圆锥曲线中的最值jis题
高考数学一轮复习圆锥曲线中的最值(范围)问题

9 + 2 +6
12
=4.
2×3+6
≤3+
1
3
3
当且仅当9k2= 2,即k=± 时等号成立.
当k=0时,|AB|= 3,综上所述|AB|max=2.
1
3
3
∴当|AB|最大时,△AOB的面积取得最大值Smax= ×|AB|max× = .
2
2
2
利用函数性质求最值(范围)
【例3】 已知点A1(- 6,0),A2( 6,0),直线PA1,PA2的斜率之积为-
同理可得y4=- ,
3 −4
4
−1 2
则kAB=2 2 =
=
= .
+
2
(
+
)
2
3
4
3
4
1
2
4
−4
因为tan α=kMN=k,tan
β=kAB= ,
2
tan−tan
所以tan(α-β)=
=
1+tantan
2
1+
2
−
·
1
1
2
= 2=2 ≤ ,当且仅当 =k,即k=
1.斜率为-1的直线过抛物线y2=-2px(p>0)的焦点,与抛物线交于两点A,
B,M为抛物线上曲线段AB上的动点,若|AB|=12.
(1)求抛物线的方程;
解:(1)抛物线y2=-2px(p>0)的焦点为
− ,0
2
,
则直线AB的方程为y=-x- ,
2
2
圆锥曲线中的最值问题

02பைடு நூலகம்
求解方法
设两点坐标,利用距离公式求解,再通过求导找出极值 点,确定最大最小值。
03
应用场景
通信、导航等领域,经常需要求解信号的最远和最近传 输距离等问题。
圆锥曲线上的点的最值坐标
定义
指的是在圆锥曲线上找到具有某种性质最值(如距离最值、角度最值等)的点,并求出其坐标。
求解方法
通常要根据具体性质设立目标函数,再利用求导等数学工具求出极值点,进而得到最值坐标。
求解方法
通过运用圆锥曲线与直线的 交点的坐标表达式,结合距 离公式,利用微积分工具求
解最值。
应用场景
该问题在光学、几何设计等 领域有应用,如望远镜的设 计、镜面的曲率选择等。
圆锥曲线内接多边形的最值面积
定义与背景
圆锥曲线内接多边形是指多边形的顶点都在圆锥曲线上的多边形 。在最值情况下,该多边形的面积达到最大或最小值。
最值问题在物理学中的应用
光学
在物理学中,圆锥曲线与光学有着密 切的联系。例如,利用圆锥曲线的性 质可以解决光的反射、折射等最值问 题,从而优化光学系统的设计。
力学
圆锥曲线在力学中也有应用,例如在 研究天体运动时,可以利用圆锥曲线 的性质来解决最值问题,从而预测天 体的运行轨迹和位置。
最值问题在工程实践中的应用
性质
圆锥曲线有许多重要的性质,如对称性、焦点性质、准线性质等。这些性质在 最值问题的研究中起着重要作用。
最值问题的概述
定义
最值问题是寻找函数在给定区间上的最大值和最小值的问题 。在圆锥曲线中,最值问题通常涉及到曲线上的点与特定直 线或点之间的距离、角度等的最值。
解决方法
解决最值问题的方法包括导数法、不等式法、几何法等。在 圆锥曲线的最值问题中,通常结合曲线的几何性质和代数方 法来进行求解。
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题
圆锥曲线的最值 定值 范围等经典考题型附答案 作业

圆锥曲线的综合应用一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆x22+y2=1上的点到直线y=x+23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆x23+y2=1内接矩形ABCD面积的最大值.二、圆锥曲线的范围问题方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac的取值范围是________.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零① 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP →+OQ →与AB →共线?如果存在,求m 值;如果不存在,请说明理由.三、圆锥曲线的定值、定点问题 方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题① 根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.例1、已知双曲线C :x 2-y 22=1,过圆O :x 2+y 2=2上任意一点作圆的切线l ,若l 交双曲线于A ,B 两点,证明:∠AOB 的大小为定值.方法2:引进参数法定值、定点是变化中的不变量,引入参数找出与变量与参数没有关系的点(或值)即是定点(或定值).①引进参数表示变化量;②研究变化的量与参数何时没有关系,找到定值或定点例2、如图所示,曲线C1:x29+y28=1,曲线C2:y2=4x,过曲线C1的右焦点F2作一条与x轴不垂直的直线,分别与曲线C1,C2依次交于B,C,D,E四点.若G为CD的中点、H为BE的中点,证明|BE|·|GF2||CD|·|HF2|为定值.课堂知识运用训练1.设P是曲线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P到x =-1直线的距离之和的最小值为( ).A. 2B. 3C. 5D.62.椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝ ⎛⎭⎪⎫b 2+c 2有四个交点,其中c为椭圆的半焦距,则椭圆ac的范围为( ). A.55<a c <35 B .0<a c<25 C.25<a c <35 D.35<ac <55 3.设F 是椭圆x 27+y 26=1的右焦点,且椭圆上至少有21个不同的点P i (i =1,2,3,…),使|FP 1|,|FP 2|,|FP 3|,…组成公差为d 的等差数列,则d 的取值范围为________.4.过抛物线y 2=2px (p >0)上一定点P (x 0,y 0)(y 0>0)作两直线分别交抛物线于A (x 1,y 1),B (x 2,y 2),当PA 与PB 的斜率存在且倾斜角互补时,则y 1+y 2y 0的值为________.5.椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的左焦点为F ,过F 点的直线l 交椭圆于A ,B 两点,P 为线段AB 的中点,当△PFO 的面积最大时,求直线l 的方程.6.已知⊙O′过定点A(0,p)(p>0),圆心O′在抛物线C:x2=2py(p>0)上运动,MN为圆O′在轴上所截得的弦.(1)当O′点运动时,|MN|是否有变化?并证明你的结论;(2)当|OA|是|OM|与|ON|的等差中项时,试判断抛物线C的准线与圆O′的位置关系,并说明理由.答案解析圆锥曲线的综合应用一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF |+|PA |的最小值为________.解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9. 方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆x 22+y 2=1上的点到直线y =x +23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.解 设椭圆的切线方程为y =x +b , 代入椭圆方程,得3x 2+4bx +2b 2-2=0. 由Δ=(4b )2-4×3×(2b 2-2)=0,得b =± 3. 当b =3时,直线y =x +3与y =x +23的距离d 1=62,将b =3代入方程3x 2+4bx +2b 2-2=0,解得x =-233,此时y =33, 即椭圆上的点⎝⎛⎭⎪⎫-233,33到直线y =x +23的距离最小,最小值是62;当b =-3时,直线y =x -3到直线y =x +23的距离d 2=362,将b =-3代入方程3x 2+4bx +2b 2-2=0,解得x =233,此时y =-33,即椭圆上的点⎝ ⎛⎭⎪⎫233,-33到直线y =x +23的距离最大,最大值是362. 方法3:参数法(函数法)② 选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy 中,点P (x ,y )是椭圆x 23+y 2=1上的一个动点,则S =x +y 的最大值为________.解析 因为椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φy =sin φ,(φ为参数).故可设动点P 的坐标为(3cos φ,sin φ),其中0≤φ<2π. 因此S =x +y =3cos φ+sin φ=2⎝ ⎛⎭⎪⎫32cos φ+12sin φ=2sin ⎝⎛⎭⎪⎫φ+π3,所以,当φ=π6时,S 取最大值2.故填2.方法4:基本不等式法 ①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆x 23+y 2=1内接矩形ABCD 面积的最大值.二、圆锥曲线的范围问题 方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac的取值范围是________. 解析 根据双曲线定义|PF 1|-|PF 2|=2a ,设|PF 2|=r , 则|PF 1|=4r ,故3r =2a ,即r =2a 3,|PF 2|=2a3.根据双曲线的几何性质,|PF 2|≥c -a ,即2a 3≥c -a ,即c a ≤53,即e ≤53.又e>1,故双曲线的离心率e 的取值范围是⎝ ⎛⎦⎥⎤1,53.故填⎝ ⎛⎦⎥⎤1,53.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零② 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP →+OQ →与AB →共线?如果存在,求m 值;如果不存在,请说明理由.解 (1)由已知条件,知直线l 的方程为y =kx +2,代入椭圆方程,得x 22+(kx +2)2=1,整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0.①由直线l 与椭圆有两个不同的交点P 和Q ,得Δ=8k 2-4⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0, 解得k <-22或k >22,即k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞. (2)设P (x 1,y 1),Q (x 2,y 2),则OP →+OQ →=(x 1+x 2,y 1+y 2). 由方程①,知x 1+x 2=-42k1+2k 2.