一元一次方程的解法5
一元一次方程组的解法步骤

一元一次方程组的解法步骤
简介
一元一次方程组是初等代数中的基础概念之一,它表示由若干个一元一次方程组成的方程组。
在数学中,解一元一次方程组是一个常见的问题,解题的基本思路是利用方程组中的等式关系逐步求解出未知数的值。
解法步骤
解一元一次方程组的一般步骤如下:
步骤一:列方程
首先,根据题目设定,将问题转化为一个或多个一元一次方程。
假设方程组中有n个未知数,那么我们就需要列出n个一元一次方程。
步骤二:消元
接下来,利用消元法将方程组化为最简形式。
消元的过程中,可以通过加减消元、乘除消元等方法,将方程组简化为某一未知数的等式,然后依次将其他未知数的值代入,得到解。
步骤三:求解
通过消元的过程,我们已经得到了方程组中的一个未知数的值,接着我们可以依次求解其他未知数的值。
通过代入法或者继续消元的方法,逐步求解出所有未知数的值。
步骤四:检验
最后,确定所有未知数的值后,我们需要进行检验,将求得的解代入原方程组中,验证是否满足所有原方程。
如果所有原方程都成立,则得到的解是正确的。
总结
解一元一次方程组是代数学习中的基础技能,掌握解题方法有助于提高解题效率,加深对代数知识的理解。
通过逐步列方程、消元、求解和检验步骤,我们可以有效地解决一元一次方程组的问题。
不断练习和积累经验,将能够更加熟练地解决类似类型的数学问题。
浙教版数学七年级上册5.3《一元一次方程的解法》教学设计

浙教版数学七年级上册5.3《一元一次方程的解法》教学设计一. 教材分析《一元一次方程的解法》是浙教版数学七年级上册第五章第三节的内容。
这部分内容是在学生已经掌握了代数式的基本知识和一元一次方程的概念的基础上进行讲解的。
一元一次方程是数学中重要的基础内容,它不仅在初中数学中占有重要地位,而且在高中甚至大学的数学学习中也有着广泛的应用。
因此,这部分内容的教学设计既要让学生掌握一元一次方程的解法,又要培养学生解决实际问题的能力。
二. 学情分析学生在学习这部分内容之前,已经掌握了代数式的基本知识和一元一次方程的概念,但他们对一元一次方程的解法还比较陌生。
因此,在教学设计中,我们需要让学生通过实际操作和思考,逐步理解和掌握一元一次方程的解法。
同时,学生对数学知识的掌握程度和解决问题的能力参差不齐,因此在教学过程中,我们需要关注每一个学生的学习情况,尽量让每一个学生都能跟上教学进度。
三. 教学目标1.知识与技能目标:让学生掌握一元一次方程的解法,能够熟练地解一元一次方程。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生解决实际问题的能力。
3.情感态度与价值观目标:让学生体验数学学习的乐趣,增强学生对数学学习的自信心。
四. 教学重难点1.教学重点:一元一次方程的解法。
2.教学难点:理解一元一次方程的解法的原理,能够灵活运用解法解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和合作学习法。
通过设置问题,引导学生自主探究和合作交流,让学生在实际问题中感受和理解一元一次方程的解法。
六. 教学准备1.教师准备:准备好相关的教学案例和实际问题,制作好PPT。
2.学生准备:预习相关的内容,了解一元一次方程的概念。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入一元一次方程的解法。
2.呈现(10分钟)讲解一元一次方程的解法,通过PPT展示解题过程。
3.操练(10分钟)让学生独立解几个一元一次方程,教师巡回指导。
一元一次方程的解法

合并同类项
1. 在移项后,如果方程中存在 同类项,则需要将它们合并起来
。
2. 合并同类项时,只需要将同 类项的系数相加,保留共同的字
母部分。
3. 通过合并同类项,可以进一 步简化方程的形式,从而更方便
地求解未知数。
03
一元一次方程的解法分类
一元一次方程的解法分类
• 一元一次方程是数学中的基础知识,解法多种多 样。下面将介绍三种常用的解法:整除法、分数 法和公式法。
2. 练习题: 解方程 2(3x - 4) = 5(x + 2)
1. 练习题: 解方程 5x - 3 = 2x + 9
答案: 通过移项和合并同类项,得到3x = 12,所以 x = 4。
THANKS
感谢观看
3. 注意,在去分母的过程中,方程两边必须同时乘以分母的倒数,以保持方程的平 衡。
移项
1. 在去掉分母后,将方程中的一项移 到等号的另一侧,使其与另一项分离。
2. 移项时,需要保持等式的平衡。即 ,如果移项时乘以或除以一个数,则需 要同时对该项和等号另一侧的常数项进
行相同的操作。
