【精选】一元一次方程单元培优测试卷

合集下载

第三章 一元一次方程 单元培优卷 七年级数学上册

第三章 一元一次方程 单元培优卷  七年级数学上册

2021-2022学年度七年级上第三章一元一次方程单元培优卷一.选择题1.下列各式中,是一元一次方程的是( )A .4x +2y =3B .y +5=0C .x 2=2x ﹣1D .x ﹣42.下列说法正确的是( )A .方程6x =3的解是x =2B .方程14x =18的解是x =2C .方程−4x =−8的解是x =−2D .方程4+2x =0的解是x =−2 3.解一元一次方程3(2)3212x x --=-去分母后,正确的是( ) A .3(2﹣x )﹣3=2(2x ﹣1) B .3(2﹣x )﹣6=2x ﹣1C .3(2﹣x )﹣6=2(2x ﹣1)D .3(2﹣x )+6=2(2x ﹣1) 4.若方程2x ﹣kx +1=5x ﹣2的解为﹣1,则k 的值为( )A .10B .﹣4C .﹣6D .﹣85.下列所给条件,不能列出方程的是( )A .某数比它的平方小6B .某数加上3,再乘以2等于14C .某数与它的的差D .某数的3倍与7的和等于296.今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄是儿子年龄的4倍.设今年儿子的年龄为x 岁,则下列式子正确的是( )A .4x -5=3(x -5)B .4x+5=3(x+5)C .3x+5=4(x+5)D .3x -5=4(x -5)7.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后甲乙两人合作x 完成这项工程,则可以列的方程是( )A .15040404=++x B .15040404=⨯+x C .150404=+x D .15040404=++x x 8.某铁路桥长,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了,整列火车完全在桥上的时间共.则火车的长度为( )A .B .C .D .二.填空题 9. 一元一次方程3x −6=0的解是________.10.在①21x -;②213x x +=;③π3π3-=-;④13t +=中,等式有_______,方程有_______(序号)11.某小区2020年绿化面积为2000平方米,计划2022年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是 .12.若关于x 的一元一次方程|a |x +2=0的解是x =﹣2,则a = .13.三个连续奇数的和是15,那么其中最大的奇数为___________.14.若关于x 的方程x +3=2a 和2x −6=4有相同的解,则a =________.15. 已知某商品降价80%后的售价为2800元,则该商品的原价为______元.16. 一通讯员骑摩托车需在规定时间内,把文件送到某地,若每小时走60千米,就早到12分钟,若每小时走50千米,则要迟到7分钟,求路程长为_______千米.三.解答题17. 解下列方程:(1)5278x x +=- (2)51763y -= 18.已知某人从甲地到乙地,一半路程骑自行车,一半路程步行;返回时13的时间骑车,23的时间步行.骑车的速度为15千米/时,步行的速度为5千米/时,且返回时比去时所用的时间多2小时,求甲.乙两地的距离.19.甲.乙两人在400米的环行跑道上进行早锻炼,甲慢跑速度为105米/分,乙步行速度为25米/分,两人同时同地同向出发,经过多少时间,两人第一次相遇?20.现用21张纸板制作盒子,每张纸板可制作盒身(侧面)2个或盒底3个,一个盒身配两个盒底.(1)为不浪费纸板,若设用x 张纸板制作盒身,剩下_______张制作盒底,使得盒身与盒底刚好配套,列出方程并求解出x .(2)若有63张一样的纸板,问一共可制作多少个盒子?23. 整理一批图书,如果由一个人单独做要用30ℎ,现先安排一部分人用1ℎ整理,随后又增加6人和他们一起又做了2ℎ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?21.如图,已知点A,B是数轴上原点O两侧的两点,其中点A在负半轴上,点B在正半轴上,AO =2,OB=10.动点P从点A出发以每秒2个单位长度的速度向右运动,到达点B后立即返回,速度不变;动点Q从点O出发以每秒1个单位长度的速度向右运动,当点Q到达点B时,动点P,Q停止运动.设P,Q两点同时出发,运动时间为t秒.(1)当点P从点A向点B运动时,点P在数轴上对应的数为.当点P从点B返回向点O运动时,点P在数轴上对应的数为(以用含t的代数式表示)(2)当t为何值时,点P,Q第一次重合?(3)当t为何值时,点P,Q之间的距离为3个单位?。