②又y1+y2=k(x1+x2)+22=221+2k2.③由A(2,0),B(0,1),得AB→=(-2,1).所以OP→+OQ→与AB→共线等价于x1+x2=-2(y1+y2),将②③代入,解得k=22.由(1)知k<-22或k>22,故不存在符合题意的常数k.三、圆锥曲线的定值、定点问题方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题②根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.例1、已知双曲线C:x2-y22=1,过圆O:x2+y2=2上任意一点作圆的切线l,若l交双曲线于A,B两点,证明:∠AOB的大小为定值.证明当切线的斜率不存在时,切线方程为x=± 2.当x=2时,代入双曲线方程,得y=±2,即A(2,2),B(2,-2),此时∠AOB=90°,同理,当x=-2时,∠AOB=90°.当切线的斜率存在时,设切线方程为y=kx+b,则|b|1+k2=2,即b2=2(1+k2).由直线方程和双曲线方程消掉y,得(2-k2)x2-2kbx-(b2+2)=0,由直线l与双曲线交于A,B两点.故2-k2≠0.设A(x1,y1),B(x2,y2).则x1+x2=2kb2-k2,x1x2=-b2+22-k2,y 1y2=(kx1+b)(kx2+b)=k2x1x2+kb(x1+x2)+b2=-k 2b 2-2k 22-k 2+2k 2b 22-k 2+2b 2-k 2b 22-k 2=2b 2-2k 22-k 2,故x 1x 2+y 1y 2=-b 2-22-k 2+2b 2-2k 22-k 2=b 2-21+k 22-k 2,由于b 2=2(1+k 2),故x 1x 2+y 1y 2=0,即OA →·OB →=0,∠AOB =90°.综上可知,若l 交双曲线于A ,B 两点,则∠AOB 的大小为定值90°. 方法2:引进参数法定值、定点是变化中的不变量,引入参数找出与变量与参数没有关系的点(或值)即是定点(或定值).②引进参数表示变化量;②研究变化的量与参数何时没有关系,找到定值或定点【例2】►如图所示,曲线C 1:x 29+y 28=1,曲线C 2:y 2=4x ,过曲线C 1的右焦点F 2作一条与x 轴不垂直的直线,分别与曲线C 1,C 2依次交于B ,C ,D ,E 四点.若G 为CD 的中点、H 为BE 的中点,证明|BE |·|GF 2||CD |·|HF 2|为定值.证明 由题意,知F 1(-1,0),F 2(1,0),设B (x 1,y 1),E (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 直线y =k (x -1),代入x 29+y 28=1,得8⎝ ⎛⎭⎪⎫y k +12+9y 2-72=0,即(8+9k 2)y 2+16ky -64k 2=0,则y 1+y 2=-16k 8+9k 2,y 1y 2=-64k 28+9k 2.同理,将y =k (x -1)代入y 2=4x ,得ky 2-4y -4k =0, 则y 3+y 4=4k,y 3y 4=-4,所以|BE |·|GF 2||CD |·|HF 2|=|y 1-y 2||y 3-y 4|·12|y 3+y 4|12|y 1+y 2|=y 1-y 22y 1+y 22·y 3+y 42y 3-y 42=y 1+y 22-4y 1y 2y 1+y 22·y 3+y 42y 3+y 42-4y 3y 4=-16k 28+9k 22+4×64k 28+9k 2-16k 28+9k 22·⎝ ⎛⎭⎪⎫4k 2⎝ ⎛⎭⎪⎫4k 2+16=3为定值.课堂知识运用训练1.设P 是曲线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到x =-1直线的距离之和的最小值为( ).A. 2B. 3C. 5D.6解析 如图,易知抛物线的焦点为F (1,0), 准线是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离; 于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小;显然,连AF 交曲线于P 点.故最小值为22+1,即为 5.答案 C2.椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝ ⎛⎭⎪⎫b 2+c 2有四个交点,其中c为椭圆的半焦距,则椭圆ac的范围为( ). A.55<a c <35 B .0<a c<25 C.25<a c <35 D.35<ac <55 解析 此题的本质是椭圆的两个顶点(a,0)与(0,b )一个在圆外、一个在圆内即:⎩⎪⎨⎪⎧ a 2>⎝ ⎛⎭⎪⎫b 2+c 2b 2<⎝ ⎛⎭⎪⎫b 2+c 2⇒⎩⎪⎨⎪⎧a >b2+c b <b 2+c ⇒⎩⎨⎧a -c2>14a 2-c 2a 2-c 2<2c⇒55<e <35.答案 A 3.设F 是椭圆x 27+y 26=1的右焦点,且椭圆上至少有21个不同的点P i (i =1,2,3,…),使|FP 1|,|FP 2|,|FP 3|,…组成公差为d 的等差数列,则d 的取值范围为________.解析 若公差d >0,则|FP 1|最小,|FP 1|=7-1; 数列中的最大项为7+1,并设为第n 项,则7+1=7-1+(n -1)d ⇒n =2d +1≥21⇒d ≤110,注意到d >0,得0<d ≤110;若d <0,易得-110≤d <0. 