3. 通过移项,可以将方程转化为形如 `ax = b`的形式,其中`a`和`b`是整数。
04
一元一次方程的应用举例
一元一次方程的应用举例
• 一元一次方程是数学中的基础知识,掌握其解法对于解决各种 问题具有重要意义。以下是针对一元一次方程的应用举例。
05
一元一次方程的解法拓展
一元一次方程的解法拓展
• 一元一次方程是数学中的基础知识,它在实际生活和高级数学中都有着广泛的应用。以下是一元一次方程及其相关内容的 拓展。
06
总结与练习
一元一次方程解法的总结
(完整版)一元一次方程及其解法

一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x=3,3(x+2)=4-x等都是一元一次方程.解技巧正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根.②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,假设方程左、右两边的值相等,那么它是方程的解.如x=3是方程2x-4=2的解,而y=3就不是方程2x-4=2的解.(3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】以下各式哪些是一元一次方程( ).11=1;-1=2;-5=1;x2+2x+1A.S=2ab;B.x-y=0;=0;D.2 x+3=0;+2.解析:E中不含未知数,所以不是一元一次方程;G中未知数的次数是2,所以不是一元一次方程;A与B中含有的未知数不是一个,也不是一元一次方程;H虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D中分母中含有未知数,不是一元一次方程;只有C,F符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】x =-3是以下方程A .-5(x -1)=-4(x -2) ()的解.B .4x +2=11C .3x +5=5D .-3x -1=0解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的根本性质 (1)等式的根本性质①性质1:等式的两边都加上 (或减去)同一个数或同一个整式,所得结果仍是等式. 用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c.②性质2:等式的两边都乘以 (或除以)同一个数(除数不能是零),所得结果仍是等式. 用式子形式表示为: 如果a =b ,那么ac =bc ,a =b(c ≠0).c c③性质3:如果a =b ,那么b =a.(对称性) 如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c.(传递性) 如:假设∠1=60°,∠2=∠1,那么∠2=60°.(2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换.谈重点 应用不等式的性质的考前须知(1)应用等式的根本性质 1时,一定要注意等式两边同时加上 (或减去)同一个数或同一个 整式,才能保证所得结果仍是等式. 这里特别要注意: “同时〞和“同一个〞,否那么就会破坏相等关系.(2)等式的根本性质2 中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以 0,因为0 不能作除数或分母.【例2-1】以下运用等式的性质对等式进行的变形中,正确的选项是().5A .假设4y +2=3y -1,那么y =1B .假设7a =5,那么a=7C .假设x=0,那么x =2D .假设x-1=1,那么x -6=12 6解析:首先观察等式的左边是如何由上一步变形得到的, 确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的根本性质1,等式的两边都减去 3y +2,左边是y ,右边是-3,不是 1;C 根据等式的根本性质2,两边都乘以 2,右边应为 0,不是 2;D 根据等式的根本性质 2,左边乘以6,而右边漏乘 6,故不正确;只有B 根据等式的根本性质2,两边都除以7,得5 到a =7.答案:B【例2-2】利用等式的根本性质解方程:(1)5x-8=12;(2)4x-2=2x;(3)x+1=6;(4)3-x=7.分析:利用等式的根本性质求解.先利用等式的根本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的根本性质2将未知数的系数化为 1.解:(1)方程的两边同时加上8,得5x=20.方程的两边同时除以5,得x=4.