一元一次方程 单元培优测试

一元一次方程 单元培优测试

一元一次方程 单元培优测试1.已知关于x 的方程5(21)a x a x +=-+的解是1x =-,则a 的值是 ( ).A .-5B .-6C .-7D .8 2.方程2412332x x -+-=-,去分母得 ( ). A .22(24)33(1)x x --=-+ B . 123(24)183(1)x x --=-+C .12(24)18(1)x x --=-+D . 62(24)9(1)x x --=-+3、下列说法正确的是 ( )(A )在等式ab ac =两边除以a ,可得b c =(B )在等式b c a a=两边都除以a ,可得b c = (C )在等式a b =两边都除以(21c +),可得2211a b c c =++ (D )在等式22x a b =-两边除以2,可得x a b =- 4、一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来两位数是 ( )A.54B.27C.72D.455.某项工作,甲单独做要4天完成,乙单独做要6天完成,若甲先做1天后,然后甲、乙合作完成此项工作,若设甲一共做了x 天,所列方程是( ).A.x +14+x 6=1B.x 4+x +16=1C.x 4+x -16=1D.x 4+14+x 6=1 6. 某市举行的青年歌手大奖赛今年共有 人参加,比赛的人数比去年增加 20%还多3人,设去年参赛的有 人,则 为( )A. B.C.D. 7.某商品涨价20%后欲恢复原价,应该必须下降的百分数为()A .17% B.18 C.19% D.20%8. 钟表的时针与分针在运行过程中,每隔一定时间就相遇一次,相遇间隔的时间是()A .1小时 B. 小时 C. 小时 D. 小时9. 汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到(120%)3a ++(120%)3a +-回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x 米,根据题意,列出方程为( )A. 2x+4×20=4×340B. 2x-4×72=4×340C. 2x+4×72=4×340D. 2x-4×20=4×34010、某单位A 、B 、C 三个部门的人数依次是84人、56人、60人,如果每个部门都按相同的比例裁减人员,使三个部门共留下150人,那么A 部门留下的人数是( ).(A )65人 (B )63人 (C )60人 (D )56人二.填空题11、的值为是一元一次方程,则的方程关于m m x m x m x 0=4+3)+(22)+(2--_______ ,方程的解为_______12. 如果的值为,则的值大比x x x 3233-253-2- 13. 日历中同一竖列相邻三个数的和为63,则这三个数分别为______、______ 、______。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列方程中,不是一元一次方程的是:A. 3x - 5 = 0B. 2x + 3y = 6C. 4x = 12D. 5x - 7 = 8答案:B2. 解方程2x - 3 = 7,x的值是:A. 5B. 10C. -5D. -10答案:A3. 方程3x + 2 = 11的解是:A. x = 1B. x = 3C. x = 2D. x = 4答案:B4. 方程5x - 15 = 0的解是:A. x = 3C. x = 5D. x = -5答案:A5. 方程2x + 4 = 10的解是:A. x = 3B. x = 2C. x = 1D. x = 4答案:B6. 方程6x - 9 = 15的解是:A. x = 4B. x = 3C. x = 2D. x = 1答案:A7. 方程4x + 8 = 20的解是:A. x = 2B. x = 3C. x = 4D. x = 5答案:B8. 方程3x - 7 = 2x + 8的解是:B. x = 8C. x = 7D. x = 5答案:A9. 方程2x = 6的解是:A. x = 3B. x = 2C. x = 1D. x = 0答案:B10. 方程5x + 10 = 25的解是:A. x = 3B. x = 2C. x = 1D. x = 4答案:A二、填空题(每题2分,共20分)11. 方程ax + b = 0的解是 x = _______。

答案:-b/a12. 方程2x - 5 = 3,解得 x = _______。

答案:413. 方程3x + 6 = 0,解得 x = _______。

答案:-214. 方程4x = 16,解得 x = _______。

答案:415. 方程5x - 2 = 18,解得 x = _______。

答案:416. 方程6x + 12 = 30,解得 x = _______。

第11章一元一次方程(单元测试)培优卷(原卷版)

第11章一元一次方程(单元测试)培优卷(原卷版)