那么,d 的取值范围为⎣⎢⎡⎭⎪⎫-110,0∪⎝⎛⎦⎥⎤0,110. 4.过抛物线y 2=2px (p >0)上一定点P (x 0,y 0)(y 0>0)作两直线分别交抛物线于A (x 1,y 1),B (x 2,y 2),当PA 与PB 的斜率存在且倾斜角互补时,则y 1+y 2y 0的值为________.解析 设直线PA 的斜率为k PA ,PB 的斜率为k PB ,由y 21=2px 1,y 20=2px 0,得k PA =y 1-y 0x 1-x 0=2p y 1+y 0,同理k PB =2py 2+y 0, 由于PA 与PB 的斜率存在且倾斜角互补, 因此2p y 1+y 0=-2p y 2+y 0,即y 1+y 2=-2y 0(y 0>0),那么y 1+y 2y 0=-2. 5.椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的左焦点为F ,过F 点的直线l 交椭圆于A ,B 两点,P 为线段AB 的中点,当△PFO 的面积最大时,求直线l 的方程.解 求直线方程,由于F (-c,0)为已知,仅需求斜率k , 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则y 0=y 1+y 22,由于S △PFO =12|OF |·|y 0|=c2|y 0|只需保证|y 0|最大即可,由⎩⎨⎧y =k x +cb 2x 2+a 2y 2=a 2b2⇒(b 2+a 2k 2)y 2-2b 2cky -b 4k 2=0,|y 0|=⎪⎪⎪⎪⎪⎪y 1+y 22=⎪⎪⎪⎪⎪⎪b 2ck b 2+a 2k 2=b 2c b 2|k |+a 2|k |≤bc 2a 得:S △PFO ≤bc 24a ,此时b 2|k |=a 2|k |⇒k =±ba ,故直线方程为:y =±ba(x +c ).6.已知⊙O ′过定点A (0,p )(p >0),圆心O ′在抛物线C :x 2=2py (p >0)上运动,MN 为圆O ′在轴上所截得的弦.(1)当O ′点运动时,|MN |是否有变化?并证明你的结论;(2)当|OA |是|OM |与|ON |的等差中项时,试判断抛物线C 的准线与圆O ′的位置关系,并说明理由.解 (1)设O ′(x 0,y 0),则x 20=2py 0(y 0≥0), 则⊙O ′的半径|O ′A |=x 20+y 0-p2,⊙O ′的方程为(x -x 0)2+(y -y 0)2=x 20+(y 0-p )2, 令y =0,并把x 20=2py 0,代入得x 2-2x 0x +x 20-p 2=0,解得x 1=x 0-p ,x 2=x 0+p ,所以|MN |=|x 1-x 2|=2p , 这说明|MN |是不变化,其为定值2p . (2)不妨设M (x 0-p,0),N (x 0+p,0).由题2|OA |=|OM |+|ON |,得2p =|x 0-p |+|x 0+p |, 所以-p ≤x 0≤p .O ′到抛物线准线y =-p2的距离d =y 0+p 2=x 20+p22p,⊙O ′的半径|O ′A |=x 20+y 0-p 2=x 20+⎝ ⎛⎭⎪⎫x 202p -p 2=12px 40+4p 4. 因为r >d ⇔x 40+4p 4>()x 20+p 22⇔x 20<32p 2,又x 20≤p 2<32p 2(p >0),所以r >d ,即⊙O ′与抛物线的准线总相交.。
圆锥曲线中的最值问题

面积最值问题
总结词
面积最值问题主要研究圆锥曲线与其 内部区域的面积的最小或最大值。
详细描述
求解面积最值问题通常需要利用曲线 的参数方程或极坐标方程,转化为关 于角度或参数的定积分,通过求积分 得到面积表达式,再求最值。
周长最值问题
总结词
周长最值问题主要研究圆锥曲线 上的点的轨迹形成的曲线的周长 的最小或最大值。
圆锥曲线中的最值问
• 引言 • 圆锥曲线中的最值问题类型 • 解决圆锥曲线中最大值最线中的最值问题的实例分析
01
引言
圆锥曲线的定义与性质
圆锥曲线是由平面与圆锥的侧面或顶 点相交形成的几何图形,包括椭圆、 抛物线和双曲线等。
圆锥曲线具有多种性质,如对称性、 焦点、准线等,这些性质在解决最值 问题时具有重要作用。
详细描述
解决周长最值问题通常需要利用 曲线的参数方程,通过求导数找 到曲线的拐点,从而确定周长的 最大或最小值。
角度最值问题
总结词
角度最值问题主要研究圆锥曲线上的点与坐标轴形成的角度 的最小或最大值。
详细描述
解决角度最值问题通常需要利用曲线的极坐标方程,通过求 导数找到曲线的极值点,从而确定角度的最小或最大值。
在实际生活中的应用
航天器轨道设计
在航天领域,卫星和行星的轨道通常呈现为某种圆锥曲线 的形状,通过研究这些轨道的最值问题,可以优化航天器 的发射和运行轨迹。
物流运输
在物流和运输行业中,货物的运输路径通常受到多种因素 的限制,呈现出某种圆锥曲线的轨迹,通过求解最值问题, 可以找到最优的运输路径和最低的成本。
03
解决圆锥曲线中最大值最小值问题的
方法
利用导数求最值
导数可以帮助我们找到函数的极值点 ,通过求导并令导数为零,我们可以 找到可能的极值点。
圆锥曲线中的取值范围最值问题 (1)

圆锥曲线中的最值取值范围问题90.已知12,F F 分别是双曲线2222x ya b-=l (a>0,b>0)的左、右焦点,P 为双曲线上的一点,若 01290F PF ∠=,且21PF F ∆的三边长成等差数列.又一椭圆的中心在原点,短轴的356。