(2)方程的两边同时减去2x,得2x-2=0.方程的两边同时加上2,得2x=2.方程的两边同时除以2,得x=1.(3)方程两边都同时减去1,得x+1-1=6-1,∴x=6-1.x=5.(4)方程两边都加上x,得3-x+x=7+x,3=7+x,方程两边都减去7,得3-7=7+x-7,∴-4=x,即x=-4.3.解一元一次方程(1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的根本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边.③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,- 2-3x=7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-〞,移到右边后需变成“+〞,在移动的过程中同时变号,没有移动的项那么不变号.所以由移项,得-3x=7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x=1,把3从方程的左边移到右边要变号,得5x=1-3,是属于移项;而把5x-15x+11x=11变成5x+11x-15x=11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区移项时应注意的问题在移项时注意“两变〞:一变性质符号,即“+〞号变为“-〞号,而“-〞号变为“+〞号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为 1.具体见下表:变形名称具体做法变形依据考前须知方程左右两边的每一项不能有漏乘不含分母的项;分子是多项式去分母都乘以各分母的最小公等式的根本性质2倍数的去掉分母后,要加小括号不要漏乘括号内的去括号可由小到大,或由大到分配律;去括号的项;括号前是“-〞小去括号法那么号的,去括号时括号内的所有项都要变号移项就是将方程中的某移项些项改变符号后,从方等式的根本性质1移项要变号程的一边移到另一边将方程化为ax=b的最合并同类项的法那么只将系数相加,字母合并同类项及其指数不变简形式方程的左右两边同时除化系数为1以未知数系数或乘以未等式的根本性质2分子、分母不能颠倒知数系数的倒数解技巧巧解一元一次方程值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了防止错误,可将解出的结果代入原方程进行检验.【例3-1】以下各选项中的变形属于移项的是A.由2x=4,得x=2B.由7x+3=x+5,得7x+3=5+xC.由8-x=x-5,得-x-x=-5-8D.由x+9=3x-1,得3x-1=x+9解析:选项A是把x的系数化成1的变形;选项().B中x+5变成5+x是应用加法交换律,只是把位置变换了一下;选项C是作的移项变形;选项D是应用等式的对称性“a=b,那么b=a〞所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】解方程2-x-5=x-1 34.分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x)-60=3(x-1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12,得4(2-x)-60=3(x-1).去括号,得8-4x-60=3x-3.移项,得-4x-3x=-3-8+60.合并同类项,得-7x=49.两边同除以-7,得x=-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的根底.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x=a(a是一个数).复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中假设含有相同的代数式,可以把此代数式看作一个整体来运算;方程中假设含有小数或百分数,就要根据分数的根本性质,把小数或百分数化为整数再去分母运算.要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】解方程-9x-5=+-.2-9+分析:由于和的分子、分母中含有小数,可利用分数的根本性质把-910,变为4x-90+小数化为整数,在式子的分子、分母中都乘以5,在式子的分子、分母中都乘以100,变为3+2x3,然后去分母,再按解一元一次方程的步骤求解.解:分母整数化,得4x-90x-53+2x5-2=3.