.正解:原式=22363325x x x x -+-+-=x x 422+.例14 不改变多项式3334723d c b a -++的值,把它后面三项括在前面带有“-”号的括号内.错解:3334723d c b a -++=)472(3333d c b a +--.错解分析:根据添括号法则,如果添上的括号的前面是“-”号,那么括到括号里的每一项的符号都要改变.上述解法虽然括起来的后面两项都改变了符号,但由于括到括号里的第一项没有改变符号,因此是错误的.正确答案应是:)472(3333d c b a +---.七、整式加减运算过程出错例15 先化简再求值.当27=a ,21=-b 时,求代数式)2(3)2(32222b b a b b a +--的值. 错解:①原式=063632222=+--b b a b b a .②原式=222223a b 6b 3a b 2b 8b =----,把21=-b 代入上式,原式=-2.错因分析:此题既要应用乘法的分配律,又要去括号和合并同类项,是一道典型的整式运算.特别要注意在去括号时括号内每一项都要变号,和应用乘法分配律时数字因数要乘以括号内的每一项,要细心、认真,不能马虎.正解:原式=22222126363b b b a b b a =----, 把21=-b 代入上式,原式=-3.点拨:在遇到求代数式的值时,一般是先化简,再代入,运算简便.应重点注意去括号法则的应用和乘法分配律的应用.八、考虑问题不全面,造成漏解例16.如果二次三项式22(1)16x m x -++是一个完全平方式,那么m 的值是____.错解:由题意知2(1)8m +=,解得3m =.错解分析:忽视了222()2a b a ab b ±=±+而导致错误.正解:由题意知2(1)8m +=±,解得3m =或5-.。

整式的加减常见错误分析(黄业乐)

整式的加减常见错误分析(黄业乐)

整式的加减常见错误分析整式的加减运算是初中数学中的重要基础运算之一,由于对整式概念、同类项、合并同类项及去(添)括号法则等理解不深刻、不透彻,学生经常会出现一些令人意想不到的错误,现通过实例来分析这些错误,希望能对教师的教学和学生的学习有所帮助.1 对整式概念辨别不清例1 下列代数式: 2ab 、2x 、3a b-、a 、—1、x y +中哪些是单项式,哪些是多项式.错解:单项式2ab 、2x 、3a b-;多项式x y +.分析:2x分母含字母x ,不是单项式,更不是整式,是以后将要学习的分式.3a b-即为3a -3b 是多项式,单独一个数或单独一个字母都是单项式.正解:单项式:2ab 、a 、-1;多项式:3a b-、x y +.例2 下列说法中,正确的个数有( ). (1)-26ab π的系数是-16,次数是4; (2)x 的系数是0,次数是0; (3)-221xy xy -+是五次三项式; (4)25-的次数是2.A .0个B .1个C .2个D .3个 错解:选B .分析:(1)π是圆周率(无理数、特殊常数),不属于字母,因此26ab π-的系数是6π-,次数是3. (2)x 的系数是1,次数也是1.(3)多项式的次数是多项式中次数最高的项的 次数,单项式的次数才是所有字母的指数和,所以 -221xy xy -+为三次三项式.(4)单项式是单独的一个非零数字时,其次数是0,因此25-的次数是0. 正解:选A .2 对同类项的概念理解不透例3 下列各项中同类项是( ).A .22x y -与23xy B .2ab -与212b a -C .22x 与22x D .x 与y错解:C .分析:同类项必须满足“两同”,即所含字母相同,相同字母的指数也分别相同,而与其系数、字母的顺序无关,C .中22x 的指数是2,22x 的指数是1,所以22x 与22x 不是同类项.正解:B .3 合并同类项时的错误例4 合并下列多项式中的同类项: (1)222222x y xy x y xy -+--; (2)2a -32a -5a +2a .错解:(1)222222x y xy x y xy -+--=222222x y x y xy xy -+++223x y xy =-+. (2)2a -32a -5a +2a=-(5+2)2(31)a a -+=274a a --. 分析:(1)有些同学喜欢先运用加法交换律与结合律将同类项结合在一起,但忽略了多项式中各项的系数包括前面的符号,在把同类项结合在一起时,应连同其前面的“十”或“一”号,一起移动.(2)初学合并同类项时,有些同学按照其法则:把同类项的系数相加(减),而忽略了添括号法则:括号前面添“—”,括到括号里的各项都改变符号.正解:(1)222222x y xy x y xy -+-- =-222222x y x y xy xy -+-223x y xy =-+. 正解:(2)2a -32a -5a +2a =22(25)(31)32a a a a ---=--.4 去括号发生的错误例5 计算:(1)22(532)(252)x x x x -+---+-; (2)223()2(3)x x x x ---+.错解:(1)22(532)(252)x x x x -+---+- =22532252x x x x -+-++- =2753x x -++. (2)223()2(3)x x x x ---+ =2236x x x x ----=292x x --.分析:(1)2(252)x x --+-中,括号前面是“—”号,去括号时,括号里各项都要改变符号,而不是仅改变第一项的符号.(2)括号前面既有“—”号又有数字的,应运用乘法分配律将“—”号和该数字一起与括号内各项分别相乘.正解:(1)22(532)(252)x x x x -+---+- =22532252x x x x -+-+-+=-2357x x +-. 正解:(2)223()2(3)x x x x ---+ =22233629x x x x x x -+--=-+.例6 求整式2231x x +-与2356x x -+的差.错解:22231356x x x x +---+=225x x --+.分析:求两个整式的差,因将两个整式整体相减,(即两个整式都要添加括号)而不是将第1个整式减去第2个整式的第一项.正解:22(231)(356)x x x x +---+22231356x x x x =+--+-=287x x -+-.5 化简结果及求值时出现的错误例7 先化简,再求值:22831(2)()323x x y x y -+--其中15x =-,3y =-.错解:22831(2)()323x x y x y -+--=228312323x x y x y ---+2112223x y =--.当15x =- ,3y =-时,2112223x y --=2111223253-⨯--⨯- 5179253=-⨯--⨯-1212=+=432.分析:化简结果2112223x y --,书写不规范,122-是指12()2-+-,而122-x 是122-·x ,这里省略了乘号,因此要将122-x 化为52x -,同样2123y -化为273y -.求值时若字母表示负数,应将负数用括号括起来,而运算符号与性质符号之间要添加括号,特别是负数的乘方更应添加括号.正解:化简结果为52x -273y -. 当15x =- ,3y =-时,2257517()(3)23253x y --=-⨯--⨯- 171419212322=-⨯=-=-. 整式的加减运算是学习整式的乘、除、乘方,因式分解,分式,函数及方程等的重要基础.在初学整式加减时,要正确理解整式、同类项等概念,熟记合并同类项、去括号、添括号等法则,并通过一定数量的整式加减的强化训练,才能避免以上常见错误,为以后的学习打下坚实的基础.(本文发表于《中学数学教学参考》(中旬)2009年第9期第35-37页)。

