八年级数学上册 第六章 数据的分析导学案2(新版)北师大版

合集下载

北师大版八年级上册 第六章 数据的分析 复习教案

北师大版八年级上册 第六章 数据的分析 复习教案

第六章数据的分析复习教案教学目的知识与技能:1.掌握众数、中位数、极差、方差的定义.2.掌握加权平均数的意义及其求法.过程与方法:通过详细问题的分析和解决来稳固对知识的综合掌握.情感态度与价值观:增强学以致用的意识.教学重难点【重点】1.众数、中位数、极差、方差的定义.2.加权平均数的意义及其求法.【难点】根据计算的数据结果对问题进展分析和判断.知识总结专题讲座专题一平均数【专题分析】统计初步在中考中所占的比重越来越大,题型由填空题、选择题开展到分值较高的解答题,有关平均数的计算题,也由单一的数字计算转化为与时代开展严密相连的应用题,特别是加权平均数的计算更是热点.教师计算学生的学期总评成绩时按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示:学生平时作业单元测验期中考试期末考试小丽80 75 71 88小明76 80 70 90请你通过计算比拟谁的学期总评成绩高.〔解析〕10%,30%,25%,35%说明平时作业、单元测验、期中考试、期末考试四项在总成绩中的重要程度,是四项成绩的权,权的和为1.解:小丽的总评成绩为80×10%+75×30%+71×25%+88×35%=79.05(分).小明的总评成绩为76×10%+80×30%+70×25%+90×35%=80.6(分).因为80.6>79.05,所以小明的学期总评成绩高.[规律方法]实际生活中,一组数据中各个数据的“重要程度〞不总是一样的,即“权〞是不同的,所以我们一般选择计算其加权平均数作为衡量“平均程度〞的标准.【针对训练1】水是生命之源,为了让市民珍惜水资源,节约用水,从2021年5月1日起,武汉市居民生活用水供水价格实行三级收费标准:户籍人口4人及以下的用户,每户每月用水量中,25 m3(含25 m3)以内的局部为第一级,价格为1.90元/m3;25 m3至33 m3(含33 m3)的局部为第二级,价格为2.45元/m3;超过33 m3的局部为第三级,价格为3.00元/m3.小李家户籍人口3人,在2021年连续5个月的同一日对他家的水表作了如下记录:时间1月1日2月1日 3月1日4月1日5月1日水表/m3128 149 169 187 208请你利用所学统计知识解答以下问题(不考虑季节性用水量的差异):(1)估计2021年小李家平均每月用水量大约为多少立方米;(2)小李家从2021年5月1日起采取节水措施,假设每月用水量平均节约2 m3,且每月用水量均在第一级,那么小李家2021年余下的8个月的水费大约是多少元?〔解析〕水表与电表有相似之处,可比照解题.解:(1)208−128=20(m3).4答:2021年小李家平均每月用水量约为20 m3.(2)8×(20-2)×1.90=273.60(元).答:小李家2021年余下8个月的水费大约是273.60元.专题二中位数、众数【专题分析】本专题知识在近几年中考中所占的百分比有逐年上升的趋势,大多是利用数学知识解决实际问题的题目,切合新课改的方向,主要考察利用统计图表获取信息的才能.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量,如下表所示:每人销售件数180510 250 210 150 120人数 1 1 3 5 3 2(1)这15位销售人员该月销售量的平均数为件,中位数为件,众数为件;(2)假设销售部经理把每位销售人员的月销售量定为210件,你认为是否合理?为什么?〔解析〕(1)根据平均数、中位数和众数的定义求解.(2)经观察可知销售210件为大多数人能到达的程度.解:(1)320210210(2)合理.因为销售210件以上(包含210件)的人数有10人,能代表大多数人的销售程度,所以销售部经理把每位销售人员的月销售量定为210件合理.[易错提示]平均数、中位数和众数是从不同的角度描绘一组数据的集中趋势.平均数的大小与一组数据中的每个数据都有关系.众数是一组数据中出现次数最多的数,其大小只与局部数据有关.中位数是一组数据按大小顺序排列后,最中间的数(或中间两个数的平均数).