一元一次方程培优训练(有答案)

合集下载

2020年秋苏科版七年级数学上册第4章一元一次方程4.1-4.3 阶段培优训练卷(有答案)

2020年秋苏科版七年级数学上册第4章一元一次方程4.1-4.3 阶段培优训练卷(有答案)

2020-2021苏科版七年级数学上册第4章一元一次方程4.1-4.3 阶段培优训练卷一、选择题1、已知下列方程:①x ﹣2=;②0.2x =1;③=x ﹣3;④x ﹣y =6;⑤x =0, 其中一元一次方程有( ) A .2个 B .3个 C .4个 D .5个2、已知(a ﹣2)x |a |﹣1=﹣2是关于x 的一元一次方程,则a 的值为( ) A .﹣2 B .2 C .±2 D .±1 3、若2(a+3)的值与4互为相反数,则a 的值为( )A .﹣1B .27-C .﹣5D .21 4、下列运用等式的性质对等式进行的变形中,错误的是( ) A .若a =b ,则B .若a =b ,则ac =bcC .若a (x 2+1)=b (x 2+1),则a =bD .若x =y ,则x ﹣3=y ﹣35、若a =b ,则下列等式:①a +2=b +2;②a -3=b -3,③4a =4b ;④-5a =-5b ;⑤ac =bc 仍成立的有 ( ) A .2个 B .3个 C .4个 D .5个 6、已知3x =-是方程(4)25k x k x +--=的解,则k 的值为( )A.-2B.2C.3D.57、若关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为 ( ) A. 9 B. 8 C. 5 D. 4 8、适合|2a+7|+|2a ﹣1|=8的整数a 的值的个数有( )A .5B .4C .3D .29、某轮船在静水中的速度为20km/h ,水流速度为4km/h ,从甲码头顺流航行到乙码头,再返回甲码头,共用5h (不计停留时间),求甲、乙两码头间的距离。

设甲、乙两码头的距离为xkm , 则所列方程正确的是( )A 、(20+4)x+(20-4)x=5B 、 20x+4x=5C 、5420=+x xD 、5420420=-++x x10、商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%, 则商品卖这两件商品总的盈亏情况是( )A 、亏损20元B 、盈利30元C 、亏损50元D 、不盈不亏11、一项工作,甲单独做需要6天完成,乙单独做需要8天完成,丙单独做需要12天完成。

2022年中考数学培优复习考点一元一次方程专项训练(含答案)

2022年中考数学培优复习考点一元一次方程专项训练(含答案)

一元一次方程专项训练一.选择题1.下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有()A.5个B.4个C.3个D.2个2.若代数式a+3的值为﹣2,则a等于()A.﹣2B.﹣3C.﹣4D.﹣53.下列变形错误的是()A.如果a=b,那么a+5=b+5B.如果a=b,那么a﹣c=b﹣c.C.如果ac=bc,那么a=bD.如果,那么a=b4.商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折()A.7折B.7.5折C.8折D.8.5折5.将连续的奇数1,3,5,7,9,…排成如图所示的数表,平移十字方框,方框内的5个数字之和可能是()A.405B.545C.2012D.20156.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x天,则所列方程为()A.B.C.D.7.阅读下列解方程的过程,此过程从上一步到所给步有的产生了错误,则其中没有错误的是()解方程:.①;②2(10x﹣30)﹣5(10x+40)=160;③20x﹣60﹣50x+200=160;④﹣30x=300.A.①B.②C.③D.④8.已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为()A.3B.4C.5D.69.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.610.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.某玩具店销售一种玩具,按规定会员购买打八折,非会员购买打九折,同样购买一样玩具,小芳用会员卡比小明不用会员卡购买少花了3元钱,则这种玩具用会员卡购买的价格是元.12.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.13.若关于x的方程2x+a=3与x+2a=7的解相同,则a的值为.14.关于x的方程2x﹣3=kx的解是整数,则整数k可以取的值是.15.对有理数a,b规定运算“*”的意义为a*b=a+2b,比如:5*7=5+2×7,则方程3x*=2﹣x的解为.三.解答题16.解方程:(1)5x+3(2﹣x)=10;(2)x=+4.17.小明在解方程=﹣1,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.18.公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)求一个月通话多少分钟时两种方式的费用相同?(列方程解)19.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x =﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.20.已知数轴上三点A,O,B对应的数分别为﹣2,0,3,点P为数轴上任意一点,其对应的数为x.(1)AB的长为;(2)如果点P到点A、点B的距离相等,那么x的值是;(3)动点M从点O出发,以每秒3个单位长度的速度沿数轴正方向运动,点N从点B出发,以每秒1个单位长度的速度沿数轴正方向运动.求动点M经过几秒追上动点N?参考答案一.选择题1.解:下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x ﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有③④⑦,共3个.故选:C.2.解:根据题意,可得:a+3=﹣2,解得a=﹣5.故选:D.3.解:∵a=b,∴a+5=b+5,∴选项A不符合题意;∵a=b,∴a﹣c=b﹣c,∴选项B不符合题意;∵ac=bc,c=0时,a可以不等于b,∴选项C符合题意;∵,∴a=b∴选项D不符合题意.故选:C.4.解:设这件商品销售时打x折,依题意,得100×(1+80%)×﹣100=100×44%,解得:x=8.故选:C.5.解:设方框中间的数为x,则方框中的5个数字之和:x+(x﹣10)+(x+10)+(x﹣2)(x+2)=5x,平移十字方框时,方框中间的数x只能在第2或3或4列.A、405÷5=81,在第一列,故本选项不符合题意;B、545÷5=109,在第五列,故本选项不符合题意;C、2012÷5=402.4,数表中都是奇数,故本选项不符合题意;D、2015÷5=403,在第二列,故本选项符合题意;故选:D.6.解:设甲一共做了x天,由题意得:+=,故选:B.7.解:A、过程①中1.6变成16,错误,本选项不符合题意;B、过程②去分母正确,本选项符合题意;C、过程③去括号时应该为﹣200,错误,本选项不符合题意;D、过程④移项及合并同类项时应该化简为﹣30x=20错误,本选项不符合题意;故选:B.8.解:∵关于x的方程2x+m﹣9=0的解是x=3,∴2×3+m﹣9=0,∴m=3.故选:A.9.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:设这种玩具原价是x元,根据题意可得:0.9x﹣0.8x=3,解得:x=30,∴0.8x=24(元)答:这种玩具用会员卡购买的价格是24元.故答案为:24.12.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.13.解:联立方程得:,②×2﹣①得,3a=11,解得a=.故答案为:.14.解:移项、合并,得(2﹣k)x=3,解得x=,∵x为整数,k为整数,∴,,解得k=±1或3或5.故答案为:±1或3或5.15.解:根据题中的新定义化简得:3x+=2﹣x,去分母得:6x+1=4﹣2x,解得:x=.故答案为:.三.解答题16.解:(1)去括号得:5x+6﹣3x=10,移项得:5x﹣3x=10﹣6,合并得:2x=4,解得:x=2;(2)去分母得:3x=x﹣2+12,移项得:3x﹣x=﹣2+12,合并得:2x=10,解得:x=5.17.解:根据题意,x=3是方程4(2x﹣1)=3(x+m)﹣1的解,将x=3代入得4×(2×3﹣1)=3(3+m)﹣1,解得m=4,所以原方程为=﹣1,解方程得x=.18.解:(1)甲:0.15×100=15(元);乙:18+0.10×100=28(元);答:甲种方式付话费15元,乙种方式付话费28元.(2)设一个月通话x分钟时两种方式的费用相同,由题意得:18+0.10x=0.15x,解得x=360.答:一个月通话360分钟时两种方式的费用相同.19.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.天天向上独家原创-2022故m的值为﹣.20.解:(1)AB=|﹣2﹣3|=5.故答案为:5;(2)依题意,得:|x﹣(﹣2)|=|x﹣3|,即x+2=x﹣3或x+2=3﹣x,方程无解或x=0.5.故答案为:0.5;(3)设动点M经过t秒恰好追上动点N,依题意,得:3t=3+t,解得:t=1.5.答:动点M经过1.5秒恰好追上动点N.11 / 11。

2020-2021学年苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(有答案)

2020-2021学年苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(有答案)