河南省七年级数学上册第二章整式的加减重点易错题

河南省七年级数学上册第二章整式的加减重点易错题

河南省七年级数学上册第二章整式的加减重点易错题单选题1、将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12答案:B分析:列举每个图形中H的个数,找到规律即可得出答案.解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.小提示:本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.2、下列各选项中,不是同类项的是()A.3a2b和−5ba2B.12x2y和12xy2C.6和23D.5x n和−3x n4答案:B分析:根据同类项的概念求解即可.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.解:A、3a2b和−5ba2是同类项,不符合题意;B、12x2y和12xy2不是同类项,符合题意;C、6和23是同类项,不符合题意;D、5x n和−3x n是同类项,不符合题意.4故选:B.小提示:此题考查了同类项的概念,解题的关键是熟练掌握同类项的概念.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.3、下列整式与ab2为同类项的是()A.a2b B.−2ab2C.ab D.ab2c答案:B分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与ab2不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与ab2是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与ab2不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与ab2不是同类项,故选项不符合题意.故选:B.小提示:此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.4、若单项式2xy3−b是三次单项式,则()A.b=0B.b=1C.b=2D.b=3答案:B分析:根据单项式次数的概念列式计算即可解:若单项式2xy3−b是三次单项式,则3-b=2,解得:b=1,故选:B.小提示:本题考查了单项式,单项式是数与字母的乘积,单独一个数或一个字母也是单项式,单项式的次数是字母指数和,单项式的系数是数字因数.y+3)等于()5、去括号x−(−13A.x−13y−3B.x+13y−3C.x−13y+3D.x+13y+3答案:B分析:利用去括号法则解答即可.解:x−(−13y+3)=x+13y−3故选:B.小提示:此题考查去括号,解题的关键是熟练掌握去括号法则.注意括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.6、单项式−3xy34的系数是()A.3B.4C.−3D.−34答案:D分析:根据单项式的系数的概念解答即可.解:单项式-3xy 34的系数是-34.故选:D.小提示:本题考查的是单项式的系数的概念,单项式中的数字因数叫做单项式的系数,理解单项式的系数的概念是解答关键.7、“x的平方与5的和的相反数减去x的差”用代数式表示为()A.−(x2+5)−x B.−(x+5)2−xC.x2−5−x D.x2+5−x答案:A分析:根据“x的平方与5的和”为x2+5,在用相反数的定义,最后计算的是差;解:由题意得:−(x2+5)−x,故选:A.小提示:本题考查列代数式,解题关键弄清运算顺序,注意x的平方与5的和与x与5的和的平方之间的区别.8、如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为B1,B2,B3,每列的三个式子的和自左至右分别记为A1,A2,A3,其中值可以等于732的是()A.A1B.B1C.A2D.B3答案:D分析:将A1,A2,B1,B3的式子表示出来,使其等于732,求出相应的n的数值即可判断答案.解:A1=2n−2+2n−4+2n−6=732,整理可得:2n=248,n不为整数;故选项A不符合题意;A2=2n−8+2n−10+2n−12=732,整理可得:2n=254,n不为整数;故选项B不符合题意;B1=2n−2+2n−8+2n−14=732,整理可得:2n=252,n不为整数;故选项C不符合题意;B3=2n−6+2n−12+2n−18=732,整理可得:2n=256,n=8;故选项D不符合题意;故选:D.小提示:本题主要考查规律型的数字变化问题,解答本题的关键是能够理解题意,写出相对应的式子并进行求解.9、若﹣2xm+7y4与3x4y2n是同类项,则mn的值为()A.1B.5C.6D.﹣6答案:D分析:根据同类项的定义,得到关于m、n的等式,然后求出m、n的值并计算即可得到答案.解:由同类项的概念可知:m+7=4,2n=4,解得:m=﹣3,n=2,∴mn=(﹣3)×2=﹣6,故选D.小提示:本题考查了同类项的定义,掌握相关知识并熟练使用,是解题关键.10、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)=−5xy+52y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.4x2−5y B.2y−x C.5x D.4x2答案:D分析:根据题意易得(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2,然后进行求解即可.解:由题意得:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2=−x2+3xy−12y2+5x2−8xy+3y2+5xy−52y2 =4x2故选:D.