第11章《一元一次方程》培优卷考试时间:120分钟 满分:120分一.选择题(共10小题,每小题3分,满分30分)2.方程42x x -=-的解是( )A .1x =B .3x =C .2x =D .0x =4.某种商品的进价为100元,由于该商品积压,商店准备按标价的8折销售,可保证利润20元,则标价为( )A .116元B .145元C .150元D .160元5.关于y 的方程()321a y -=+与方程10y -=的解相同,则a 的值为( )A .3B .1C .1-D .3-6. “鸡兔同笼”问题是中国古代著名典型趣题之一,大约在1500年前,《孙子算经》中就记载了这个有趣的问题:今有雄(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有多少只鸡和兔?如果我们设有x 只鸡,则可列方程( )A .24(35)94x x +-=B .42(35)94x x +-=C .24(94)35x x +-=D .42(94)35x x +-=7.我国古代的“九宫格”是由33⨯的方格构成的,每个方格内均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫格”的一部分,请你推算x 的值是( )A .2021-B .2020-C .2019-D .2017- 8.观察下列两行数: 1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( ) A .18 B .19 C .20 D .219.若定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.若关于x 的方程30x m +=与方程4210x x -=+是“美好方程”,则m 的值是( )A .9B .9-C .12D .12-10.如图,甲、乙两动点分别从正方形ABCD 的顶点,A C 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2024次相遇在边( )上.A .AB B .BC C .CD D .DA二.填空题(共6小题,每小题3分,满分18分)三.解答题(共3题,每题6分,满分18分)四.解答题(共3题,每题8分,满分24分)20.某商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,21.菲乐童装店购进A、B两种款式羽绒服,每件A羽绒服比每件B羽绒服进价多200元;如果购进3件A 羽绒服和5件B羽绒服的进价相同.(1)求A、B两种羽绒服每件进价分别为多少元?(2)若购进A、B两款羽绒服共224件,一共花费了92000元,求购进A、B两款羽绒服各多少件?(3)在(2)的条件下,A羽绒服售价为600元,B羽绒服加价30%后出售,B羽绒服全部售出,此时A羽绒服剩余部分未售出,菲乐童装店决定剩下的羽绒服8折出售,所有羽绒服售出后,菲乐童装店获利11%,求A羽绒服按原价售出了多少件?22.某车间计划加工一批产品.如果每小时加工产品10个,就可以在预定时间完成任务;实际加工两个小时后,提高了加工速度,平均每小时多加工了2个,结果提前1小时完成任务,设这批产品一共有x个.(1)实际加工两个小时后还剩______个产品;(2)这批产品一共有多少个?(3)若这批产品销售时按成本价提高40%后进行标价,按标价的8折销售时,每个产品仍可以获利15元,这批产品的总成本为多少元?五.解答题(共2题,每题9分,满分18分)23.定义一种新的运算“*”:++=+;(3)*(15)18--=+;(14)*(7)21--=-;(12)*(14)26+-=-;(15)*(17)32*-=-=+0(15)(15)*015+=+=+;(13)*00*(13)13(1)仔细观察,归纳“*”运算的法则:两数进行“*”运算时, .特别地,0与任何数进行“*”运算,或任何数与0进行“*”运算时, ;(2)计算:[](12)*0*(13)--= ;(3)若a 为非负数,且3*3*a a =-,求出a 的值.24.如图,已知数轴上点A 表示的数为12,B 是数轴上一点.且20AB =.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒.(1)写出数轴上点B 表示的数___,点P 表示的数___(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P ,Q 同时出发,问点P 运动多少秒时追上点Q ;(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.六.解答题(满分12分)25.若A 、B 、C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是点是[],A B 的好点.(1)如图1,点A 表示的数为1-,点B 表示的数为2,表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[],A B 的好点.又如表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D____[],A B 的好点,但点D______[],B A 的好点(请在横线上填是或不是..........) (2)如图2,M 、N 为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.求[],M N 的好点;(3)A 、B 为数轴上两点,点A 所表示的数为2-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A停止.当经过多少秒时,P,A和B中恰有一个点为其余两点的好点?。