去分母,得6(4x-90)-15(x-5)=10(3+2x).去括号,得24x-540-15x+75=30+20x.移项,得24x-15x-20x=540-75+30.合并同类项,得11x=495.两边同除以-11,得x =-45. 5.与一元一次方程的解相关的问题方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)方程的解求字母系数:假设方程的解,将方程的解代入方程,一定使其成立,那么得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】关于x 的方程3x +5=0与3x +3k =1的解相同,那么 k =(). 4 4A .-2B .3C .2D .- 35解析:解方程3x +5=0,得x =-.35将x =-3代入方程3x +3k =1,得-5+3k =1,解得k =2,故应选 C.答案:C【例5-2】假设关于x 的方程(m -6)x =m -4的解为x =2,那么m =__________.解析:把x =2代入方程(m -6)x =m -4,得(m -6)×2=m -4,解得m =8.答案:86.一元一次方程的常用解题策略我们已经知道,解一元一次方程一般有五个步骤, 去分母,去括号,移项,合并同类项,化未知数的系数为 1,可有些一元一次方程,假设能根据其结构特征,灵活运用运算性质与解题技巧,那么不但可以提高解题速度与准确性, 而且还可以使解题过程简捷明快, 下面介绍解一元一次方程常用的几种技巧.有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法.(2)对于一些含有分母的一元一次方程,假设硬套解题的一般步骤,先去分母那么复杂繁琐,假设根据方程的结构特点,先移项、合并同类项,那么使运算显得简捷明快.有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣. 【例6-1】解方程 34 1 1 -4 =3x +1. x - 443 2 2 3 4 3 3 4 1 1 3分析:注意到4×3=1,把4乘以中括号的每一项,那么可先去中括号,4×3 2x - 4-4×4=3x +1,再去小括号为 1x - 1-3=3x +1,再按步骤解方程就非常简捷了.2 2 4 2解:去括号,得1 1 32x -4-3=2x +1.17移项,合并同类项,得-x = 4.17两边同除以-1,得x =-4.【例6-2】解方程x +3-x +2=x +1-x +47 5 6 4.分析:此题可按照解方程的一般步骤求解,但此题假设直接去分母,那么两边乘以最小公倍420,运算量大容易出错,我们可两边分别通分,5x +3-7x +22x +1-3x +4数 35=12,把分子整理后再按照解一元一次方程的步骤求解.5x+3-7x+22x+1-3x+4.化简,得-2x+1解:方程两边分别通分,得=1235=35-x-10.12去分母,得12(-2x+1)=35(-x-10).去括号,得-24x+12=-35x-350.移项、合并同类项,得11x=-362.362两边同除以11,得x=-11.7.列一元一次方程解题(1)利用方程的解求未知系数的值当方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点列一元一次方程注意挖掘隐含条件许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可开掘隐含的条件,列一元一次方程解题,开掘隐含条件时需要全面、深刻地理解掌握数学根底知识.【例7-1】(1)当a=__________时,式子2a+1与2-a互为相反数.(2)假设6的倒数等于x+2,那么x的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a+1+(2-a)=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x+2)=1,解11得x=-6.11答案:(1)-3(2)-6【例7-2】x=-2是方程x-k+3k+2-x=x+k的解,求k的值.362分析:把x=-2代入原方程,原方程就变成了以k为未知数的新方程,解含有未知数k的方程,可以求出k的值.解:把x=-2代入原方程,得-2-k3k+2-(-2)=-2+k3+62.去分母,得2(-2-k)+3k+2-(-2)×6=3(-2+k).去括号,得4-2k+3k+2+12=-6+3k.移项、合并同类项,得2k=-16.方程两边同除以-2,得k=8.课后作业黑体小四【题01】以下变形中,不正确的选项是〔〕A.假设x25x,那么x5.B.