小提示:本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.11、已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,依此类推,则a2022的值为()A.-1010B.-1011C.-1012D.-2022答案:B分析:分别求得a1,a2,a3,a4,…找到规律,当下标为偶数时,其值等于下标的一半的相反数,据此即可求解.解:∵a1=0,a2=-|a1+1|=-1,a3=-|a2+2|=-1,a4=-|a3+3|=-2,a5=−|−a4+4|=−2,a6=−|−a5+5|=−3…,当下标为偶数时,其值等于下标的一半的相反数,∴a2022的值为-1011.故选B.小提示:本题考查了数字类规律,找到规律是解题的关键.12、一个矩形的周长为l,若矩形的长为a,则该矩形的宽为( )A.l2−a B.l−a2C.l−a D.l2a答案:A分析:根据矩形的周长公式进行计算即可.解:∵矩形的周长为l,矩形的长为a,∴矩形的宽为l2−a.故选A.小提示:本题考查列代数式,解题的关键是熟记矩形的周长=2(长+宽).13、如图所示的图案是用长度相同的木条按一定规律摆成的.摆第1个图案需8根木条,摆第2个图案需15根木条,摆第3个图案需22根木条,…,按此规律摆第n个图案需要木条( )A.(6n+2)根B.(7n+1)根C.(7n−1)根D.8n根答案:B分析:根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.解:由图可得,图案①有:1+7=8根小木棒,图案②有:1+7×2=15根小木棒,图案③有:1+7×3=22根小木棒,…则第n个图案有:(7n+1)根小木棒,故选:B.小提示:本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.14、用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41答案:C分析:第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.小提示:本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.15、下列关于“代数式4x+2y”的意义叙述正确的有()个.①x的4倍与y的2倍的和是4x+2y;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(4x+2y)元.A.3B.2C.1D.0答案:B分析:根据代数式4x+2y的意义分别对三个叙述进行判断即可.解:①x的4倍与y的2倍的和是4x+2y,正确;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米,正确;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(2x+4y)元,错误;故正确的有2个故选:B.小提示:此题考查了代数式的问题,解题的关键是掌握代数式的意义以及性质.填空题16、实数a、b、c在数轴上的位置如图所示,√a2+|a−c|−|c−b|化简的结果是______.答案:-b分析:根据数轴上点的位置得到c<a<0<b,得到a-c>0,c-b<0,由此化简绝对值及算术平方根,再计算即可.解:由数轴得c<a<0<b,∴a-c>0,c-b<0,∴√a2+|a−c|−|c−b|=-a+a-c-(b-c)=-c-b+c=-b,所以答案是:-b.小提示:此题考查了根据数轴上点的位置判断式子的符号,化简绝对值,计算算术平方根,正确理解数轴上点的位置得到式子的符号是解题的关键.17、按照列代数式的规范要求重新书写:a×a×2−b÷3,应写成_________.答案:2a2-b3分析:根据代数式的书写要求填空..解:应写成:2a2-b3.所以答案是:2a2-b3小提示:本题考查了代数式的书写要求.解题的关键是掌握代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.18、若m+2n=1,则3m2+6mn+6n的值为______.答案:3分析:根据m+2n=1,将式子3m2+6mn+6n进行变形,然后代入求出值即可.∵m+2n=1,∴3m2+6mn+6n=3m(m+2n)+6n=3m+6n=3(m+2n)=3.所以答案是:3.小提示:本题考查了代数式的求值,解题的关键是利用已知代数式求值.19、如图,在长为m,宽为n的长方形中,沿它的一个角剪去一个小长方形,则剩下图形的周长为______.答案:2(m+n)(或2m+2n)分析:长方形一角剪去一个小长方形,剩下图形的周长与原长方形周长相等.解:根据题意,长方形一角剪去一个小长方形,剩下图形的周长与原长方形周长相等;∴剩下图形的周长为:2(m+n);所以答案是:2(m+n).小提示:本题考查了整式的加减混合运算.关键是根据图形列出算式.20、已知x2−3x+1=0,则3x2−9x+5=_________.答案:2分析:将3x2−9x+5变形为3(x2−3x+1)+2即可计算出答案.3x2−9x+5=3x2−9x+3+2=3(x2−3x+1)+2∵x2−3x+1=0∴3x2−9x+5=0+2=2所以答案是:2.小提示:本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章整式的加减易错点分析
一、本章知识结构框架图
二、易错题分析
误区一 书写不规范致误
例1 用代数式表示下列语句:
(1)比x 与y 的和的平方小x 与y 的和的数 (2)a 的2倍与b 的
3
1的差除以a 与b 的差的立方。