(I )求椭圆的方程;(Ⅱ)设直线l 与椭圆交于A ,B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.90.解:设n PF m PF ==||,||21,不妨P 在第一象限,则由已知得解得15==e e 或(舍去)。
设椭圆离心率为.3655,=''e e 则 .36='∴e可设椭圆的方程为.,12222c b y a x '='+'半焦距为(Ⅱ)①当AB .3||,=⊥AB x 轴时②当AB 与x 轴不垂直时,设直线AB 的方程为),(),,(,2211y x B y x A m kx y +=,由已知,231||2=+k m 得m kx y k m +=+=把),1(4322代入椭圆方程,整理得当且仅当33,1922±==k k k 即时等号成立,此时.2||=AB③当.3||,0==AB k 时综上所述:2||max =AB ,此时AOB ∆面积取最大值.2323||21max =⨯=AB S 85.已知曲线C 的方程为22x y =,F 为焦点。
(1)过曲线上C 一点00(,)P x y (00x ≠)的切线l 与y 轴交于A ,试探究|AF|与|PF|之间的关系;(2)若在(1)的条件下P 点的横坐标02x =,点N 在y 轴上,且|PN|等于点P 到直线210y +=的距离,圆M 能覆盖三角形APN ,当圆M 的面积最小时,求圆M 的方程。
85.74.已知椭圆22122:1(0)x y C a b a b +=>>的长轴长为4,离心率为21,21,F F 分别为其左右焦点.一动圆过点2F ,且与直线1-=x 相切.(Ⅰ) (ⅰ)求椭圆1C 的方程; (ⅱ)求动圆圆心轨迹C 的方程;(Ⅱ) 在曲线C 上有四个不同的点Q P N M ,,,,满足2MF 与2NF 共线,2PF 与2QF 共线,且022=⋅MF PF ,求四边形PMQN 面积的最小值.74.解:(Ⅰ)(ⅰ)由已知可得3122142222=-=⇒⎩⎨⎧==⇒⎪⎩⎪⎨⎧===c a b c a a c e a , 则所求椭圆方程134:221=+y x C . (ⅱ)由已知可得动圆圆心轨迹为抛物线,且抛物线C 的焦点为)0,1(,准线方程为1-=x ,则动圆圆心轨迹方程为x y C 4:2=. (Ⅱ)由题设知直线PQ MN ,的斜率均存在且不为零设直线MN 的斜率为)0(≠k k ,),(),,(2211y x N y x M ,则直线MN 的方程为:)1(-=x k y联立x y C 4:2= 消去y 可得0)42(2222=++-k x k x k 由抛物线定义可知: 同理可得244||k PQ += 又32)12(8)44)(44(21||||212222≥++=++=⋅=kk k k PQ MN S PMQN (当且仅当1±=k 时取到等号)所以四边形PMQN 面积的最小值为32.69.如图,已知直线l :2y kx =-与抛物线C :22(0)x py p =->交于A ,B 两点,O 为坐标原点,(4,12)OA OB +=--。
高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

圆锥曲线与最值问题【知识点分析】方法一、圆锥曲线的的定义转化法借助圆锥曲线定义将最值问题等价转化为易求、易解、易推理证明的问题来处理.(1)椭圆:到两定点的距离之和为常数(大于两定点的距离)(2)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (3)抛物线:到定点与定直线距离相等。
【相似题练习】1.已知抛物线y 2=8x ,点Q 是圆C :x 2+y 2+2x ﹣8y +13=0上任意一点,记抛物线上任意一点到直线x =﹣2的距离为d ,则|PQ |+d 的最小值为( ) A .5 B .4 C .3 D .2 1.已知双曲线C :的右焦点为F ,P 是双曲线C 的左支上一点,M (0,2),则△PFM 周长最小值为 .【知识点分析】 方法二、函数法二次函数2y ax bx c =++顶点坐标为24b ac b ⎛⎫-- ⎪,1.已知F 1,F 2为椭圆C :+=1的左、右焦点,点E 是椭圆C 上的动点,1•2的最大值、最小值分别为( ) A .9,7 B .8,7 C .9,8 D .17,8【知识点分析】方法三、利用最短路径【问题1】“将军饮马”作法图形原理在直线l 上求一点P ,使P A +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短. P A +PB 最小值为A B '.【问题2】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短. PM +MN +PN 的最小值为 线段P 'P ''的长.【问题3】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短. 四边形PQMN 周长的最小值为线段P 'P ''的长.【问题4】 作法图形原理作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交l 于A .点到直线,垂线段最短. P A +AB 的最小值为线段P 'B 的长.l B A lPB'AB l 1l 2Pl 1l 2NMP''P'P l 1l 2N MP'Q'Q P l 1l 2P Q l 1A P'Pl 1l 2P小.