2020-2021苏科版七年级数学上册第4章一元一次方程 章末培优训练卷一、选择题1、下列方程中,是一元一次方程的是( )A .3x +2y =0 B.x 4=1 C.2x -1=1 D .3x 2-5=x +2 2、下列方程中,解为x=1的是( )A .x ﹣1=﹣1B .﹣2x=C . x=﹣2D .2x ﹣1=13、下列等式变形错误的是( )A .由5x ﹣7y =2,得﹣2﹣7y =5xB .由6x ﹣3=x +4,得6x ﹣3=4+xC .由8﹣x =x ﹣5,得﹣x ﹣x =﹣5﹣8D .由x +9=3x ﹣1,得3x ﹣1=x +94、若关于x 的一元一次方程1﹣=的解是x=2,则a 的值是( )A .2B .﹣2C .1D .﹣15、解方程4x -2=3-x 的正确顺序是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A .①②③B .③②①C .②①③D .③①②6、若x =2是关于x 的一元一次方程ax ﹣2=b 的解,则3b ﹣6a +2的值是( )A .﹣8B .﹣4C .8D .47、已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,则该方程的解是___ 8、图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.9、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x 元,则可列方程为( )A .x +x +1964=xB .x +x +1964=xC .x +x +1964=xD .x +x +1964=3x10、有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②;③;④40m+10=43m+1,其中正确的是( )A .①②B .②④C .②③D .③④ 二、填空题 11、若关于x 的方程32-m x ﹣3m +6=0是一元一次方程,则这个方程的解是12、代数式2a+1与1﹣a 互为相反数,则a=13、在有理数范围内定义运算“☆”,其规则是a ☆b =a3-b .若x ☆2与4☆x 的值相等,则x 的值是______ 14、小华同学在解方程5x ﹣1=( )x+3时,把“( )”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=15、已知与互为倒数,则x 等于 16、一辆慢车从A 地开往300 km 外的B 地,同时,一辆快车从B 地开往A 地,已知慢车速度为40 km/h ,快车速度是慢车速度的1.5倍,它们出发 后两车相距100 km.17、某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套18、规定“△”是一种新的运算法则,满足:a △b =ab ﹣3b示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=3.若﹣3△(x +1)=1,则x =三、解答题19、解下列方程:(1)4x -3(20-x)=3; (2)3x -14-5x -76=1; (3)x 0.2-1=2x -0.80.3.20、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?21、甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x (x >4000)元.(1)分别用含有x 的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x =6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x 为何值时,在甲、乙两家商场购买所付的费用相同?22、学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.23、某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲 乙进价(元/件) 22 30售价(元/件) 29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?2020-2021苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(答案)一、选择题1、下列方程中,是一元一次方程的是(B )A .3x +2y =0 B.x 4=1 C.2x -1=1 D .3x 2-5=x +2 2、下列方程中,解为x=1的是( D )A .x ﹣1=﹣1B .﹣2x=C . x=﹣2D .2x ﹣1=13、下列等式变形错误的是( )A .由5x ﹣7y =2,得﹣2﹣7y =5xB .由6x ﹣3=x +4,得6x ﹣3=4+xC .由8﹣x =x ﹣5,得﹣x ﹣x =﹣5﹣8D .由x +9=3x ﹣1,得3x ﹣1=x +9解:∵5x ﹣7y =2,∴﹣2﹣7y =﹣5x ,∴选项A 符合题意;∵6x ﹣3=x +4,∴6x ﹣3=4+x ,∴选项B 不符合题意;∵8﹣x =x ﹣5,∴﹣x ﹣x =﹣5﹣8,∴选项C 不符合题意;∵x +9=3x ﹣1,∴3x ﹣1=x +9,∴选项D 不符合题意.故选:A .4、若关于x 的一元一次方程1﹣=的解是x=2,则a 的值是( ) A .2 B .﹣2 C .1D .﹣1 解:将x=2代入方程可得:1﹣=,解得:a=﹣2,故选:B .5、解方程4x -2=3-x 的正确顺序是( C )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A .①②③B .③②①C .②①③D .③①②6、若x =2是关于x 的一元一次方程ax ﹣2=b 的解,则3b ﹣6a +2的值是( )A .﹣8B .﹣4C .8D .4解:将x =2代入一元一次方程ax ﹣2=b 得2a ﹣b =2∵3b ﹣6a +2=3(b ﹣2a )+2∴﹣3(2a ﹣b )+2=﹣3×2+2=﹣4即3b ﹣6a +2=﹣4故选:B .7、已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解, 则该方程的解是___x=2827_________ 8、图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是____1000____cm 3.9、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x 元,则可列方程为( )A .x +x +1964=xB .x +x +1964=xC.x+x+1964=x D.x+x+1964=3x解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.10、有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是(D)A.①②B.②④C.②③D.③④二、填空题11、若关于x的方程32mx﹣3m+6=0是一元一次方程,则这个方程的解是解:∵关于x的方程3x m﹣2﹣3m+6=0是一元一次方程,∴m﹣2=1,解得:m=3,此时方程为3x﹣9+6=0,解得:x=1,故答案为:x=112、代数式2a+1与1﹣a互为相反数,则a= ﹣213、在有理数范围内定义运算“☆”,其规则是a☆b=a3-b.若x☆2与4☆x的值相等,则x的值是__52____14、小华同学在解方程5x﹣1=()x+3时,把“()”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=解:设()处的数字为a,根据题意,把x=2代入方程得:10﹣1=﹣a×2+3,解得:a=﹣3,∴“()”处的数字是﹣3,即:5x﹣1=﹣3x+3,解得:x=.故该方程的正确解应为x=.故答案为:.15、已知与互为倒数,则x等于解:根据题意得:•=1,去分母得:3(x﹣2)=24,即x﹣2=8,解得:x=10,故答案为:1016、一辆慢车从A地开往300 km外的B地,同时,一辆快车从B地开往A地,已知慢车速度为40 km/h,快车速度是慢车速度的1.5倍,它们出发2或4h 后两车相距100 km.17、某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 5名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套18、规定“△”是一种新的运算法则,满足:a△b=ab﹣3b示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=3.若﹣3△(x+1)=1,则x=解:根据题中的新定义得:﹣3(x+1)﹣3(x+1)=1,去括号得:﹣3x﹣3﹣3x﹣3=1,移项合并得:﹣6x=7,解得:x=﹣,故答案为:﹣三、解答题19、解下列方程:(1)4x -3(20-x)=3; (2)3x -14-5x -76=1; (3)x 0.2-1=2x -0.80.3.解:(1)去括号,得4x -60+3x =3.移项,得4x +3x =3+60.合并同类项,得7x =63.方程两边同除以7,得x =9.(2)去分母,得3(3x -1)-2(5x -7)=1×12.去括号,得9x -3-10x +14=12.移项,得9x -10x =12+3-14.合并同类项,得-x =1.方程两边同除以-1,得x =-1.(3)方程变形,得10x 2-1=20x -83. 去分母,得15x -3=20x -8.移项,得15x -20x =-8+3.合并同类项,得-5x =-5.方程两边同除以-5,得x =1.20、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?解:设甲从A 地到达B 地走了x 小时,则甲走了10xkm,乙走了6xkm,根据题意可得,10x -6x =8 解得 x =2 则 10x =20(km )答:甲走了2小时,A 、B 两地的距离为20km21、甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x (x >4000)元.(1)分别用含有x 的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x =6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x 为何值时,在甲、乙两家商场购买所付的费用相同?解:(1)甲商场的费用为:4000+(x -4000)80%=0.8x +800(元);乙商场的费用为:3000+(x -3000)90%=0.9x +300(元).(2)当x =6000时,甲商场的费用为:0.8+800=5600(元);当x =6000时,乙商场的费用为:0.9+300=5700(元).由5600,所以在甲商场购买更优惠.(3)由题意得0.8x +800=0.9x +300,解得x =5000.答:当x 为5000元时,在甲、乙两家商场购买所付的费用相同.22、学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.解:(1)设每套课桌椅的成本为x 元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x ,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.23、某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.。

人教版七年级上册 一元一次方程培优专题(含答案)

人教版七年级上册 一元一次方程培优专题(含答案)