人教版(2024)七年级上册数学 第5章 一元一次方程 单元培优检测题

人教版(2024)七年级上册数学  第5章   一元一次方程   单元培优检测题

人教版(2024)七年级上册数学第5章一元一次方程单元提升训练一.选择题1.若与可以合并成一项,则的值是()A.B.1C.3D.92.若x=1是方程2x+a=0的解,则a=()A.1B.2C.﹣1D.﹣23.下列等式的变形中,正确的是()A.如果,那么a=b B.如果|a|=|b|,那么a=bC.如果ax=ay,那么x=yD.如果m=n,那么4.方程去分母得()A.2+2(2x﹣4)=﹣(x﹣7)B.12+2(2x﹣4)=﹣x﹣7C.12+(2x﹣4)=﹣(x﹣7)D.12+2(2x﹣4)=﹣(x﹣7)5.解方程2(x﹣2)=5﹣3(x﹣2)时,去括号正确的是()A.2x﹣4=5﹣3x+6B.x﹣4=5﹣x+6C.2x﹣2=5﹣3x﹣2D.2x﹣4=5﹣3x﹣66.若某件商品按原价提价后,欲恢复原价,应降价(A.B.C.D.9.“⊕”表示一种运算符号,其意义是2a b a b ⊕=-,若()132x ⊕⊕=,则x 等于()A.32B.2C.12D.110.如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为()A.2400cm B.2500cm C.2600cm D.24000cm 二.填空题11.若式子3x+4与2﹣5x 的值相等,则x 的值为.12.关于x 的多项式3(4)b a x x x b --+-是二次三项式,则a=_____b=______14.乐乐在解方程时,不小心把其中一个数字用墨水污染成了,他翻阅了答案知道这个方程的解为,于是他判断污染了的数字应该是______.三.解答题17.解下列方程:(1)223146x x +--=;(2)()()1112225x x -=-+18.周末,甲乙两人沿环形生态跑道散步,甲每分钟行80米,乙每分钟行120米,跑道一圈长400米.求:(1)若甲乙两人同时同地同向出发,多少分钟后他们第一次相遇?(2)若两人同时同地反向出发,多少分钟后他们第一次相距100米?19.在阿阳中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇.20.己知a,b满足,a,b分别对应这数轴上的A,B两点.(1)__________,__________,并在数轴上画出A,B两点;(2)若点P从点A出发,以每秒2个单位长度的速度向数轴正半轴运动,求运动时间为多少时,点P 到A的距离是点P到B的距离的2倍?(3)数轴上还有一点C对应的数为50,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度向点C运动.P点到达C点后,再立刻以同样的速度返回,向点A运动,当Q运动到点C时,整个运动停止.求点P和点Q运动多少秒时,P,Q两点之间的距离为4?并求此时点Q对应的数.21.某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)3565标价(元/件)50100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,请问这批商品全部售出后,该商场共获利多少元?。

第三章 一元一次方程 单元培优检测试题 2023-2024学年人教版数学七年级上册

第三章 一元一次方程 单元培优检测试题 2023-2024学年人教版数学七年级上册

2023-2024学年人教版数学七年级上册第三章一元一次方程单元培优检测试题一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.若方程(m−2)x|2m−3|=6是关于x的一元一次方程,则m的值为( )A. 2B. 1C. 1或2D. 任何数2.在方程:5x+8y=4;x+5=0;x2+5x−2=0;2πx=4中,一元一次方程的个数为( )A. 1个B. 2个C. 3个D. 4个3.下列运用等式性质正确的是( )A. 如果a=b,那么a+c=b−cB. 如果a=b,那么ac =bcC. 如果ac =bc,那么a=b D. 如果a=3,那么a2=3a24.下列式子的变形中,正确的是( )A. 由6+x=10得x=10+6B. 由8x=4−3x得8x−3x=4C. 由3x+5=4x得3x−4x=−5D. 由2(x−1)=3得2x−1=35.一元一次方程x+3x=8的解是( )A. x=−1B. x=0C. x=1D. x=26.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为( )A. 2B. −2C. 1D. −17.下列移项正确的有.( )①12−x=−5,移项,得12−5=x;②−7x+3=−13x−2,移项,得13x−7x=−3−2;③2x+3=3x+4,移项,得2x−4=3x−3;④−5x−7=2x−11,移项,得11−7=2x−5x.A. 1个B. 2个C. 3个D. 4个8.已知关于x的方程2x+a−9=0的解是x=2,则a的值为( )A. 5B. 4C. 3D. 29.下列方程变形中,正确的是.( )A. 方程3x−2=2x+1,移项,得3x−2x=−1+2B. 方程3−x=2−5(x−1),去括号,得3−x=2−5x+1C. 方程23x=32,未知数系数化为1,得x=1D. 方程x−12=1化成x−1=210.解方程1−x+12=x4,去分母,去括号得( )A. 1−2x+2=xB. 1−2x−2=xC. 4−2x+2=xD. 4−2x−2=x11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中.( )A. 亏了10元钱B. 赚了10钱C. 赚了20元钱D. 亏了20元钱12.《孙子算经》中有一道题,原文是:今有四人共车,一车空;三人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每4人共乘一车,最终剩余1辆车;若每3人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程( )A. x4+1=x−93B. x+14=x3−9 C. x4−1=x+93D. x4+1=x+93二、填空题(本大题共8小题,共24.0分)13.已知(a−3)x|a|−2−5=2是关于x的一元一次方程,则a=.14.将方程4x+3y=6变形成用含y的代数式表示x,则x=.15.已知x=−2是方程a(x+3)=12a+x的解,则a=.16.若4x−1与7−2x的值互为相反数,则x=.17.用符号※定义一种新运算a※b=ab+2(a−b),若3※x=0,则x的值为.18.某人在解方程2x−13=x+a2−1去分母时,方程右边的−1忘记乘6,算得方程的解为x=2,则a的值为.19.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为元.20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2023次相遇在边.三、解答题(本大题共6小题,共60.0分。