假设7x7,那么x1.C.假设x1x,那么10x1x.D.假设xy,那么ax ay.2a a【题02】以下各式不是方程的是〔〕A.y2y 4B.m2nC.p22pq q2D.x0【题03】解为x2的方程是〔〕A.2x40B.5x362C.3(x2)(x3)5x D.x27x5462n23(n4)0是一元一次方程,求n的值.【题04】假设关于x的方程2x【题05】(2m3)x 2.(23m)x1是关于x的一元一次方程,那么m【题06】假设关于x的方程(2 |m|)x2(m 2)x (5 2m) 0是一元一次方程,求m的解.【题07】假设关于x的方程(k2)x k1.5k0是一元一次方程,那么k=【题08】假设关于x的方程(k2)x k15k0是一元一次方程,那么k=.假设关于x 的方程(k2)x24kx5k0是一元一次方程,那么方程的解x=.【题09】(3a8b)x25bx7a0是关于x的一元一次方程,且该方程有惟一解,那么x 〔〕A.21B.214040C.56D.561515【题10】解方程:1(33x) 52【题11】解方程:1 (4y) 3【题12】解方程:x x123(25x)3641(y3)42x233【题13】解方程:2x15x11 36【题14】解方程:1x 10.2x)1x31 (x4)【题15】解方程:35x19【题16】解方程:x 【题17】解方程:x14213【题18】解方程:2[x(x)]x3324【题19】解方程:1[1(1x1)6]20 343。
一元一次方程 的解法(提高)__一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解责编:康红梅【学习目标】1.熟悉解一元一次方程的一般步骤,理解每步变形的依据;2.掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3.进一步熟练掌握在列方程时确定等量关系的方法.【要点梳理】要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(1)移项要变号(2)不要丢项合并同类项把方程化成ax =b (a ≠0)的形式字母及其指数不变系数化成1在方程两边都除以未知数的系数a ,得到方程的解.b x a=不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为的形式,再分类讨论:ax b c +=(1)当时,无解;(2)当时,原方程化为:;(3)当时,原0c <0c =0ax b +=0c >方程可化为:或.ax b c +=ax b c +=-2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论:(1)当a ≠0时,;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0bx a=时,方程无解.【典型例题】类型一、解较简单的一元一次方程1.(2014秋•新洲区期末)关于x 的方程2x ﹣4=3m 和x+2=m 有相同的解,则m 的值是( )A.10 B.-8 C.-10 D.8【答案】B .【解析】解:由2x ﹣4=3m 得:x=;由x+2=m 得:x=m ﹣2由题意知=m ﹣2解之得:m=﹣8.【总结升华】根据题目给出的条件,列出方程组,便可求出未知数.举一反三:【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正? 3x+2=7x+5解:移项得3x+7x =2+5,合并得10x =7.,系数化为1得.710x =【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x 移到方程左边应变为-7x ,方程左边的2移到方程右边应变为-2.正确解法:解:移项得3x -7x =5-2, 合并得-4x =3,系数化为1得.34x =-类型二、去括号解一元一次方程2. 解方程:.112[(1)](1)223x x x --=-【答案与解析】解法1:先去小括号得:.11122[]22233x x x -+=- 再去中括号得:.1112224433x x x -+=-移项,合并得:.5111212x -=- 系数化为1,得:.115x =解法2:两边均乘以2,去中括号得:.14(1)(1)23x x x --=- 去小括号,并移项合并得:,解得:.51166x -=-115x =解法3:原方程可化为: .112[(1)1(1)](1)223x x x -+--=-去中括号,得.1112(1)(1)(1)2243x x x -+--=- 移项、合并,得.51(1)122x --=- 解得.115x =【总结升华】解含有括号的一元一次方程时,一般方法是由内到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x -1),因此将方程左边括号内的一项x 变为(x -1)后,把(x -1)视为一个整体运算.3.