人教版七年级上册 解一元一次方程培优专题(含答案)一、单选题1.若关于x 的方程()2018201662018(1)k x x --=-+的解是整数,则整数k 的取值个数是( )A .2B .3C .4D .62.关于x 的方程253x a +=的解及方程220x +=的解相同,则a 的值是(). A .1 B .4 C .-1 D .-43.若3a 及96a -互为相反数,则a 的值为( ) A .32 B .32- C .3 D .3-4.解方程时,去分母后得到的方程是( )A .3(x ﹣5)+2(x ﹣1)=1B .3(x ﹣5)+2x ﹣1=1C .3(x ﹣5)+2(x ﹣1)=6D .3(x ﹣5)+2x ﹣1=65.若代数式32x +及代数式510x -的值互为相反数,则x 的值为()A.1B.0C.-1D.26.方程去分母后正确的结果是( )A. B.C. D.7.若方程:()2160x --=及的解互为相反数,则a 的值为( ) A.-13 B.13 C.73 D.-18.规定,若,则x =( )A.0B.3C.1D.29.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A.1 B.2C.3D.4 10.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A.x =-4B.x =-3C.x =-2D.x =-1 二、填空题11.代数式及代数式32x -的和为4,则x =_____.12.若1y =-是方程237y a -=的解,则关于x 的方程(31)42a x x a -=+-的解为_______________.13.()00ax b a -=≠,a 、b 互为相反数,则x 等于___________14.代数式31a -及2a 互为相反数,则a =___________15.请你写出一个一元一次方程_____,使它的解及一元一次方程3x x 1的解相同.(只需写出一个满足条件的方程即可)16.若代数式 4x 8- 及 3x 22+ 的值互为相反数,则x 的值是____.17.解一元一次方程时,“去分母”这一变形的依据是等式性质;去分母时,要在方程两边都乘各分母的最小公倍数,注意不要漏乘不含分母的项.(______)三、解答题18.m 为整数,关于x 的方程x=6-mx 的解为正整数,求m 的值19.已知y 1=2x +8,y 2=6﹣2x .当x 取何值时,y 1比y 2小5?20.已知3x =是方程()131234m x x ⎡⎤-⎛⎫++=⎢⎥ ⎪⎝⎭⎣⎦的解,求m 的值.21.已知3120x +=及方程|3|1x a +=-的解相同,求a 的值.22.列方程求解(1)m 为何值时,关于x 的一元一次方程4x ﹣2m=3x ﹣1的解是x=2x ﹣3m 的解的2倍.(2)已知|a ﹣3|+(b+1)2=0,代数式的值比12b ﹣a+m 多1,求m 的值.22.我们来定义一种运算: a b c d =ad-bc.例如2? 34? 5=2×5-3×4=-2;再如 21? 3x =3x-2.按照这种定义,当时,x 的值是多少?24.若24a =,2=b .a b的值;(1)求(2)若a+b>0,①求a,b的值;②解关于x的方程.25.如果方程的解及关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.参考答案1.D【解析】【分析】整理方程,得到mx=b的形式,根据k、x都是整数,确定k的个数.【详解】(k−2018)x−2016=6−2018(x+1)整理,得kx=4,由于x、k均为整数,所以当x=±1时,k=±4,当x=±2时,k=±2,当x=±4时,k=±1,所以k的取值共有6个.故选:D.【点睛】本题考查一元一次方程的解,本题所给的方程较繁琐,能将方程整理为mx=b 是解题的关键,还需注意在最终判断k的个数时不能忽略负数.2.A【解析】【分析】利用一元一次方程的解法解出方程2x+2=0,根据同解方程的定义将解得的x的值代入13解答.【详解】解方程2x+2=0,得x=−1,由题意得,−2+5a=3,解得,a=1,故选A.【点睛】本题考查同解方程,解决本题的关键是理解方程解的定义,注意细心运算. 3.C【解析】【分析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【详解】解:根据题意得:去分母得:2a+a-9=0,解得:a=3.故选:C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.4.C【解析】【分析】根据一元一次方程的解法即可求出答案.【详解】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点睛】本题考查了一元一次方程的解法,解一元一次方程去分母的方法是两边都乘各分母的最小公倍数,一是不要漏乘不含分母的项,二是去掉分母后要把多项式的分子加括号.5.A【解析】【分析】根据互为相反数相加得零列式求解即可.【详解】由题意得x++51032x-=0,解之得x=1.故选A.【点睛】本题考查了相反数的定义,一元一次方程的解法,根据题意正确列出方程是解答本题的关键.6.B【解析】【分析】方程两边乘以8去分母得到结果,即可做出判断.【详解】方程去分母后正确的结果是2(2x−1)=8−(3−x),故选B.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则. 7.A【解析】试题解析:∵2(x-1)-6=0,∴x=4,∵,∴x=3a-3,∵原方程的解互为相反数,∴4+3a-3=0,解得,a=1.3故选A.8.C【解析】【分析】根据规定,可将转化为方程:()()2133x x ---=,解方程即可.【详解】因为,所以可得()()2133x x ---=,解得1x =,故选C.【点睛】本题主要考查新定义运算,解决本题的关键是要根据新定义规则列出方程.9.C【解析】【详解】设被阴影盖住的一个常数为k ,原方程整理得,k=-32y+12,把代入k=-32y+12,中得,k=-32×(53-)+12==3,故选C. 10.B【解析】∵|m﹣2|+(n﹣1)2=0,∴2010,,-=-=m n∴21,,==m n∴方程2m x n+=,解得3x+=可化为:41x=-.故选B.点睛:(1)一个代数式的绝对值、一个代数式的平方都是非负数;(2)若两个非负数的和为0,则这两个非负数都为0.11.﹣1.【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:,去分母得:219612x x-+-=,移项合并得:44-=,x解得:1x=-,故答案为:﹣1.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.x=8 13【解析】【分析】先把y=−1代入方程2y−3a=7求出a的值,然后把a的值代入方程a(3x−1)=4x+a−2即可求解.【详解】解:∵y=−1是方程2y−3a=7的解,∴−2−3a=7,∴a=−3,把a=−3代入方程a(3x−1)=4x+a−2得:−3(3x−1)=4x−5,解得:x=813,故答案为:x=813.【点睛】本题考查了一元一次方程解的定义以及解一元一次方程,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.【解析】【分析】由于a≠0,可以把方程移项后两边同时除以a,而a、b互为相反数,由此即可得到方程的解.【详解】ax-b=0(a≠0),移项得:ax=b(a≠0),系数化1得:,∵a、b互为相反数,∴x=-1.故填-1.【点睛】本题考查解一元一次方程,相反数.能通过解方程的一般步骤将方程化为的形式,并根据相反数的定义,得出互为相反数的两个数(数不为0)的商为-1是解决此题的关键.14.1 5 .【解析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【详解】根据题意得:3120a a-+=.移项、合并同类项得51a=,解得.故填1 5 .【点睛】本题考查相反数和解一元一次方程,能根据相反数的定义列出a的方程是解决此题的关键.15.答案不唯一,如2x=3等【解析】【分析】先解方程3x−x=−1,求出方程的解,再根据只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程;它的一般形式是ax+b=0(a,b是常数且a≠0);根据题意,写一个符合条件的方程即可.【详解】x−x=−1,方程3解得x=1.5,符合条件的方程有很多,如2x=3等.故答案是:答案不唯一,如2x=3等.【点睛】考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.16.-2【解析】【分析】根据相反数的定义即可列出方程求出x的值.【详解】由题意可知:4x-8+3x+22=0,∴x=-2,故答案是:-2【点睛】考查一元一次方程,解题的关键是熟练运用一元一次方程的解法.17.正确【解析】【分析】根据解一元一次方程的步骤即可判断.【详解】解:去分母要在方程乘两边乘分母得最小公倍数,否则会加大计算量;根据等式的性质,不含分母的项也要乘此最小公倍数.故答案为:正确.【点睛】此题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为一.18.0或1或2或5.【解析】【分析】方程整理后,根据解为正整数,求出m的值即可.【详解】解:方程整理得:(1+m)x=6,解得:x=,由解为正整数,得到m+1=1或m+1=2或m+1=3或m+1=6,解得:m=0或m=1或m=2或m=5,故m的值为0或1或2或5.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.19.当x取﹣74时,y1比y2小5.【解析】【分析】y2﹣y1=5即6-2x-(2x+8)=5,解出即可.【详解】解:根据题意得:y2﹣y1=(6﹣2x)﹣(2x+8)=5,解得:x=﹣74,即当x=﹣74时,y1比y2小5.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则. 20..【解析】【分析】把x=3代入方程()131234m xx⎡⎤-⎛⎫++=⎢⎥⎪⎝⎭⎣⎦,解关于m的方程即可求出m的值.【详解】把x=3代入方程()131234m xx⎡⎤-⎛⎫++=⎢⎥⎪⎝⎭⎣⎦,得:,解得:.【点睛】本题考查一元一次方程的解.使一元一次方程两边等式恒成立的未知数的值叫做一元一次方程的解.21.1a=±【解析】【分析】求出第一个方程的解,把x 的值代入第一个方程,求出方程的解即可.【详解】解:解方程3120x +=得4x =-,把4x =-代入方程|3|1x a +=-,得33a =,所以1a =±.【点睛】本题考查了同解方程和解一元一次方程的应用,关键是得出关于a 的方程.22.(1)-14;(2)0.【解析】试题分析:(1)分别表示出两方程的解,根据解的关系确定出m 的值即可; (2)根据题意列出方程,利用非负数的性质求出a 及b 的值,代入计算即可求出m 的值.试题解析:解:(1)方程4x ﹣2m =3x ﹣1,解得:x =2m ﹣1.方程x =2x ﹣3m ,解得:x =3m .由题意得:2m ﹣1=6m ,解得:m =﹣14; (2)由|a ﹣3|+(b +1)2=0,得到a =3,b =﹣1,代入方程21()122b a m b a m -+--+=,得: 51(3)122m m ----+=,整理得:, 去分母得:m ﹣5+1+6﹣2m =2解得:m =0.点睛:此题考查了解一元一次方程,以及非负数的性质,熟练掌握运算法则是解本题的关键.23.x=-32.【解析】【详解】试题分析:认真阅读新定义的运算,然后直接代入运算格式,再解方程即可.试题解析:根据运算的规则 ,可化为2(2x -1)-2x=(x-1)-(-4)× 12, 化简可得-2x=3,即x=-32.24.(1)0或4或-4(2)①a=b=2②x=1【解析】试题分析:(1)根据乘方和绝对值求出a 、b 的值,然后代入求值即可;(2)根据前面求出的a 、b 的值,确定符合条件的a 、b ,然后代入求解方程即可.试题解析:因为:24a =,2b =所以a=±2,b =±2(1)当a=2,b=2时,a-b=0;当a=2,b=-2时,a-b=4;当a=-2,b=2时,a-b=-4;当a=-2,b=-2时,a-b=0故a-b 的值为0或±4.(2)①因为a+b >0,所以a=2,b=2,②把a=b=2代入方程.可得方程.解得x=125.x=10;a=-4;11.【解析】【分析】根据题意,可先求出方程的解,再将x 的值代入方程()431621x a x a -=-++中,解出a 的值,代入代数式,求2a 1a -+的值即可。

人教版数学七年级上习题试卷第三章 一元一次方程(培优)(解析版)

人教版数学七年级上习题试卷第三章 一元一次方程(培优)(解析版)