第6章 一元一次方程单元测试(培优卷)

第6章 一元一次方程单元测试(培优卷)

第6章 一元一次方程单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间80分钟,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·湖南七年级月考)下列说法错误的是( )A .若a b =,则ac bc =B .若ac bc =,则a b =C .若22a c b c -=-,则a b =D .若a b =,则2211a b c c =++ 2.(2021·全国七年级)已知方程(1)30m m x-+=是关于x 的一元一次方程,则m 的值是( ) A .±1 B .1 C .-1 D .0或13.(2020·山东七年级月考)把方程10.2110.40.7x x +--=中的分母化为整数,结果应为( ). A .10121147x x +--= B .1010210147x x +--= C .101211047x x +--= D .552101027x x +--= 4.(2020·西安市铁一中学七年级月考)有一玻璃密封器皿如图1,测得其底面直径为20cm ,高20cm ,现内装蓝色溶液若干,如图②放置时,测得液面高10cm ,如图③放置时,测得液面高16cm .则该玻璃密封器皿总容量为( )A .1200π3cmB .1300π3cmC .1400π3cmD .1500π3cm5.(2020·湖南广益实验中学七年级月考)规定:用{}m 表示大于m 的最小整数,例如5{}32=,{4}5=,{1.5}1-=-等;用[]m 表示不大于m 的最大整数,例如7[]32=,[2]2=,[ 3.2]4-=-,如果整数x 满足关系式:2{}3[]32x x +=,则x 的值为( )A .3B .5-C .6D .76.(2021·广东七年级期末)甲乙两地相距180km ,一列慢车以40km/h 的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h 的速度从甲地匀速驶往乙地.两车相继到达终点乙地,再此过程中,两车恰好相距10km 的次数是( )A .1B .2C .3D .47.(2020·安徽七年级期中)方程···13153520192021x x x x ++++=⨯的解是x =( ) A .20212020 B .20211010 C .20212019 D .101020218.(2020·浙江七年级)设一列数a 1,a 2,a 3,…,a 2015,…中任意三个相邻的数之和都是20,已知a 2=2x ,a 18=9+x ,a 65=6﹣x ,那么a 2020的值是( )A .2B .3C .4D .59.(2021·全国七年级)某原料供应商对购买其原料的顾客实行如下优惠办法: (1)一次购买金额不超过1万元,不予优惠; (2)一次购买金额超过1万元,但不超过3万元,九折优惠; (3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某公司分两次在该供应商处购买原料,分别付款7800元和25200元.如果该公司把两次购买的原料改为一-次购买的话,那么该公司一共可少付款( )A .3360 元B .2780 元C .1460 元D .1360元10.(2020·湖北七年级期末)如图,点,C D 为线段AB 上两点,9AC BD +=,且75AD BC AB +=,设CD t =,则方程()()371232t x x x --=-+的解是( )A .2x =B .3x =C .4x =D .5x =11.(2020·浙江七年级期末)对一个正整数x 进行如下变换:若x 是奇数,则结果是31x +;若x 是偶数,则结果是12x .我们称这样的操作为第1次变换,再对所得结果进行同样的操作称为第2次变换,……以此类推.如对6第1次变换的结果是3,第2次变换的结果是10,第3次变换的结果是5……若正整数a 第6次变换的结果是1,则a 可能的值有( )A .1种B .4种C .32种D .64种12.(2021·重庆七年级期末)整数a 满足36a <≤,若a 使得关于x 的方程()631ax x +=-的解为整数,则满足条件的所有整数a 的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上) 13.(2020·西安铁一中滨河学校七年级月考)若方程415x -=与203a x --=的解相同,则a 的值为_______. 14.(2020·安徽七年级月考)按照如图所示的计算程序,若输出的结果为13,则输入的正数x 可以是______.15.(2020·镇江市外国语学校七年级月考)如图,在相距150个单位长度的直线跑道AB 上,机器人甲从端点A 出发,匀速往返于端点A 、B 之间,机器人乙同时从端点B 出发,以大于甲的速度匀速往返于端点B 、A 之间.他们到达端点后立即转身折返,用时忽略不计.