解方程:.1111111102222x ⎧⎫⎡⎤⎛⎫----=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭【答案与解析】解法1:(层层去括号)去小括号.111111102242x ⎧⎫⎡⎤----=⎨⎬⎢⎥⎣⎦⎩⎭去中括号.11111102842x ⎧⎫----=⎨⎬⎩⎭去大括号.11111016842x ----= 移项、合并同类项,得,系数化为1,得x =30.115168x =解法2:(层层去分母)移项,得.111111112222x ⎧⎫⎡⎤⎛⎫---=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭两边都乘2,得.1111112222x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦移项,得.111113222x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦ 两边都乘2,得.1111622x ⎛⎫--= ⎪⎝⎭移项,得,两边都乘2,得.111722x ⎛⎫-= ⎪⎝⎭11142x -=移项,得,系数化为1,得x =30.1152x =【总结升华】此题既可以按去括号的思路做,也可以按去分母的思路做.举一反三:【变式】解方程.111116412345x ⎧⎫⎡⎤⎛⎫--+=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭【答案】解:方程两边同乘2,得.1111642345x ⎡⎤⎛⎫--+= ⎪⎢⎥⎝⎭⎣⎦移项、合并同类项,得.111162345x ⎡⎤⎛⎫--=- ⎪⎢⎥⎝⎭⎣⎦两边同乘以3,得.1116645x ⎛⎫--=- ⎪⎝⎭移项、合并同类项,得.111045x ⎛⎫-= ⎪⎝⎭两边同乘以4,得.1105x -=移项,得,系数化为1,得x =5.115x =类型三、解含分母的一元一次方程【高清课堂:一元一次方程的解法388407解较复杂的一元一次方程】4.解方程:.4 1.550.8 1.20.50.20.1x x x----=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】解法1:将分母化为整数得:.40155081210521x x x----=约分,得:8x -3-25x+4=12-10x .移项,合并得:.117x =-解法2:方程两边同乘以1,去分母得: 8x -3-25x+4=12-10x .移项,合并得:.117x =-【总结升华】解此题一般是先将分母变为整数,再去分母,如解法1;但有时直接去分母更简便一些,如解法2.举一反三:【变式】解方程.0.40.90.30.210.50.3y y++-=【答案】解:原方程可化为.4932153y y++-= 去分母,得3(4y+9)-5(3+2y )=15.去括号,得12y+27-15-10y =15.移项、合并同类项,得2y =3.系数化为1,得.32y =类型四、解含绝对值的方程5.解方程:3|2x |-2=0 .【思路点拨】将绝对值里面的式子看作整体,先求出整体的值,再求x 的值.【答案与解析】解:原方程可化为: .223x =当x ≥0时,得,解得:,223x =13x = 当x <0时,得,解得:,223x -=13x =-所以原方程的解是x =或x =.1313-【总结升华】此类问题一般先把方程化为的形式,再根据()的正负分ax b c +=ax b +类讨论,注意不要漏解.举一反三:【变式】(2014秋•故城县期末)已知关于x 的方程mx+2=2(m ﹣x )的解满足方程|x ﹣|=0,则m 的值为( )A.B. 2C.D.3【答案】B解:∵|x ﹣|=0,∴x=,把x 代入方程mx+2=2(m ﹣x )得:m+2=2(m ﹣),解之得:m=2.类型五、解含字母系数的方程6. 解关于的方程: x 1mx nx -=【答案与解析】解:原方程可化为:()1m n x -=当,即时,方程有唯一解为:;0m n -≠m n ≠1x m n=-当,即时,方程无解.0m n -=m n =【总结升华】解含字母系数的方程时,先化为最简形式,再根据系数是否为零ax b =x a 进行分类讨论.【高清课堂:一元一次方程的解法388407解含字母系数的方程】举一反三:【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.【答案】解:∵原方程有解,∴ 40k -≠原方程的解为:为正整数,∴应为6的正约数,即可为:1,2,3,64x k =-4k -4k -6∴为:5,6,7,10k 答:自然数k 的值为:5,6,7,10.。