第三章一元一次方程(培优)-七年级数学上册单元培优达标强化卷(解析)一、选择题1.将3x−7=2x变形正确的是()A. 3x+2x=7B. 3x−2x=−7C. 3x+2x=−7D. 3x−2x=7【答案】D解:等式两边都加7得:3x=2x+7,等式两边都减2x得:3x−2x=7.2.已知关于x的方程(m−2)x|m−1|=0是一元一次方程,则m的值是()A. 2B. 0C. 1D. 0或2【答案】B【解析】解:根据题意得:|m−1|=1,整理得:m−1=1或m−1=−1,解得:m=2或0,把m=2代入m−2得:2−2=0(不合题意,舍去),把m=0代入m−2得:0−2=−2(符合题意),即m的值是0,3.方程2x+1=3与2−a−x3=0的解相同,则a的值为()A. 0B. 3C. 5D. 7【答案】D4.若多项式4x−5与2x−12的值相等,则x的值是()A. 1B. 32C. 23D. 2【答案】B解:由题意得,4x−5=2x−12,去分母,2(4x−5)=2x−1,去括号,8x−10=2x−1,最后移项,8x−2x=−1+10,合并同类项,6x=9,系数化为1,x=32.5.已知:|m−2|+(n−1)2=0,则方程2m+x=n的解为()A. x=−4B. x=−3C. x=−2D. x=−1【答案】B解:∵|m−2|=0,(n−1)2=0m=2,n=1,将m=2,n=1代入方程2m+x=n,得4+x=1移项,得x=−3.6.某种商品原先的利润率为20%,为了促销,现降价10元销售,此时利润率下降为10%,那么这种商品的进价是()A. 100元B. 110元C. 120元D. 130元【答案】A解:设这件产品的进价为x元,x(1+20%)−10=x[1+(20%−10%)],解得,x=100即这件商品的进价为100元,7.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A. 440+x40+60=1 B. 440+x40×60=1C. 440+x40+x60=1 D. 440+x60=1【答案】C【解析】解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:4 40+x40+x60=1.8.下列说法中,正确的是()A. 若ac =bc ,则a =bB. 若a c =bc ,则a =b C. 若a 2=b 2,则a =bD. 若|a|=|b|,则a =b【答案】B【解析】解:A.若ac =bc ,当c ≠0,则a =b ,故此选项错误; B .若ac =bc ,则a =b ,正确;C .若a 2=b 2,则|a|=|b|,故此选项错误;D .若|a|=|b|,则a =±b ,故此选项错误;9. 某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利20%(相对于进价),另一台空调调价后售出则亏本20%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A. 要亏本4%B. 可获利2%C. 要亏本2%D. 既不获利也不亏本【答案】A【解析】解:设这两台空调调价后的售价为x ,两台空调进价分别为a 、b . 调价后两台空调价格为:x =a(1+20%);x =b(1−20%). 解得:a =56x ,b =54x , 调价后售出利润为:2x−(a+b)a+b=2x−(56x+54x)56x+54x =−0.04=−4%,10. 小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A.B.C.D.【答案】B 【解析】解:A 、设最小的数是x . x +x +7+x +7+1=19, x =43,故本选项不符合题意; B 、设最小的数是x . x +x +6+x +7=19, x =2.故本选项符合题意.C 、设最小的数是x . x +x +1+x +7=19, x =113,故本选项不符合题意.D 、设最小的数是x . x +x +1+x +7+1=19, x =103,故本选项不符合题意.故选:B .二、填空题 11. 若代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y的取值无关,则方程3ax +b =0的解为________ 【答案】1 解:(1−a−14)x 2−5y +4−12(ax 2+2by +16)=(1−a −14)x 2−5y +4−12ax 2−by −8 =(1−a −14−12a)x 2−(5+b)y −4 =(54−34a)x 2−(5+b )y −4 ∵代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y 的取值无关,∴54−34a =0,5+b =0,∴a =53,b =−5,∴3ax +b =0为53·3x −5=0, ∴5x −5=0, 解得:x =1. 故答案为1.12. 如果a ,b 为定值,关于x 的一次方程2kx+a 3−x−bk 6=2,无论k 为何值时,它的解总是1,则a +2b = . 【答案】−32【解析】解:将x =1代入方程2kx+a 3−x−bk 6=2,∴2k+a 3−1−bk 6=2,∴4k +2a −1+bk =12, ∴4k +bk =13−2a ,∴k(4+b)=13−2a,由题意可知:b+4=0,13−2a=0,∴a=132,b=−4,∴a+2b=132−8=−32.故答案为:−3213.若(a−2)x|a|−1−2=0是关于x的一元一次方程,则a=______.【答案】−2【解析】解:(a−2)x|a|−1−2=0是关于x的一元一次方程,∴a−2≠0,|a|−1=1,解得a=−2.14.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是__________元.【答案】140解:设这件衣服的成本是x元,根据题意得:x(1+50%)×80%−x=28,解得:x=140.答:这件衣服的成本是140元;故答案为140.15.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为______元.【答案】200【解析】解:设这双鞋的实际售价为x元,根据题意,得0.8x=x−40x=200.16.已知关于x的方程x−m2=x+m3与方程x−12=3x−2的解互为倒数,则m2−2m−3的值为_________.【答案】0解:x−12=3x−2,解得:x=35,∴方程x−m2=x+m3的解为x=53,代入可得:56−m2=53+m3,解得:m=−1,∴m2−2m−3=1+2−3=0.17.用“∗”表示一种运算,其意义是a∗b=a−2b,如果x∗(3∗2)=3,则x=______.【答案】1【解析】解:3∗2=3−2×2=−1,∵x∗(3∗2)=3,∴x∗(−1)=3,x−2×(−1)=3,x+2=3,x=1,18.有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是______小时.【答案】3解:设停电时间为x小时,根据题意得:1−x6=2(1−x4),解得:x=3.19.如果x=1是方程2−13(m−x)=2x的解,那么关于y的方程m(y−3)−2= m(2y−5)的解是______ .【答案】y=0解:∵x=1是方程2−13(m−x)=2x的解,∴2−13(m−1)=2×1,解得m=1,∴关于y的方程为y−3−2=2y−5,移项得,y−2y=−5+2+3,合并同类项得,−y=0,系数化为1得,y=0.20.如图,已知点A、B是直线上两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过___________秒时线段PQ的长为5厘米.【答案】13或1或3或9解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5−4,解得t=13;②点P、Q都向右运动,由题意,得:2t−t=5−4,解得t=1;③点P、Q都向左运动,由题意,得:2t−t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t−4+t=5,解得t=3.综上所述,经过13或1或3秒或9秒时线段PQ的长为5厘米.故答案为13或1或3或9.三、解答题21.已知关于x的方程3[x−2(x−a3)]=4x和3x+a12−1−5x8=1有相同的解,那么这个解是多少?【答案】解:由方程(1)得x=27a,由方程(2)得x=27−2a21,由题意得27a=27−2a21,解得a=2714,代入解得x=2728.∴可得这个解为2728.22.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同⋅为什么⋅(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些⋅为什么⋅【答案】解:(1)设甲、乙合作需要x天完成,由题意,得x30+x20=1,解得:x=12,∵12<15,∴甲、乙两人能履行该合同;(2)34÷(130+120)=9(天)设剩下的工程甲用y天完成,由题意,得y30=14,解得:y=152,9+152=16.5(天)>15(天),不合适;设剩下的工程乙用z天完成,由题意,得y20=14,解得y=5,9+5=14<15,合适,答:调走甲比较合适.23.甲、乙两站相距360千米,一列快车从甲站开出,每小时行160千米,一列慢车从乙站开出,每小时行80千米.(1)若两车同时开出,相向而行多少小时后两车相遇?(2)若两车同向而行,快车在慢车的后面,且慢车提前半小时出发,经过多少小时后快车追上慢车?【答案】解:(1)设两车相向而行x小时后两车相遇,根据题意得:160x+80x=360,解得:x=1.5.答:两车相向而行1.5小时后两车相遇;(2)设经过x小时后快车追上慢车,根据题意得:360+80×0.5+80×x=160x,解得:x=5.答:经过5小时后快车追上慢车.24.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价−进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?x+15)件,【答案】解:(1)设第一次购进甲种商品x件,则购进乙种商品(12x+15)=6000,根据题意得:22x+30(12解得:x=150,x+15=90.∴12答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29−22)×150+(40−30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,−30)×90×3=1950+180,根据题意得:(29−22)×150+(40×y10解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.25.已知|a+4|+(b−2)2=0,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=___________,b=____________;(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由;(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ的中点,当PQ=16时,求MN的长.【答案】解:(1)−4 2 ;(2)设C点表示的数为x,根据题意得,①当点C在A、B之间时,有c+4=2(2−c),解得,c=0;②当点C在B的右侧时,有c+4=2(c−2),解得,c=8.故点C表示的数为0或8;(3)设运动的时间为t秒,根据题意得,2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:=0,P:−4−2×2=−8,Q:2+3×2=8,M:0−4×2=−8,N:−8+82∴MN=0−(−8)=8.11。

解一元一次方程专项练习(含答案)

解一元一次方程专项练习(含答案)