错解(1)(2
2
y x +)-(x+y ) (2)(2a-1/3b )÷(x+y)
剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2
y x y x +-+,而不应该是(2
2y x +)-(x+y )。

(2)是书写不规范,除号
要用分数线代替,即应该写成3
)
(31
2b a b a --。

正解:(1))()(2
y x y x +-+ (2)3
)
(31
2b a b a --
误区二 概念不清致误
例2、判断下列各组是否是同类项:
(1)0.2x 2y 与0.2xy 2 (2)4abc 与4ac (3)-130与15 (4)-532m n 与423
n m (5)-++()()a b a b 3
3
2与 (6)731
1
p
q p
q n n n n
++与
错解:(1)(3)(4)(6)是同类项,(2)(5)不是同类项。

剖析:(1)0.2x 2y 与0.2xy 2因为字母x 的指数不同,字母y 的指数也不同,所以不是同类项。

(2)4abc 与4ac ,显然第二个单项式中没有字母b 所以不是同类项。

(3)都是单独一个数-130和15,是同类项。

(4)虽然-532m n 与423n m 字母的排列顺序不同,但相同字母m 的指数相同,n 的指数相同,字母也相同,所以是同类项。

(5)将(a+b)看成一个整体,那么-++()()a b a b 3
3
2与是同类项。

(6)731
1
p
q p
q n n n n
++与中,字母相同都是p ,q 并且字母p 的指数都是n+1,q 的指数都
是n ,也相同,所以是同类项。

解:(1)、(2)不是同类项 (3)、(4)、(5)、(6)是同类项。

说明:根据同类项的定义判断,同类项应所含字母相同,并且相同字母的指数也分别相同,同类项与系数无关,与字母的顺序无关。

(1)题相同字母的指数不相同; (2)题所含字母不同; (5)题将(a+b)看作一个整体。

误区三 去括号致错
例3 计算()83432x y x y z z --+-+
错解:原式=z z y x y x 23438+-+--==z x +=4
剖析:去括号时,括号前是“-”号,把括号和它前面的“-”号去掉,括号内各项都要变号,本题是最常见的错误:只改变括号内第一项的符号而忘记改变其余各项的符号。

正解:原式=---++83432x y x y z z =-+463x y z (2)括号前的系数不是1 例4 计算()()85322
2
2
2
x y
x y
---
错解1:原式=--+8562
2
2
2
x y x y 错解2:原式=---85632
2
2
2
x y x y
=-242
2x
y =-2822
x y
剖析: 去括号时,若括号前的系数不是1,则要按分配律来计算,即要用括号外的系数乘以括号内的每一项。

本题就是常见的错误:“变符号”与使用“分配律”顾此失彼。

正解:原式=2
2
2
2
3658y x y x +--==2
222y x -=。

相关文档
最新文档