典型一元一次方程的解法详细讲解

解方程
6 2 x 4) ( x 7) 解:去分母得: 6 - (
去括号得: 6 - 12 x 24 x 7 移项得 : - 12 x x 7 6 24 合并同类项得: -11x=-23
2x 4 x7 1 3 6
左边都是含x的同类项,则要进行合并,只要把它们的系数进行相加就行, 依据是乘法分配律ba+ca=(b+c)a。右边都是常数项进行合并:
- 12x x 7 6 24 合并同类项:(- 12 1)x 23 化简得: - 11x 23
解方程
6 2 x 4) ( x 7) 解:去分母得: 6 - (
去括号得: 6 - 12 x 24 x 7 移项得 : - 12 x x 7 6 24 合并同类项得: -11x=-23
一元一次方程的解法
一元一次方程的解法,以一个例题来 说明:
2x 4 x7 1 3 6
解方程
6 2 x 4) ( x 7) 解:去分母得: 6 - (
2x 4 x7 1 3 6
方程两边都含有分母(分别是3,6)且他们的最小公倍数是6。要把分母 给去掉,则要在两边同时乘以6(等式的性质2) 即
含有括号则要去括号,根据乘法分配律 a(b+c)=ab+ac 即:
6 -( 6 2 x 4) ( x 7) 化简得: 6 - 12x 24 x 7
解方程
6 2 x 4) ( x 7) 解:去分母得: 6 - (
去括号得: 6 - 12 x 24 x 7 移项得 : - 12 x x 7 6 24 等号两边都含有x项及常数项,则把含有x的项移到一边,常数项移到另外一边。移 项一定要记得变号:
解一元一次方程的基本步骤

解一元一次方程的基本步骤能够使一个一元一次方程左、右两边的值相等的未知数的值,叫做这个一元一次方程的解。
一元一次方程的解是求未知数的解一般解法:1.去分母:在方程两边都乘以各分母的最小公倍数不含分母的项也要乘;2.去括号:先去小括号,再去中括号,最后去大括号;记住如括号外有减号的话一定要变号3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号4.合并同类项:把方程化成ax=ba≠0的形式;5.系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程.方程的同解原理:⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程.⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程只含有一个未知数、未知数的最高次数为1的等式叫做一元一次方程linear equation in one unknown;使方程左右两边的值相等的未知数的值,叫做方程的解solution基本信息标准形式一元一次方程的标准形式即所有一元一次方程经整理都能得到的形式是ax=b 。
其中是未知数的系数,是常数,是未知数。
未知数一般常设为 , , 。
方程特点1该方程为整式方程。
2该方程有且只含有一个未知数。
3该方程中未知数的最高次数是1。
满足以上三点的方程,就是一元一次方程。
判断方法要判断一个方程是否为一元一次方程,先看它是否为整式方程。
若是,再对它进行整理。
如果能整理为的形式,则这个方程就为一元一次方程。
里面要有等号,且分母里不含未知数。
变形公式,为常数,为未知数,且求根公式一元一次方程的标准形式:ax+b=0 a≠0其求根公式为:x=-b/a一元一次方程只有一个根通常解法去分母→去括号→移项→合并同类项→未知项系数化为1即化为x=a的形式两种类型1总量等于各分量之和。
将未知数放在等号左边,常数放在右边。
如:。
2等式两边都含未知数。
几种类型的一元一次方程的解法

几种类型的一元一次方程的解法一、含字母系数的一元一次方程例1、解下列关于的方程:()()()(0)cx b c x a b x b a x a c --=---+≠.例2、解关于x 的方程:. 同步练习:1、解关于x 的方程.2 解关于x 的方程()()m x n x m -=-413 二、一元一次方程的整数解1、若方程139125325+=-x m x 有一个正整数解,则m 取的最小正数是多少?并求出相应的解 2、 已知关于x 的方程:17834-=-x m x ,当m 为某些负整数时,方程的解为负整数,试求负整数m 的最大值。