若这两个机器人第一次迎面相遇时,相遇地点与点A 之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A 之间的距离则为_____个单位长度.16.(2021·福建七年级月考)一列方程如下排列:1142x x -+=的解是2x =; 2162x x -+=的解是3x =; 3182x x -+=的解是4x =;… 根据观察得到的规律,写出其中解是2021x =的方程:______.17.(2020·浙江七年级期中)瑞士大数学家列昂纳德·欧拉(1707~1783)在他的一生中,为人类作出了卓越的贡献,留下了886篇论文和著作,几乎在数学的每个分支中都留下了他的足迹.在他的名著《代数基础》一书中,载有他着意收集到的许多趣题,下面一例就是该书中的一个趣题:父亲临终时立下遗嘱,按下述方式分配遗产:老大分的100瑞士法郎和剩下的十分之一;老二分的200瑞士法郎和剩下的十分之一;老三分的300瑞士法郎和剩下的十分之……依此类推,分给其余的孩子.最后发现,遗产全部分完后所有孩子分的的遗产相等.问:遗产总数是_______瑞士法郎,孩子人数是_______人.18.(2020·浙江七年级期末)圆形钟面上从2点整到4点整,时针和分针成60度角时的时间是__________.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)三、解答题19.(2020·阳高县第二中学校七年级月考)解下列方程:(1)14233x x-=+(2)3(x-3)-2(2x-5)=6(3)21101211362x x x-++-=-(4)0.310.1310.20.03x x--=20.(2021·全国七年级)已知x=m与x=n分别是关于x的方程ax+b=0(a≠0)与cx+d=0(c≠0)的解.(1)若关于x的方程ax+b=0(a≠0)的解与方程6x-7=4x-5的解相同,求m的值;(2)当n=1时,求代数式3c2+cd+2c-2(12cd32+c2-d)的值;(3)若|m-n|12=,则称关于x的方程ax+b=0(a≠0)与cx+d=0(c≠0)为“差半点方程”.试判断关于x的方程4042x92-=9×2020﹣2020t+x,与4040x+4=8×2021﹣2020t﹣x,是否为“差半点方程”,并说明理由.21.(2020·重庆礼嘉中学七年级月考)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳20套,乙每天修桌凳比甲多5套,甲单独修完这些桌凳比乙单独修完多用9天,学校每天付甲组80元修理费,付乙组110元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?22.(2021·福建七年级月考)某购物网站上的一种小礼品按销售量分三部分制定阶梯销售单价,如下表:(1)“双十一”期间,购物总金额累计满300元可使用50元购物津贴(即累计总金额每满300减50元),若购买75件,花费______元;若购买120件,花费______元;若购买240件,花费______元.(2)“双十一”期间,王老师购买这种小礼品共花了342元,列方程求王老师购买这种小礼品的件数.(3)“双十二”即将来临,但“双十二”期间不能使用购物津贴,王老师和李老师各自单独在该网站购买这种小礼品,他们一共购买了400件,其中王老师的购买数量大于李老师的购买数量,他们一共花费1331元,请问王老师和李老师各购买这种小礼品多少件?23.(2021·湖北七年级期末)数形结合思想是通过数和形之间的对应关系和相互转化来解决问题的数学思想方法.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”(1)(问题背景)往返于甲、乙两地的客车,中途停靠2个车站(来回票价一样),可以从任意站点头票出发且任意两站间的票价都不同,共有___________种不同的票价,需准备________种车票.聪明的小周是这样思考这个问题的,她用A,B,C,D,4个点表示车站,每两站之间的票价用相应两点间的线段表示,共连出多少条线段,就有多少种不同的票价.(2)(迁移应用)A,B,C,D,E,F六支足球队进行单循环比赛,当比赛到某一天时,统计出A,B,C,D,E五支队已经分别比赛了5,4,3,2,1场球,则还没有与B队比赛的球队是_____队.(3)(拓展创新)某摄制组从A市到B市有一天的路程,计划上午比下午多走100千米到C市吃午饭,但由于堵车,中午才赶到一个小镇,只行驶了上午原计划的三分之一,过了小镇,汽车行驶了400千米,傍晚才停下来休息,司机说,再走从C市到这里的路程的二分之一就到达目的地了,求A,B两市相距多少千米?24.(2020·武汉市南湖中学七年级月考)已知有理数,a b满足(a+20)2+(b-30)2=0,且在数轴上对应的点分别是A和B两点(如图)我们把数轴上A、B两点之间的距离用AB a b表示.(1)求AB的值(2)若数轴上有一点C,满足2AC=3BC,求C点表示的数.(3)若动点P和Q分别从A、B两点出发,分别以2单位/s和4单位/s的速度运动,Q点向左运动,P点运动到何处时PQ=30?。