一、“移项+系数化1”针对练习(1)8x﹣5=3x;(2)6x﹣7=4x﹣5;(3)2x+17=32﹣3x;(4)7x+6=16﹣3x;(5)3x﹣4=2x+5;(6)4x﹣1=2x+5;(7)4﹣3x=6﹣5x;(8).(9)3x+7=32﹣2x;(10)5x+3=﹣2x﹣11;(11)3x﹣8=x+4;(12)5x+2=3x﹣18;(13)2﹣5x=3x+4;(14)5x﹣2x=9;(15)9﹣3y=5y+5.(16)5x﹣8=8x+1;(17)4x﹣1=2x+2.(18)3x+3=8﹣12x;(19)4x﹣2=2x+6;(20)3x﹣2=4x+1;(21)3x﹣6=2x+1;(22)x+4=x﹣2.(23);(24);(25).(26);(27)1.5:6=1:x.(28)6x﹣7=4x﹣5;(29)x+3x=﹣16;(30)9﹣3x=5x+5.(31);(32).(33);(34).(35)6x+6=2x﹣2;(36)3x+9=12;(二)“去括号”针对练习(1)3﹣5(x+1)=2x;(2)3(x﹣3)=x+1;(3)3(1﹣x)=1+2x;(4)8x=﹣2(x+4);(5)7﹣3(x﹣1)=﹣x;(6)2x﹣2(3x+1)=6;(7)5x﹣2(x﹣1)=3;(8)8﹣3(3x+2)=6;(9)x﹣3;(10)7x+2(3x﹣3)=20;(11)4﹣2x=﹣3(2﹣x);(12)4﹣3(2﹣x)=5x;(13)3(x+2)﹣2=x+2;(14)3(x﹣7)+5(x﹣4)=15;(15)x+2(x﹣3)=3(1﹣x);(16)2(3﹣x)=﹣4(x+5);(17)4﹣2(x+4)=2(x﹣1);(18)4(2x﹣1)﹣3(5x+1)=14;(19)3(2x﹣1)=5﹣2(x+2);(20)2((x﹣2)﹣3((4x﹣1)=5((1﹣x).(21)3(20﹣y)=6y﹣4(y﹣11);(22)1﹣3(x+1)=2(1﹣0.5x);(23)3(2x﹣7)=1﹣(x+8);(24);(25)3(x﹣1)+5(x﹣1)=16.(26)7x+2(3x﹣3)=20;(27)3x﹣4(x+1)=6﹣2(2x﹣5);(28)3(x﹣1)﹣2(x+10)=﹣6;(29)3(y﹣7)﹣5(4﹣y)=15;(30)2x﹣3(x﹣1)=5(1﹣x);(31)3x﹣2(x﹣1)=2+3(4﹣x).(32)5(x﹣4)+3(x+6)=14.(33)2(x﹣2)﹣(4x﹣1)=3(1﹣x);(34)2(x+1)=﹣5(x﹣2);(35)x﹣3=2(x﹣3)﹣6(1﹣x);(36)2(x+2)=3(x﹣1);(37)3x﹣2=5(x+2);(38)2(x+4)﹣10=5(x﹣2)+10x;(39)9y﹣2(﹣y+4)=3.(40)2(x﹣3)=1﹣3(x+1);(三)“去分母”针对练习(1);(2).(3).(4).(5)=1.(6);(7).(8).(11).(12).(13).(14).(15).(16).(17).(18).(19).(20).(23).(24).(25);(26).(27)﹣1.(28).(29).(30)5x=2x+5;(31)=.(32).(35).(36).(37)﹣1=.(38)=4.(39).(40).(41).(42)﹣1=.(43)=1.(44).(45)=1﹣.(46).(47).(48).(49).答案与解析(一)“移项+系数化1”针对练习(1)8x﹣5=3x;【解答】解:(1)移项得:8x﹣3x=5,合并同类项得:5x=5,系数化为1得:x=1,∴原方程的解为:x=1;(2)6x﹣7=4x﹣5;【解答】解:(1)移项,可得:6x﹣4x=﹣5+7,合并同类项,可得:2x=2,系数化为1,可得:x=1.(3)2x+17=32﹣3x;【解答】解:(1)2x+3x=32﹣17,5x=15,x=3;(4)7x+6=16﹣3x;【解答】解:(1)7x+6=16﹣3x,移项,得7x+3x=16﹣6,合并同类项,得10x=10,系数化为1,得x=1;(5)3x﹣4=2x+5;【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(6)4x﹣1=2x+5;【解答】解:(1)4x﹣1=2x+5,移项,得:4x﹣2x=5+1,合并同类项,得:2x=6,系数化为1,得:x=3;(7)4﹣3x=6﹣5x;﹣3x+5x=6﹣4,2x=2,x=1;(8)解方程:.【解答】解:,移项,得,合并同类项,得,系数化为1,得x=.(9)3x+7=32﹣2x;【解答】解:(1)移项合并得:5x=25,解得:x=5;(10)5x+3=﹣2x﹣11;【解答】解:(1)5x+3=﹣2x﹣11,移项,得5x+2x=﹣11﹣3,合并同类项,得7x=﹣14,系数化成1,得x=﹣2;(11)3x﹣8=x+4;【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(12)5x+2=3x﹣18;【解答】解:(1)5x+2=3x﹣18,移项,5x﹣3x=﹣18﹣2,合并同类项,2x=﹣20,系数化为1,x=﹣10;(13)2﹣5x=3x+4;移项,得﹣5x﹣3x=4﹣2,合并同类项,得﹣8x=2,系数化为1,得x=;(14)5x﹣2x=9;【解答】解:(1)5x﹣2x=9,合并同类项,得3x=9,系数化为1,得x=3;(15)9﹣3y=5y+5.【解答】(2)9﹣3y=5y+5,移项,得﹣3y﹣5y=5﹣9,合并同类项,得﹣8y=﹣4,系数化为1,得.(16)5x﹣8=8x+1;【解答】解:(1)5x﹣8=8x+1移项得:5x﹣8x=1+8,合并同类项得;﹣3x=9,系数化为1得;x=﹣3;(17)4x﹣1=2x+2.【解答】解:(1)移项,可得:4x﹣2x=2+1,合并同类项,可得:2x=3,系数化为1,可得:x=1.5.(18)3x+3=8﹣12x;【解答】解:(1)3x+3=8﹣12x,移项,得3x+12x=8﹣3,合并同类项,得15x=5,系数化为1,得x=;(19)4x﹣2=2x+6;【解答】解:(1)4x﹣2=2x+6,移项,得4x﹣2x=6+2,合并同类项,得2x=8,系数化为1,得x=4;(20)3x﹣2=4x+1;【解答】解:(1)移项,可得:3x﹣4x=1+2,合并同类项,可得:﹣x=3,系数化为1,可得:x=﹣3.(21)3x﹣6=2x+1;【解答】解:(1)3x﹣6=2x+1,移项,得3x﹣2x=6+1,合并同类项,得x=7;(22)x+4=x﹣2.【解答】(2)x+4=x﹣2,移项,得﹣=﹣2﹣4,合并同类项,得﹣=﹣6,系数化为1,得x=9.(23);【解答】解:(1)移项,可得:x=5%+14,合并同类项,可得:x=14.05,系数化为1,可得:x=.(24);【解答】(2)合并同类项,可得:1.4x=2.1,系数化为1,可得:x=1.5.(25).【解答】(3)∵,∴1.6x=,系数化为1,可得:x=.(26);【解答】解:(1)整理原方程,得:;系数化为1,得:x=;所以原方程的解为:x=;(27)1.5:6=1:x.【解答】(2)整理原方程,得:1.5x=6;系数化为1,得:x=4;所以原方程的解为:x=4.(28)6x﹣7=4x﹣5;【解答】解:(1)6x﹣7=4x﹣5,6x﹣4x=﹣5+7,2x=2,x=1;(29)x+3x=﹣16;【解答】解:(1)4x=﹣16,x=﹣4;(30)9﹣3x=5x+5.【解答】(2)﹣3x﹣5x=5﹣9,﹣8x=﹣4,x=.(31);【解答】解:(1),去分母,得:18x=2,系数化为1,得:x=;(32).【解答】(2).整理方程,得:=12,去分母,得:8x=36,系数化为1,得:x=.(33);【解答】解:(1)x系数化为1得:x=;(34).【解答】(2)方程整理得:x=6×,即x=4,解得:x=8.(35)6x+6=2x﹣2;【解答】解:(1)移项得:6x﹣2x=﹣2﹣6,合并同类项得:4x=﹣8,解得:x=﹣2;(36)3x+9=12;【解答】解:(1)移项得,3x=12﹣9,合并同类项得,3x=3,两边都除以3得,x=1;(二)“去括号”针对练习(1)3﹣5(x+1)=2x;【解答】(1)3﹣5(x+1)=2x,3﹣5x﹣5=2x,﹣5x﹣2x=5﹣3,﹣7x=2,x=﹣;(2)3(x﹣3)=x+1;【解答】解:(2)去括号,得3x﹣9=x+1,移项,得3x﹣x=9+1,合并,得2x=10,系数化为1,得x=5;(3)3(1﹣x)=1+2x;【解答】解:(3)去括号,得3﹣3x=1+2x,移项,得﹣3x﹣2x=1﹣3,合并同类项,得﹣5x=﹣2,解得x=0.4;(4)8x=﹣2(x+4);【解答】(4)去括号,可得:8x=﹣2x﹣8,移项,可得:8x+2x=﹣8,合并同类项,可得:10x=﹣8,系数化为1,可得:x=﹣0.8.(5)7﹣3(x﹣1)=﹣x;【解答】(5)7﹣3(x﹣1)=﹣x,7﹣3x+3=﹣x,﹣3x+x=﹣3﹣7,﹣2x=﹣10,x=5;(6)2x﹣2(3x+1)=6;【解答】解:(6)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(7)5x﹣2(x﹣1)=3;【解答】解:(7)原方程去括号得:5x﹣2x+2=3,移项得:5x﹣2x=3﹣2,合并同类项得:3x=1,系数化为1得:x=;(8)8﹣3(3x+2)=6;【解答】解:(8)去括号得:8﹣9x﹣6=6,移项合并得:﹣9x=4,解得:x=﹣;(9)x﹣3;【解答】(9)x﹣3,5(3x﹣6)=12x﹣90,15x﹣30=12x﹣90,15x﹣12x=﹣90+30,3x=﹣60,x=﹣20;(10)7x+2(3x﹣3)=20;【解答】解:(10)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(11)4﹣2x=﹣3(2﹣x);【解答】解:(11)4﹣2x=﹣3(2﹣x),去括号得:4﹣2x=﹣6+3x,移项合并得:5x=10,系数化为1得:x=2;(12)4﹣3(2﹣x)=5x;【解答】解:(12)4﹣3(2﹣x)=5x,去括号,得:4﹣6+3x=5x,移项,得:3x﹣5x=﹣4+6,合并同类项,得:﹣2x=2,系数化为1,得:x=﹣1;(13)3(x+2)﹣2=x+2;【解答】解:(13)3(x+2)﹣2=x+2;3x+6﹣2=x+2,3x﹣x=2﹣6+2,2x=﹣2x=﹣1.(14)3(x﹣7)+5(x﹣4)=15;【解答】解:(14)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(15)x+2(x﹣3)=3(1﹣x);【解答】解:(15)x+2(x﹣3)=3(1﹣x),去括号,得:x+2x﹣6=3﹣3x,移项、合并同类项,得:6x=9,系数化为1,得:;(16)2(3﹣x)=﹣4(x+5);【解答】(16)2(3﹣x)=﹣4(x+5),去括号,得6﹣2x=﹣4x﹣20,移项,得4x﹣2x=﹣20﹣6,合并同类项,得2x=﹣26,系数化为1,得x=﹣13;(17)4﹣2(x+4)=2(x﹣1);【解答】解:(17)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:;(18)4(2x﹣1)﹣3(5x+1)=14;【解答】解:(18)原方程去括号得:8x﹣4﹣15x﹣3=14,移项得:8x﹣15x=14+4+3,合并同类项得:﹣7x=21,系数化为1得:x=﹣3;(19)3(2x﹣1)=5﹣2(x+2);【解答】解:(19)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=;(20)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【解答】(20)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=﹣.(21)3(20﹣y)=6y﹣4(y﹣11);【解答】解:(21)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(22)1﹣3(x+1)=2(1﹣0.5x);【解答】(22)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;(23)3(2x﹣7)=1﹣(x+8);【解答】解:(23)3(2x﹣7)=1﹣(x+8),6x﹣21=1﹣x﹣86x+x=﹣7+21,7x=14,x=2;(24);【解答】(24),去分母,得2x﹣1+3=18(2x﹣1),去括号,得2x﹣1+3=36x﹣18,移项,得2x﹣36x=﹣18+1﹣3,合并同类项,得﹣34x=﹣20,系数化为1,得x=;(25)3(x﹣1)+5(x﹣1)=16.