三、含绝对值的方程的解法解含有绝对值符号的一元一次方程的基本思路就是去掉绝对值符号.转化为一般方程来求解.常用的转化方法有以下几种:(一)、对于最简绝对值方程,依据绝对值的定义,去掉绝对值符号,化为两个一元一次方程分别解之,即:若||x a = ,则x a =± .例1、已知|31|2x -=,则x =( ).例2.若||,x a =则||x a -=( ).例3.若|20002000|202000x +=⨯.则x 等于( ).同步练习:1、解方程:4213)1(=-x (2)、|5|25x x -+=- 3213)3(+=-x x 3、已知关于x 的方程22()mx m x +=-的解满足1||102x --=,则x 的值是( ).4、方程|56|65x x +=-的解是_________.5、方程 |x|=ax+1有一负根而无正根, 则a 的取值范围是_________.(二)、对于含有双重或多重绝对值符号的较复杂的绝对值方程,可用零点分段法分类讨论转化为最简绝对值方程来解.例1.解方程|3||1|1x x x +--=+同步练习:1.若0a <,则200011||a a +等于_________.2.方程|1||99||2|1992x x x +++++=共有( )个解.(三)、对于某些特殊的绝对值方程,还可借助数轴用绝对值的几何意义求解.2371022331-1x x x x x ---=+-例1、适合|27||21|8a a ++-=的整数的值的个数有_________.例2、若0,0a b ><则使||||x a x b a b -+-=-成立的的取值范围是_______.同步练习:1、适合关系式|34||32|6x x -++=的整数的值是_____.(A )0 (B )1 (C )2 (D )大于2的自然数2、解方程|1||5|4x x -+-=:. 四、特殊方程1、方程2001200220013221=⨯++⨯+⨯x x x 的解是_________. 2、方程⎪⎭⎫ ⎝⎛≠++=--+--+--01113c b a c b a x b a c x a c b x 其中的解为 五、不定方程不定方程(组)是指未知数的个数多于方程个数的方程(组)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程的解法(二)——去括号与去分母(第3课时)
导学案设计
科目:七年级数学 主备人: 舒万宝 执教人: 课 题
一元一次方程的解法(二)——去括号与去分母(第3课时)
目 标
1、会用等式性质2解含分母的一元一次方程;
2、利用比例性质解含分母方程。
重 点 去分母解方程
难 点
去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。
教 / 学 程 序
互动学习 个人增减
一、求下列个数的最小公倍数:
(1)2、3、4 (2)3、6、8 (3)3、4、18
二、利用等式性质解含分母的方程
等式性质2: 。
因为方程:就是含有未知数的等式,所以,对于方程也有:在方程两边同时 一个数,结果仍是方程。
1、在方程:123x =的两边乘以6,即:1
6623x ⨯=⨯,得到不含分母的方程:32x =
2、 在方程:11
23x +=的两边乘以6,即: ,得到了一个不含分母的方程:3(1)2x +=。
我们发现:式子(1)
2
x +中多了一对括号。
3、在方程:11
123
x x ++=-的两边乘以6,即: ,得到了一个不含分母的方程: 。
我们发现:方程左边中不含分母的“1”,也乘了6,方程右边中的“x -”也乘了6。
这说明:等式两边每一项都要乘同一个数,体现了等式性质。
通过上面3题,可以知道:任何一个含分母的方程都可以转化为不含分母的方程。
三、自学例3,仔细观察去分母的过程:
想一想:为什么每一项都乘以6?为什么分子中出现了括号?
通过例题的学习,我知道了去分母时要注意的事项是: 1、分子中是多项式时, 。
(如第2、3题) 2、方程中不含分母的项, 。
(如第3题) 3、乘的数是 。
课堂检测
1、方程:1
24x =去分母后,得到的方程是
2、方程:
2323
x x
+-=
去分母后,得到的方程是 3、方程:2122
3
x x -+=+去分母后,得到的方程是 4、方程:12123
x x
x -+-
=+去分母后,得到的方程是 5、解下列方程:
3x
532x 35-=-
1231337x x -+=- 3
y 181y 961y 5--+=+
51312423
x x x
-+-=- 26135x x x +-+=- ()1132152x x --=
反 思。