解一元一次方程培优专项练习题

解一元一次方程培优专项练习题

解一元一次方程培优专项练习题一:选择题1、下列方程中,是一元一次方程的是( )(A );342=-x x (B );0=x (C );12=+y x (D ).11xx =- 2、根据“x 的3倍与5的和比x 的 少2”可列方程()A 、B 、C 、D 3、若方程 是关于x 的一元一次方程,则字母系数a 、b 和c 的值满足( )A 、 ,b=0,c 为任意数B 、C 、D 、 4、方程063=+x 的解的相反数是( )A.2 B.-2 C.3 D.-3 5、 当x=2时,代数式ax-2的值是4,那么,当x=-2时,这个代数式的值是( ) A 、-4 B 、-8 C 、8 D 、26、方程x (x+1)=0的根是()A 、0 B 、1 C 、0和1 D 、0和-17、已知关于x 的方程432x m -=的解是x=m,则m 的值是( )A.2 B.-2 C.2或7 D.-2或78、方程 的解是()A 、 B 、 C 、 D 、 二、填空题1、6、已知 是关于x 的一元一次方程,求m=2、已知代数式15+a 与)5(3-a 的值相等,那么=a ___.3、若3x+2与-5x-8互为相反数,则x-2的值为_______。4、已知方程x+1=-1与方程2x-k=-x 有相同的解,那么-k=5、若 是同类项,则3x+2y= 。

6、当k= 时,多项式 中不含xy 项。

7、已知-2是方程3|a|-x=1-2x 的解,那么a= 。

三、解答题1、解方1:(1)23579x x x -=++ (2)2x-3=3x-(x-2) (3)32)32(63=+-x2、解方程2:(1)3157146x x ---= (2)322126x x x -+-=-2353-=+x x 2353+=+x x ()2353-=+x x ()2353+=+x x 31()0122=++-c bx x a 21=a 0,0,21=≠≠c b a 0,0,21≠≠=c b a 为任意数c b a ,0,21≠=012=-x 2121-21±2±()()081122=++--x m x m 8213222+-+--x xy y kxy x 122213++y x ab b a 与(3)42331+-=--y y y (4) 42311212--=+-x x x3、解方程3:(1)35.012.02=+--x x (2)301.032.01=+-+x x四:能力提高1、解方程:(1) (2)(3)(4)(5) (6)(7) (8)()()()121212345--=+--x x x 633252212+-+=+--x x x x 2503.002.003.05.09.04.0-=+-+x x x 146151413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 3221221413223x x =-⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-22136132432-⎪⎭⎫ ⎝⎛---=+--x x x x ()()()()4614351241131+-=++-++x x x x 012.015018.021024.017---=-x x x2、解答题(1)关于x 的方程27x-32=11m 和x+2=2m 有相同的根,求m 的值(2)如果方程 的解也是当成|3x-2|=m 的解,求m 的值?(3)已知关于x 的方程9x-3=kx+14有整数解,那么满足条件的所有整数k 的解?(4)方程|x-5|+2x=-5的解是多少?方程|5x+6|=6x-5的解是多少?(5)当a 为何值时,关于x 的方程 ①有唯一解?②无解?(6)求适合下列条件的x① ② ③23252+-=-x x ()6612131--=+x ax a x 023=--x x 5342=++-x x 56151xx -=--。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。

(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。

(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。

2.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。

(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.3.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。

(1)求饮用水和蔬菜各有多少件。

(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。

已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。

(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元。

该单位应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)解:设蔬菜有x件,根据题意得解得:答:蔬菜有件、饮用水有件(2)解:设安排甲种货车a辆,根据题意得解得:∵a为正整数∴或或∴有三种方案:①甲种货车2辆,乙种货车6辆;②甲种货车3辆,乙种货车5辆;③甲种货车4辆,乙种货车4辆(3)解:方案①:(元)方案②:(元)方案③:(元)∵∴选择方案①可使运费最少,最少运费是元【解析】【分析】(1)设蔬菜有x件,根据题意列出方程,求出方程的解,即可求解;(2)设安排甲种货车a辆,根据题意列出不等式组,求出不等式组的解集,由a为正整数,得出a为2或3或4,即可求出有三种方案;(3)分别求出三种方案的运费,即可求解.4.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上,O 为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.(1)数轴上点A表示的数为________.(2)将长方形EFGH沿数轴所在直线水平移动.①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数时互为相反数?【答案】(1)6(2)①3或9②如图所示:据题意得出D所表示的数为,点E表示数为:,当D、E两点在数轴上表示的数时互为相反数时:则解得:,当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.【解析】【解答】解:(1)根据题意可得:A表示数为的长,故答案为:6.( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为3;故答案为:3或9.【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据题意得出D所表示的数为,当D、E两点在数轴上表示的数时互为相反数时点E表示数为:,则,解出答案即可.5.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:解:方程可化为:或当时,则有:;所以 .当时,则有:;所以 .故,方程的解为或。