【解答】解:(25)3(x﹣1)+5(x﹣1)=16,去括号,得3x﹣3+5x﹣5=16,移项,得3x+5x=16+3+5,合并同类项,得8x=24,系数化成1,得x=3;(26)7x+2(3x﹣3)=20;【解答】解:(26)7x+2(3x﹣3)=20,去括号,得7x+6x﹣6=20,移项,得7x+6x=20+6,合并同类项,得13x=26,系数化成1,得x=2;(27)3x﹣4(x+1)=6﹣2(2x﹣5);【解答】解:(27)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;;(28)3(x﹣1)﹣2(x+10)=﹣6;【解答】解:(28)去括号得,3x﹣3﹣2x﹣20=﹣6,移项得,3x﹣2x=﹣6+3+20,合并同类项得,x=17;(29)3(y﹣7)﹣5(4﹣y)=15;【解答】解:(29)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(30)2x﹣3(x﹣1)=5(1﹣x);【解答】解:(30)2x﹣3(x﹣1)=5(1﹣x),去括号得:2x﹣3x+3=5﹣5x,移项得:2x﹣3x+5x=5﹣3,合并同类项得:4x=2,把系数化为1得:x=.(31)3x﹣2(x﹣1)=2+3(4﹣x).【解答】(31)3x﹣2(x﹣1)=2+3(4﹣x),去括号,得3x﹣2x+2=2+12﹣3x,移项,得3x﹣2x+3x=2+12﹣2,合并同类项,得4x=12,系数化为1,得x=3.(32)5(x﹣4)+3(x+6)=14.【解答】(32)去括号,可得:5x﹣20+3x+18=14,移项,可得:5x+3x=14+20﹣18,合并同类项,可得:8x=16,系数化为1,可得:x=2.(33)2(x﹣2)﹣(4x﹣1)=3(1﹣x);【解答】解:(33)2(x﹣2)﹣(4x﹣1)=3(1﹣x);去括号得:2x﹣4﹣4x+1=3﹣3x移项得:2x﹣4x+3x=3+4﹣1,合并得:x=6;(34)2(x+1)=﹣5(x﹣2);【解答】解:(34)2(x+1)=﹣5(x﹣2),去括号得:2x+2=﹣5x+10,移项得:2x+5x=10﹣2,合并同类项得:7x=8,系数化为1得:;(35)x﹣3=2(x﹣3)﹣6(1﹣x);【解答】解:(35)x﹣3=2(x﹣3)﹣6(1﹣x),去括号,得x﹣3=2x﹣6﹣6+6x,移项,得x﹣2x﹣6x=﹣6﹣6+3,合并同类项,得﹣7x=﹣9,系数化成1,得x=;(36)2(x+2)=3(x﹣1);【解答】(36)去括号得:2x+4=3x﹣3,移项得:2x﹣3x=﹣3﹣4,合并同类项得:﹣x=﹣7,解得:x=7;(37)3x﹣2=5(x+2);【解答】解:(37)去括号得,3x﹣2=5x+10,移项合并得:2x=﹣12,解得:x=﹣6;(38)2(x+4)﹣10=5(x﹣2)+10x;【解答】解:(38)去括号得:2x+8﹣10=5x﹣10+10x,移项得:2x﹣5x﹣10x=﹣10﹣8+10,合并同类项得:﹣13x=﹣8,解得:x=;(39)9y﹣2(﹣y+4)=3.【解答】(39)去括号得:9y+2y﹣8=3,移项得:9y+2y=3+8,合并同类项得:11y=11,解得:y=1.(40)2(x﹣3)=1﹣3(x+1);【解答】解:(40)去括号得:2x﹣6=1﹣3x﹣3,移项得:2x+3x=1﹣3+6,合并同类项得:5x=4,解得:x=0.8;(三)“去分母”针对练习(1);【解答】(1)去分母,可得:3(3y﹣1)﹣12=2(5y﹣7),去括号,可得:9y﹣3﹣12=10y﹣14,移项,可得:9y﹣10y=﹣14+3+12,合并同类项,可得:﹣y=1,系数化为1,可得:y=﹣1.(2).【解答】(2).去分母,可得:4(5y+4)+3(y﹣1)=24﹣(5y﹣5),去括号,可得:20y+16+3y﹣3=24﹣5y+5,移项,可得:20y+3y+5y=24+5﹣16+3,合并同类项,可得:28y=16,系数化为1,可得:y=.(3).【解答】(3)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:.(4).【解答】(4),去分母,得:6﹣2(2x﹣1)=3+x,去括号,得:6﹣4x+2=3+x,移项、合并同类项,得:﹣5x=﹣5,系数化为1,得:x=1.(5)=1.【解答】(5)3(x﹣2)+2(5﹣2x)=6,3x﹣6+10﹣4x=6,3x﹣4x=6+6﹣10,﹣x=2,x=﹣2.(6);【解答】(6),去分母,得2(2x﹣1)=3(3x+5),去括号,得4x﹣2=9x+15,移项,得4x﹣9x=2+15,合并同类项,得﹣5x=17,系数化为1,得x=﹣;(7).【解答】(7),去分母,得2(3x﹣2)﹣(5x+1)=18,去括号,得6x﹣4﹣5x﹣1=18,移项,得6x﹣5x=18+4+1,合并同类项,得x=23.(8).【解答】(8),去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.(9).【解答】(9)分母化为整数得:,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,即:9x=10x﹣4,移项、合并同类项得:x=4.(10).【解答】(10),去分母,得:2(2x+1)﹣(x﹣1)=6,去括号,得:4x+2﹣x+1=6,移项,合并同类项,得3x=3,系数化为1,得:x=1.(11).【解答】(11)去分母得:2(2x﹣1)﹣(x+2)=12,去括号得:4x﹣2﹣x﹣2=12,移项得:4x﹣x=12+2+2,合并同类项得:3x=16,系数化为1得:,∴原方程的解为:.(12).【解答】(12),3(3x﹣1)=6﹣(x﹣1),9x﹣3=6﹣x+1,9x+x=6+1+3,10x=10,x=1;(13).【解答】(13),4(2x﹣1)﹣12x=3(2x+1)﹣12,8x﹣4﹣12x=6x+3﹣12,8x﹣12x﹣6x=3﹣12+4,﹣10x=﹣5,x=.(14).【解答】(14)原方程去分母得:2(7﹣5x)=4﹣(3x﹣1),去括号得:14﹣10x=4﹣3x+1,移项得:﹣10x+3x=4+1﹣14,合并同类项得:﹣7x=﹣9,系数化为1得:x=.(15).【解答】(15),去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=.(16).【解答】(16),去分母得,2(2x﹣3)=5(3x﹣1)+10,去括号得,4x﹣6=15x﹣5+10,移项得,4x﹣15x=﹣5+10+6,合并同类项得,﹣11x=11,x的系数化为1得,x=﹣1.(17).【解答】(17)原方程去分母得:3x﹣2=6+2(x﹣1),去括号得:3x﹣2=6+2x﹣2,移项得:3x﹣2x=6﹣2+2,合并同类项得:x=6.(18).【解答】(18)去分母得:3(2x+1)﹣12=12x﹣2(5x﹣3),去括号得:6x+3﹣12=12x﹣10x+6,移项合并得:4x=15,解得:x=.(19).【解答】(19)方程去分母得:18x+3x﹣3=18﹣4x+4,移项合并得:25x=25,解得:x=1.(20).【解答】(20)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=﹣.(21).【解答】(21),去分母,得2x+1=6﹣2(5x﹣2),去括号,得2x+1=6﹣10x+4,移项,得2x+10x=6+4﹣1,合并同类项,得12x=9,系数化成1,得x=.(22).【解答】(22),3(3y﹣1)﹣12=2(5y﹣7),9y﹣3﹣12=10y﹣14,9y﹣10y=﹣14+12+3,﹣y=1,y=﹣1.(23).【解答】(52)去分母得:10y﹣5(y﹣1)=30﹣2(y+2),去括号得:10y﹣5y+5=30﹣2y﹣4,移项得:10y﹣5y+2y=30﹣4﹣5,合并同类项得:7y=21,解得:y=3.(24).【解答】(24),去分母,方程两边同时乘以最小公倍数6,2(2x+1)=3(x﹣1),去括号,4x+2=3x﹣3,移项,合并同类项,4x﹣3x=﹣3﹣2,系数化为1,x=﹣5.(25);【解答】(25),去分母,得3(3y﹣1)﹣2(5y﹣7)=12,去括号,得9y﹣3﹣10y+14=12,移项,得9y﹣10y=12+3﹣14,合并同类项,得﹣y=1,系数化为1,得y=﹣1;(26).【解答】(26),原方程可化为,去分母,得4(x﹣20)+3(30﹣7x)=12,去括号,得4x﹣80+90﹣21x=12,移项,得4x﹣21x=12+80﹣90,合并同类项,得﹣17x=2,系数化为1,得x=﹣.(27)﹣1.【解答】(51)去分母得:4(2y﹣1)=3(y+2)﹣12,去括号得:8y﹣4=3y+6﹣12,移项合并得:5y=﹣2,解得:y=﹣.(28).【解答】(28),去分母,得7(1﹣2x)=3(3x+1)﹣63,去括号,得7﹣14x=9x+3﹣63,移项,得﹣14x﹣9x=3﹣63﹣7,合并同类项,得﹣23x=﹣67,系数化成1,得x=.(29).【解答】(29)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=﹣.(30)5x=2x+5;【解答】解:(30)5x=2x+5,5x﹣2x=5﹣,3x=5,x=;(31)=.【解答】(31)=,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.(32).【解答】(32)整理得:,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;.(33).【解答】(33)去分母得,4(2x﹣6)﹣3(x+18)=12,去括号得,8x﹣24﹣3x﹣54=12,移项得,8x﹣3x=12+24+54,合并同类项得,5x=90,系数化为1得,x=18.(34).【解答】(34)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,.(35).【解答】(35),去分母得:3(x+2)﹣2(x﹣1)=12,去括号得:3x+6﹣2x+2=12,移项合并得:x=4.(36).【解答】(36),去分母,得:4x﹣2(2x+3)=24﹣(8﹣x),去括号,得:4x﹣4x﹣6=24﹣8+x,移项,得:4x﹣4x﹣x=24﹣8+6,合并同类项,得:﹣x=22,系数化为1,得:x=﹣22.【解答】(37)﹣1=去分母得:3(x+1)﹣6=2(2﹣3x),去括号得:3x+3﹣6=4﹣6x,移项并合并得:9x=7,系数化为1得:x=.(38)=4.【解答】(38)去分母,可得:3(x﹣3)+2(x﹣1)=24,去括号,可得:3x﹣9+2x﹣2=24,移项,可得:3x+2x=24+9+2,合并同类项,可得:5x=35,系数化为1,可得:x=7.(39).【解答】(39),去分母,得2(2x+1)﹣(5x﹣1)=﹣6,去括号,得4x+2﹣5x+1=﹣6,移项,得4x﹣5x=﹣6﹣1﹣2,合并同类项,得﹣x=﹣9,系数化为1,得x=9.(40).【解答】(40).2(2x+1)﹣(10x+1)=4,4x+2﹣10x﹣1=4,4x﹣10x=4﹣2+1,﹣6x=3.x=﹣0.5.【解答】(41)1﹣=,去分母得:15﹣3(x﹣3)=5(4﹣x),去括号得:15﹣3x+9=20﹣5x,移项得:﹣3x+5x=20﹣15﹣9,合并同类项得:2x=﹣4,把系数化为1得:x=﹣2.(42)﹣1=.【解答】(42)去分母得:3(3y﹣1)﹣12=2(5y﹣7),去括号得:9y﹣3﹣12=10y﹣14,移项得:9y﹣10y=﹣14+3+12,合并得:﹣y=1,解得:y=﹣1.(43)=1.【解答】(43)﹣=1,5(x+2)﹣3(2x﹣3)=15,5x+10﹣6x+9=15,5x﹣6x=15﹣10﹣9,﹣x=﹣4,x=4.(44).【解答】(44),去分母得:3(3x+5)=2×2x,去括号得:9x+15=4x,移项得:9x﹣4x=﹣15,合并同类项得:5x=﹣15,系数化为1得:x=﹣3.(45)=1﹣.【解答】(45)=1﹣,去分母,得2(2x﹣1)=4﹣(3﹣x),去括号,得4x﹣2=4﹣3+x,移项,得4x﹣x=4﹣3+2,合并同类项,3x=3,系数化成1,得x=1.(46).【解答】(46)去分母,得5×3x﹣2(4x﹣2)=﹣10,去括号,得15x﹣8x+4=﹣10,移项,得15x﹣8x=﹣10﹣4,合并同类项,得7x=﹣14,系数化为1,得x=﹣2.(47).【解答】(47)去分母得:2(1+2x)=3(1﹣x),去括号得:2+4x=3﹣3x,移项得:4x+3x=3﹣2,合并同类项得:7x=1,解得:x=.(48)解方程:.【解答】(50)解:,去分母,得2x+3(30﹣x)=30,去括号,得2x+90﹣3x=30,移项,得2x﹣3x=30﹣90,合并同类项,得﹣x=﹣60,系数化为1,得x=60.(49).【解答】(49)去分母,得3(x+2)﹣2(2x﹣3)=24,去括号,得3x+6﹣4x+6=24,移项,得3x﹣4x=24﹣6﹣6,合并,得﹣x=12,系数化为1,得x=﹣12.。