【问题5】 作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短. AM +MN +NB 的最小值为线段A 'B '的长.【相似题练习】1.已知双曲线x 2﹣y 2=1的右焦点为F ,右顶点A ,P 为渐近线上一点,则|PA |+|PF |的最小值为( )A .B .C .2D .【知识点分析】方法四、利用圆的性质【相似题练习】1.已知椭圆,圆A :x 2+y 2﹣3x ﹣y +2=0,P ,Q 分別为椭圆C 和圆A 上的点,F (﹣2,0),则|PQ |+|PF |的最小值为( ) A . B . C . D .l 2l 1ABNMl 2l 1M N A'B'AB【知识点分析】 方法五、切线法【相似题练习】1.如图,设椭圆C :+=1(a >b >0)的左右焦点为F 1,F 2,上顶点为A ,点B ,F 2关于F 1对称,且AB⊥AF 2(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知P 是过A ,B ,F 2三点的圆上的点,若△AF 1F 2的面积为,求点P 到直线l :x ﹣y ﹣3=0距离的最大值.【知识点分析】 方法六、参数法1.圆222)()(r b y a x =-+-的参数方程可表示为)(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .2. 椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .3. 抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y px x ⎩⎨⎧==.【相似题练习】已知点A (2,1),点B 为椭圆+y 2=1上的动点,求线段AB 的中点M 到直线l 的距离的最大值.并求此时点B 的坐标.【知识点分析】方法七、基本不等式1、均值不等式定理: 若0a >,0b >,则2a b ab +≥,2、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.【相似题练习】1.抛物线y 2=4x 的焦点为F ,点A 、B 在抛物线上,且∠AFB =,弦AB 的中点M 在准线l 上的射影为M ′,则的最大值为 .方法七、利用三角形的三边关系两边之和大于第三边,两边之差小于第三边。
最新微专题-圆锥曲线中的最值问题(解析版)资料

专题30 圆锥曲线中的最值问题【考情分析】与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。
江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。
圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展【备考策略】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
(4)利用代数基本不等式。
代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】1.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞2. P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为73.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是434.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 .5.已知点M (-2,0),N (2,0),动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W . (Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值. 解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A (x 0,20x 2-),B (x 0,-20x 2-),OAO B ⋅=2当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0依题意可知方程1︒有两个不相等的正数根,设A (x 1,y 1),B (x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--∙--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k |>1, 又OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=2222k 242k 1k 1+=+-->2 综上可知OA OB ⋅的最小值为2【典型示例】求抛物线2y x =-上的点到直线4380x y +-=距离的最小值? 分析一:设抛物线上任一点坐标为P(0x ,-x20),由点到直线的距离公式得P 到直线的距离d(0x )=5|834|200--x x =5320)32(320+-x 34≥,当0x =32时,d(0x )取得最大值34,分析二:设抛物线上点P(0x ,-x 2)到直线4x+3y-8=0距离最小,则过P 且与抛物线相切的直线与4x+3y-8=0平行,故y '( 0x )=-2 0x =-34,∴0x =32,∴P(32,-94), 此时d=5|8943324|--⨯+⨯)(=34,. 