(1)解方程:(2)已知,求的值;(3)在(2)的条件下,若都是整数,则的最大值是________(直接写结果,不需要过程).【答案】(1)解:方程可化为:或,当时,则有,所以;当时,则有,所以,故方程的解为:或(2)解:方程可化为:或,当时,解得:,当时,解得:,∴或(3)100【解析】【解答】(3)∵或,且都是整数,∴根据有理数乘法法则可知,当a=-10,b=-10时,取最大值,最大值为100.【分析】(1)仿照题目中的方法,分别解方程和即可;(2)把a+b看作是一个整体,利用题目中方法求出a+b的值,即可得到的值;(3)根据都是整数结合或,利用有理数乘法法则分析求解即可.6.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款________元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?【答案】(1)1200(2)0.7x+200(3)解:第一张机票的原价为1440÷0.8=1800(元).设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据题意得:1440+0.7y+200=1800+y-910,解得:y=2500,∴1800+y-910-1440=1950.答:丙旅客第二张机票的原价为2500元,实际付款1950元【解析】【解答】解:(1)1500×0.8=1200(元).故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.7.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:稿费不高于800元的不纳税;稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的的税;稿费为4000元或高于4000元的应缴纳全部稿费的的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2000元,则应纳税________元,若王老师获得的稿费为5000元,则应纳税________元(2)若王老师获稿费后纳税280元,求这笔稿费是多少元?【答案】(1)168;550(2)解:因为当稿费为4000元时,纳税=4000×11%=440(元),且280<440,所以王老师的这笔稿税高于800元,且低于4000元.设王老师的这笔稿税为x元,根据题意,14%(x-800)=280x=2800,答:王老师的这笔稿税为2800元.【解析】【解答】解:(1)①∵800<2400<4000,∴当王老师获得稿费为2000元时,应纳税:(2000-800)×14%=168(元);②当王老师获得稿费为5000元时,应纳税:5000×11%=550(元);【分析】(1)根据条件②计算即可;根据条件③计算即可;(2)设王老师所获得的这笔稿费为元,根据纳税金额,可判断稿费800<x<4000,属于第二种,利用稿费420元,列出方程,求出x值即可.8.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.【答案】(1)③(2)解:解不等式3x-6>4-x,得:>,解不等式x-1≥4x-10,得:x≤3,则不等式组的解集为<x≤3,解:2x-k=2,得:x= ,∴<≤3,<,解得:3<k≤4;(3)解:解方程:2x+4=0得,解方程:得:,解关于x的不等式组当<时,不等式组为:,此时不等式组的解集为:>,不符合题意,所以:>所以得不等式的解集为:m-5≤x<1,∵2x+4=0,都是关于x的不等式组的“子方程”,∴,解得:2<m≤3.【解析】【解答】解:(1)解方程:3x-1=0得:解方程:得:,解方程:得:x=3,解不等式组:得:2<x≤5,所以不等式组的“子方程”是③.故答案为:③;【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其解集,解方程求出x= ,根据“子方城”的定义列出关于k的不等式组,解之可得;(3)先求出方程的解和不等式组的解集,分<与>讨论,即可得出答案.9.已知,两正方形在数轴上运动,起始状态如图所示.A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直...线.互相垂直时,求MN的长.【答案】(1)解:∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒(3)解:设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x 个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离是________(2)数轴上表示和-1的两点之间的距离表示为________(3)若表示一个有理数,且,则=________(4)若表示一个有理数,且=8,则有理数的值是________【答案】(1)2(2)或(3)6(4)-5,3【解析】【解答】解:(1)由题意得1和3两点之间的距离为;(2)和-1的两点之间的距离表示为,或;(3)∵-4<x<2, 则x-2<0, x+4>0,∴=-(x-2)+(x+4)=-x+2+x+4=6;(4)当x<-4时,则x-2<0,x+4<0,=-(x-2)-(x+4)=2-x-x-4=-2x-2=8,解得x=-5;当4≤x<2, 则x-2<0, x+4≥0,=-(x-2)+(x+4)=-x+2+x+4=6≠8,无解;当x≥2时,则x-2≥0, x+4>0,∴=x-2+x+4=2x+2=8解得x=3.【分析】(1)(2)由题意可知数轴两点间的距离即是两点所表示的数相减所得的数的绝对值,据此计算即可;(3)先根据x的范围确定绝对值里面的代数式的正负,再根据绝对值的非负性去绝对值,然后再化简计算即得结果;(4)分三种情况讨论,即把整个数轴分三部分,即x<-4, -4≤x<2, x≥2,然后分别根据绝对值的非负性去绝对值,化简计算,再根据所得的结果等于8解方程求出x即可.11.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B 运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为________.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由。

相关文档
最新文档