第三章 一元一次方程 单元培优检测试题 2023-2024学年人教版数学七年级上册

第三章 一元一次方程 单元培优检测试题 2023-2024学年人教版数学七年级上册

2023-2024学年人教版数学七年级上册第三章一元一次方程单元培优检测试题一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.若方程(m−2)x|2m−3|=6是关于x的一元一次方程,则m的值为( )A. 2B. 1C. 1或2D. 任何数2.在方程:5x+8y=4;x+5=0;x2+5x−2=0;2πx=4中,一元一次方程的个数为( )A. 1个B. 2个C. 3个D. 4个3.下列运用等式性质正确的是( )A. 如果a=b,那么a+c=b−cB. 如果a=b,那么ac =bcC. 如果ac =bc,那么a=b D. 如果a=3,那么a2=3a24.下列式子的变形中,正确的是( )A. 由6+x=10得x=10+6B. 由8x=4−3x得8x−3x=4C. 由3x+5=4x得3x−4x=−5D. 由2(x−1)=3得2x−1=35.一元一次方程x+3x=8的解是( )A. x=−1B. x=0C. x=1D. x=26.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为( )A. 2B. −2C. 1D. −17.下列移项正确的有.( )①12−x=−5,移项,得12−5=x;②−7x+3=−13x−2,移项,得13x−7x=−3−2;③2x+3=3x+4,移项,得2x−4=3x−3;④−5x−7=2x−11,移项,得11−7=2x−5x.A. 1个B. 2个C. 3个D. 4个8.已知关于x的方程2x+a−9=0的解是x=2,则a的值为( )A. 5B. 4C. 3D. 29.下列方程变形中,正确的是.( )A. 方程3x−2=2x+1,移项,得3x−2x=−1+2B. 方程3−x=2−5(x−1),去括号,得3−x=2−5x+1C. 方程23x=32,未知数系数化为1,得x=1D. 方程x−12=1化成x−1=210.解方程1−x+12=x4,去分母,去括号得( )A. 1−2x+2=xB. 1−2x−2=xC. 4−2x+2=xD. 4−2x−2=x11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中.( )A. 亏了10元钱B. 赚了10钱C. 赚了20元钱D. 亏了20元钱12.《孙子算经》中有一道题,原文是:今有四人共车,一车空;三人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每4人共乘一车,最终剩余1辆车;若每3人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程( )A. x4+1=x−93B. x+14=x3−9 C. x4−1=x+93D. x4+1=x+93二、填空题(本大题共8小题,共24.0分)13.已知(a−3)x|a|−2−5=2是关于x的一元一次方程,则a=.14.将方程4x+3y=6变形成用含y的代数式表示x,则x=.15.已知x=−2是方程a(x+3)=12a+x的解,则a=.16.若4x−1与7−2x的值互为相反数,则x=.17.用符号※定义一种新运算a※b=ab+2(a−b),若3※x=0,则x的值为.18.某人在解方程2x−13=x+a2−1去分母时,方程右边的−1忘记乘6,算得方程的解为x=2,则a的值为.19.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为元.20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2023次相遇在边.三、解答题(本大题共6小题,共60.0分。

解一元一次方程培优专项练习题

解一元一次方程培优专项练习题

解一元一次方程培优专项练习题一:选择题1、下列方程中,是一元一次方程的是( )(A );342=-x x (B );0=x (C );12=+y x (D ).11xx =- 2、根据“x 的3倍与5的和比x 的 少2”可列方程()A 、B 、C 、D 3、若方程 是关于x 的一元一次方程,则字母系数a 、b 和c 的值满足( )A 、 ,b=0,c 为任意数B 、C 、D 、 4、方程063=+x 的解的相反数是( )A.2 B.-2 C.3 D.-3 5、 当x=2时,代数式ax-2的值是4,那么,当x=-2时,这个代数式的值是( ) A 、-4 B 、-8 C 、8 D 、26、方程x (x+1)=0的根是()A 、0 B 、1 C 、0和1 D 、0和-17、已知关于x 的方程432x m -=的解是x=m,则m 的值是( )A.2 B.-2 C.2或7 D.-2或78、方程 的解是()A 、 B 、 C 、 D 、 二、填空题1、6、已知 是关于x 的一元一次方程,求m=2、已知代数式15+a 与)5(3-a 的值相等,那么=a ___.3、若3x+2与-5x-8互为相反数,则x-2的值为_______。4、已知方程x+1=-1与方程2x-k=-x 有相同的解,那么-k=5、若 是同类项,则3x+2y= 。