分析三:设直线方程为4x+3y+C=0则当l 与抛物线相切时l 与4x+3y-8=0间的距离为所求最小,由⎪⎩⎪⎨⎧=++-=0342C y x y x 得4x-3x 2+C=0,∴△=16+12C=0, ∴c=-34,此时d=345|348|=---)( 【分类解析】例1:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4PA PB +的最小值;(2)求||||PA PB +的最小值和最大值 分析:(1)A 为椭圆的右焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线中的最值问题一、最值问题的技巧 (一) 定义法有些问题先利用圆锥曲线定义或性质给出关系式,再利用几何或代数法求最值,可使题目中数量关系更直观,解法更简捷。
1、利用第一定义(1)PA PF ±的最值(点A 为圆锥曲线C 内异于焦点的一定点)例:已知椭圆2212516x y +=内有一点A (2,1),F 为椭圆的左焦点,P 是椭圆上动点,求PA PF +的最大值与最小值。
解:如图设椭圆的右焦点为F ',可知其坐标为F '(3,0),由椭圆的第一定义得:'10PF PF +=,则10'PA PF PA PF +=+-,可知,当P 为'AF 的延长线与椭圆的交点时,'PA PF -最大,最大值为'AF =P 为'F A 的延长线与椭圆的交点时,'PA PF -最小,最小值为'AF -=PA PF +的最大值为10+小值为10-本题中巧妙地运用定义将和与差进行了转化,将不可求转化为可求,使问题得以解决。
本题中若点A 在曲线C 外呢?若把椭圆变为双曲线呢?注意在这类问题中,“和”与“差”中一个不可求,就用定义转化为另一个。
正确地画出图形,利用平面几何知识,一般都可以解决问题。
例:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求|PA|+|PB|的最小值和最大值。
解:由椭圆的第一定义,设C 为椭圆的左焦点,则|PA|=2a-|PC| ∴|PA|+|PB|=2a-|PC|+|PB|=10+(|PB| -|PC|), 根据三角形中,两边之差小于第三边,当P 运动到与B 、C 成一条直线时,便可取得最大和最小值。
即-|BC|≤|PB| -|PC|≤|BC|。
当P 到P"位置时,|PB| -|PC|=|BC|,|PA|+|PB|有最大值,最大值为10+|BC|=10+当P 到P"位置时,|PB| -|PC|=-|BC|,|PA|+|PB|有最小值,最小值为10-|BC|=10-例:已知12,F F 椭圆2212516x y +=的左右焦点,A (2,1),在椭圆上求一点M ,使1)1MF MA +最小,并求最小值; 2)1MF MA -最大,并求最大值; 3)1MF MA -最小,并求最小值。
(2)PA PF ±的最值(点A 为圆锥曲线C 外的一定点)例:已知12,F F 椭圆2212516x y +=的左右焦点,A (2,6),在椭圆上求一点M ,使1)1MF MA +最小,并求最小值; 2)1MF MA -最大,并求最大值; 3)1MF MA -最小,并求最小值。
(3)PA PF ±的最值(结合基本不等式)例:椭圆192522=+y x 上一点P 到两个焦点距离之积为m ,求m 的最大值,并求出当m 取得最大值时P 点的坐标。
分析:此题求P 点到两焦点之积,由不等式性质和椭圆第一定义,可转化为两距离之和来求解。
解:设椭圆192522=+y x 的左右焦点分别为1F 、2F , 1021=+PF PF ,21212252PF PF m PF PF +⎡⎤=≤=⎢⎥⎣⎦,当且仅当21PF PF =时取等号,此时点P 为短轴的端点。
所以P 的坐标为(0,3)或(0,-3)时,m 的最大值为25。
当圆锥曲线中的最值问题涉及到圆锥曲线的焦点时,可以考虑应用圆锥曲线的定义解题。
此题是动点到两焦点距离之积,从而联系了第一定义:动点到两定点距离之和等于定值2a 。
再结合不等式性质,把目标函数转化为容易求解的函数,从而问题得解。
例:已知双曲线191622=-y x 内有一点()2,6B ,1F 、2F 分别为双曲线左右焦点,P 是双曲线右支上的动点,求PB PF +2的最小值。
分析:目标函数为PB PF +2,从一般方法来解比较困难,则我们可以从定义入 手,利用曲线第一定义,把2PF 转化为81-PF ,而1PF PB +为平面内三点距离 之和,当B ,P ,1F 点共线时有最小值。
解:如图2,由题意得)0,5(1-F 、()0,52F ,有双曲线的第一定义得 821=-PF PF 所以 PB PF +2=812-=PF PF ,当p 点在如图2位置时有最小值,当P 点在如图2位置时有最小值,即552)56(2211=++=≥+BF PB PF ,所以PB PF +2的最小值为855-。
此题巧用双曲线的第一定义把 2PF 转化为81-PF ,再结合平面几何知识进行分析,从而问题得解。
∴由双曲线的第二定义有35||||==e MN MF ,即||53||MF MN +,∴||53||MF MA +=||||||AB MN MA ≥+, 当且仅当M 为AB 与双曲线右支的交点时,||53||MF MA +取得最小值. 点M 的坐标为22(,),最小值为53659992=-=-c a 。