6、当k= 时,多项式 中不含xy 项。

7、已知-2是方程3|a|-x=1-2x 的解,那么a= 。

三、解答题1、解方1:(1)23579x x x -=++ (2)2x-3=3x-(x-2) (3)32)32(63=+-x2、解方程2:(1)3157146x x ---= (2)322126x x x -+-=-2353-=+x x 2353+=+x x ()2353-=+x x ()2353+=+x x 31()0122=++-c bx x a 21=a 0,0,21=≠≠c b a 0,0,21≠≠=c b a 为任意数c b a ,0,21≠=012=-x 2121-21±2±()()081122=++--x m x m 8213222+-+--x xy y kxy x 122213++y x ab b a 与(3)42331+-=--y y y (4) 42311212--=+-x x x3、解方程3:(1)35.012.02=+--x x (2)301.032.01=+-+x x四:能力提高1、解方程:(1) (2)(3)(4)(5) (6)(7) (8)()()()121212345--=+--x x x 633252212+-+=+--x x x x 2503.002.003.05.09.04.0-=+-+x x x 146151413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 3221221413223x x =-⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-22136132432-⎪⎭⎫ ⎝⎛---=+--x x x x ()()()()4614351241131+-=++-++x x x x 012.015018.021024.017---=-x x x2、解答题(1)关于x 的方程27x-32=11m 和x+2=2m 有相同的根,求m 的值(2)如果方程 的解也是当成|3x-2|=m 的解,求m 的值?(3)已知关于x 的方程9x-3=kx+14有整数解,那么满足条件的所有整数k 的解?(4)方程|x-5|+2x=-5的解是多少?方程|5x+6|=6x-5的解是多少?(5)当a 为何值时,关于x 的方程 ①有唯一解?②无解?(6)求适合下列条件的x① ② ③23252+-=-x x ()6612131--=+x ax a x 023=--x x 5342=++-x x 56151xx -=--。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程培优训练基础篇一、选择题1.把方程103.02.017.07.0=--x x 中的分母化为整数,正确的是( ) A.132177=--x x B.13217710=--x x C.1032017710=--x x D.132017710=--x x2.与方程x+2=3-2x 同解的方程是( ) A.2x+3=11 B.-3x+2=1 C.132=-x D.231132-=+x x 3.甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是( )A.7x=6.5x+5B.7x+5=6.5xC.(7-6.5)x=5D.6.5x=7x-5 4.适合81272=-++a a 的整数a 的值的个数是( ) A. 5 B. 4 C. 3 D. 25.电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A.0.81a 元 B.1.21a 元 C.21.1a 元 D.81.0a 元6.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了( )道题。

A.17B.18C.19D.207.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追击到超越卡车,需要花费的时间约是( ) A.1.6秒B.4.32秒C.5.76秒D.345.6秒8.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合作这项工程需天数为( ) A.y x +1 B.y x 11+ C.xy 1D. yx 111+9、若2x =-是关于x 的方程233x x a +=-的解,则代数式21a a -的值是( )A 、0B 、283-C 、29- D 、2910、一个六位数左端的数字是1,如果把左端的数字移到右端,那么所得的六位数等于原数的3倍,则原数为( )A 、142857B 、157428C 、124875D 、175248 二、填空题12.当m =_____时,方程(m -3)x |m|-2+m -3=0是一元一次方程。

13.若代数式b a a y x y x+--39123与是同类项,则a=_________,b=_______14.对于未知数为x 的方程x ax 21=+,当a 满足______________时,方程有唯一解,而当a 满足______________时,方程无解。

15.关于x 的方程:(p+1)x=p-1有解,则p 的取值范围是______ 16.方程∣2x-6∣=4的解是________ 17.已知0)3(|4|2=-++-y y x ,则=+y x 2__________18.如果2、 2、 5和x 的平均数为5,而3、 4、 5、 x 和y 的平均数也是5,那么x =_____,y =____. 19.若方程35+3(x-12003)=45,则代数式7+30(x-12003)的值是20.方程5665-=+x x 的解是21.已知:2+=x x ,那么273192011++x x 的值为22.一只轮船在相距80千米的码头间航行,顺水需4小时,逆水需5小时,则水流速度为 23.甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一样多.24、关于x 的方程()()k x k m x m -=-有唯一解,则k 、m 应满足的条件是_________。

25、已知方程524x m mx x -=--的解在2与10之间(不包括2和10),则m 的取值为___________________________。

三、综合练习题: 26.解下列方程:(1)x x 1010019-=- (2)x x -=+343227.已知关于x 的方程x a x x 4)]3(2[3=--和185143=--+xa x 有相同的解,求这个相同的解。

28.已知431)120111(441=++x ,那么代数式20111872482011x x +•+的值。

29.已知关于x 的方程23)12(-=-x x a 无解,试求a 的值。

30.已知关于x 的方程917x kx -=的解为整数,且k 也为整数,求k 的值。

31.一运输队运输一批货物,每辆车装8吨,最后一辆车只装6吨,如果每辆车装7.5吨,则有3吨装不完。

运输队共有多少辆车?这批货物共有多少吨?32.一个两位数,十位上的数字是个位上数字的2倍,如果把个位上的数与十位上的数对调得到的数比原数小36,求原来的两位数.33.一个三位数满足的条件:①三个数位上的数字和为20;②百位上的数字比十位上的数字大5;③个位上的数字是十位上的数字的3倍。

这个三位数是几?34.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是多少?35.某企业生产一种产品,每件成本400元,销售价为510元,本季度销售了m件,于是进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售降低4%,销售量提高10%,要使销售利润保持不变,该产品每件成本价应降低多少元?36.一队学生去校外郊游,他们以每小时5千米的速度行进,经过一段时间后,学校要将一紧急的通知传给队长。

通讯员骑自行车从学校出发,以每小时14千米的速度按原路追上去,用去10分钟追上学生队伍,求通讯员出发前,学生队伍走了多长的时间。

41.一列车车身长200米,它经过一个隧道时,车速为每小时60千米,从车头进入隧道到车尾离开隧道共2分钟,求隧道长。

42.某地上网有两种收费方式,用户可以任选其一:(A)记时制:2.8元/小时,(B)包月制:60元/月。

此外,每一种上网方式都加收通讯费1.2元/小时。

(1)某用户上网20小时,选用哪种上网方式比较合算?(2)某用户有120元钱用于上网(1个月),选用哪种上网方式比较合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式。

43.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?44.某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?培优篇讲解知识点一:定义例1:若关于x 的方程()0212=+-m x m 是一元一次方程,求m 的值,并求出方程的解。

解:由题意,得到⎩⎨⎧≠-=0112m m 1,12=∴=m m 或1-=m 当1=m 时,01=-m ,1=∴m 不合题意,舍去。

∴当1-=m 时,关于x 的方程()0212=+-m x m 是一元一次方程,即022=+-x ,1=∴x同步训练:1、当m = 时,方程()0332=-+--m x m m 是一元一次方程,这个方程的解是 。

例2:下列变形正确的是( )A .如果bx ax =,那么b a =B .如果()11+=+a x a ,那么1=xC .如果y x =,那么y x -=-55D .如果()112=+x a ,那么112+=a x 3、若mmy x 43,12+=+=,则用含x 的式子表示y = 。

知识点二:含绝对值的方程绝对值符号中含有未知数的一次方程叫含绝对值符号的一次方程,简称绝对值方程,解这类方程的基本思路是:脱去绝对值符号,将原方程转化为一元一次方程求解,其基本类型与解法是: 1、形如()0≥=+c c b ax 的最简绝对值方程这类绝对值方程可转化为两个普通一元一次方程:c b ax =+或c b ax -=+ 2、含多重或多个绝对值符号的复杂绝对值方程这类绝对值方程可通过分类讨论转化为最简绝对值方程求解。

解绝对值方程时,常常要用到绝对值的几何意义,去绝对值符号法则、常用的绝对值基本性质等与绝对值相关的知识、技能与方法。

例3:方程525-=+-x x 的解是 。

解,525--=-x x 525--=-∴x x ①或525+=-x x ② 由①得0=x ;由②得10-=x ,∴此方程的解是0=x 或10-=x 同步训练 1、若9=x 是方程a x =-231的解,则a = ;又若当1=a 时,则方程a x =-231的解是 。

例4:方程1735=--+x x 的解有( ) A .1个 B .2个 C .3个 D .无数个 解:运用“零点分段法”进行分类讨论由05=+x 得,5-=x ;又由073=-x 得,37=x 。

所以原方程可分为37,375,5>≤<--≤x x x 三种情况来讨论。

当5-≤x 时,方程可化为()()1735=-++-x x ,解得5.6=x 但5.6不满足5-≤x ,故当5-≤x 时,方程无解;当375≤<-x 时,方程可化为()1735=-++x x ,解得43=x ,满足37435≤<-; 当37>x 时,方程可化为()1735=--+x x ,解得5.5=x ,满足37>x 。

综上可知,原方程的解有2个,故选B 。

例5:(“希望杯”邀请赛)求方程431=-++x x 的整数解。

利用绝对值的几何意义借且数轴求解。

根据绝对值的几何意义知:此式表示点()x P 到A 点和B 点的距离之和4=+PB PA 。

又P AB ∴=,4 点只能在线段AB 上,即31≤≤-x 。

又x 为整数,∴整数x 只能是3,2,1,0,1-,共5个 知识点三:一元一次方程解的情况一元一次方程ax=b 的解由a ,b 的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b ≠0,方程变为0·x=b ,则方程无解例6、 解关于x 的方程(mx-n)(m+n)=0.分析 这个方程中未知数是x ,m ,n 是可以取不同实数值的常数,因此需要讨论m ,n 取不同值时,方程解的情况.3BA例8、 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.例9、若abc=1,解方程【分析】像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10、若a,b,c是正数,解方程:【分析】用两种方法求解该方程。

相关文档
最新文档