(2)PA ed +的最值(其中,点A 为曲线CP 是曲线C 上的一个动点,l 是曲线C 的一条准线,C 的离心率。
)例:设P 是24y x =上的一个动点。
1)求点P 到点()1,1A -的距离与点P 到直线:1l x =-的距离d 之和的最小值。
2)若()3,2B ,求PB PF +的最小值。
解:1)如图3,PA d PA PF AF +=+≥= (当A 、 P 、F 三点共线时取等号)2)为第一类“1PA PF e+的最小值”问题,这里如图4,4PB PF PB PQ BQ +=+≥=(当P 为过点B 的l ●题中ed PF =,将所求折线转化为直线,结合图形利用平面几何知识很容易解决问题。
例:已知抛物线x y 42= ,定点A(3,1),F 是抛物线的焦点 ,在抛物线上求一点 P ,使|AP|+|PF|取最小值 ,并求出最小值。
【解析】由点A 引准线的垂线,垂足Q ,则 |AP|+|PF|=|AP|+|PQ|,即为最小值.由⎩⎨⎧==142y xy ,得P(41, 1)为所求的P 点。
若另取一点P ' , 显然.|||||||||||PQ AP Q P P A F P P A +>''+'='+'(3)曲线上定长动弦的中点到准线距离的最值例: 定长为22b d d a ⎛⎫≥ ⎪⎝⎭的线段AB 的两个端点分别在椭圆()222210x y a b a b +=>>上移动,求AB 的中点M 到椭圆右准线l 的最短距离。
解:设F 为椭圆的右焦点,如图,作'AA l ⊥于'A ,'BB l ⊥于'B , 'MM l ⊥于'M ,则''1'22AA BB AFBF MM e e +⎛⎫==+ ⎪⎝⎭()1222AB dAF BF e e e=+≥=(当且仅当AB 过焦点F 时等号成立)。
故M 到椭圆右准线的最短距离为2de。
注:22b a 是椭圆的通径长,是椭圆焦点弦长的最小值,22b d a≥是AB 能过焦点的充要条件。
(4)一般地,我们称离心率215-=e 的椭圆为“黄金椭圆” 例:已知椭圆)0(1:2222>>=+b a by a x E 的一个焦点为00F(c,)(c )>,P ,Q 为椭圆E图上的任意两点,M 为线段PQ 的中点,O 为坐标原点。
(1)试证:若a ,b ,c 不是等比数列,则椭圆E 一定不是“黄金椭圆”; (2)设E 为黄金椭圆,问:是否存在过点F 、P 的直线l ,使l 与y 轴的交点R 满足2-=?若存在,求直线l 的斜率k ;若不存在,请说明理由;(3)设E 为黄金椭圆,若直线PQ 和OM 的斜率分别为PQ k 和OM k ,证明PQ k ·OM k 为定值;(4)已知椭圆E 的短轴长是2,点)2,0(••S ,求使2取最大值时P 点的坐标。
解析:(1)假设E 为“黄金椭圆”,则215-==ace ,即a c 215-=,∴ac a c a b =-=-=2222215,∴a ,b ,c 成等比数列,这与已知条件a ,b ,c 不是等比数列相矛盾. 故原命题成立。
(2)依题意,设直线l 的方程为)(c x k y -=,令x =0有kc y -=,即点R 的坐标为0(,kc )-,∵2RP PF =-uu r uu u r ,∴点P 的坐标为2(c,kc ),∵点P 在椭圆上,∴1422222=+b c k a c ,∵ac b =2,∴1422=+e k e 。
故04122<-=ee k ,与02≥k 矛盾,∴满足题意直线不存在。
(3)设112200P(x ,y ),Q(x ,y ),M(x ,y ),则012012OM PQ y y y k ,k x x x -==-,因为M 为线段PQ 的中点,故12012022x x x ,y y y +=+=. 因为P ,Q 在椭圆上,所以22222211b x a y a b +=L L ①22222222b x a y a b +=L L ②①-②得 0)(2)(221022102=-+-y y y a x x x b . ∴251222212100-=-=-=-=--∙=∙e aac a b x x y y x y k k PQOM (定值)。
(4)依题意有12=b ,由点11P(x ,y )在E 上知 )1(21221y a x -=∴)4(4)1()2(||21212212122++--=-+==a y y a y x SP SP 222122241411(a )y (a )a a ⎛⎫=--++- ⎪--⎝⎭。
∵1>a ,∴.012•a <- 又111≤≤-y ,则①当31≤<a 时,1122-≤-a ,∴2SP uu r 是[-1,1]上的减函数, 故当11-=y 时,2SP uu r 取得最大值,此时点P 的坐标为(0,-1),②当3>a 时,01212<-<-a ,故当2112ay -=时,2取得最大值。
此时点P 的坐标为221,a ⎛⎫ ⎪-⎝⎭。
(二)数形结合法将圆锥曲线问题转化为平面几何问题,再利用平面几何知识,如对称点、三角形三边关系、平行间距离等求解。
例: 在直线l :04=-+y x 上任取一点M ,经过点M 且以椭圆1121622=+y x 的焦点21F F 、为焦点作椭圆,问点M 在何处时,所作椭圆长轴最短,并求此椭圆方程。
【解析】设'1F 是1F 关于l 对称点 , 可求出'1F 坐标 ,过21F F '的直线方程与x-y+9=0联立得交点M 为所求。