【针对训练2】某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表:部门人数每人所创年利润/万元A 1 20B 1 5C 2 2.5D 4 2.1E 2 1.5F 2 1.5G 3 1.2根据表中提供的信息答复:(1)该公司每人所创年利润的平均数为万元;(2)该公司每人所创年利润的中位数为万元;(3)我认为应采用数来描绘该公司每人所创年利润的一般程度.〔解析〕(1)可直接求加权平均数;(2)只需取最中间的那个数据(即第8个数据2.1万元)作为该公司每人所创年利润的中位数;(3)因为用“平均数〞表示该公司员工的“平均程度〞显然过高,所以这里用中位数表示较为合理.〔答案〕(1)3.2(2)2.1(3)中位专题三极差、方差【专题分析】本专题知识是中考中一个比拟重要的考点,题型有选择题、填空题和解答题,主要考察对极差、方差、标准差的意义的理解,公式掌握的灵敏性以及计算的准确性.当今市场竞争剧烈,产品质量是企业生存的命根子,永安厂和天星厂为争取鼓楼南路扩建用砖的市场,展开了竞争,工程队以质量择优为宗旨,对两家产品的抗断强度进展了测定,下面是检测的两组数据(单位:千克/平方厘米):永安厂:32.50,29.66,31.64,30.00,31.77,31.01,30.75,31.24,31.87,31.05;天星厂:31.00,29.56,32.02,33.00,29.32,30.37,29.98,31.35,32.86,32.04.试评定两厂消费质量的优劣.〔解析〕通常,产品的优劣通过平均程度来衡量,假设平均抗断强度高,那么质量优,在平均抗断强度一样的情况下,通常比拟产品稳定性的好坏.解:两家产品的平均抗断强度分别为:x ̅永安=110×(32.50+29.66+…+31.05)=110×311.49≈31.15; x ̅天星=110×(31.00+29.56+…+32.04)=110×311.5=31.15. s 永安2=110×[(32.50-31.15)2+(29.66-31.15)2+…+(31.05-31.15)2]≈110×6.7=0.67,s 天星2=110×[(31.00-31.15)2+(29.56-31.15)2+…+(32.04-31.15)2]≈110×15.81=1.581,因为s 永安2<s 天星2,所以永安厂产品的抗断强度比天星厂产品的抗断强度稳定,即永安厂产品的质量优于天星厂产品质量.[规律方法]极差是刻画数据离散程度的一个统计量,极差越大说明这组数据的离散程度也越大;方差和标准差是衡量一组数据波动大小的量,方差、标准差越大,数据的波动越大,方差、标准差越小,这组数据就越稳定.【针对训练3】某校要从九年级一班和二班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下(单位:厘米): 一班:168167170165168166171168167170 二班:165167169170165168170171168167(1)完成下面的统计分析表;班级平均数方差中位数一班168 168二班168 3.8(2)请选一个适宜的统计量作为选择标准,说明哪一个班能被选取.解:(1)3.2168(2)选方差作为选择标准,∵一班同学身高的方差小于二班同学身高的方差,∴一班能被选取.[解题策略]方差是反映一组数据的波动大小的一个量.方差越大,那么它与其平均值的离散程度越大,稳定性越差;反之,那么它与其平均值的离散程度越小,稳定性越好.专题四数形结合思想【专题分析】数形结合思想是指将数(或量)与形(图形)结合起来对问题进展研究,本章中许多题目的信息都是通过统计图表给出的,有的问题将数据表如今图表上,更能直观地反映数据的特点.我们要能把抽象的数据和直观的图形结合起来,使问题化难为易,化抽象为直观.如下图的是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).求这些车行驶速度的平均数、中位数和众数.〔解析〕观察条形图可得车速为50千米/时的有2辆;车速为51千米/时的有5辆;车速为52千米/时的有8辆;车速为53千米/时的有6辆;车速为54千米/时的有4辆;车速为55千米/时的有2辆;车辆总数为27.根据这些信息可求出平均数、中位数和众数.×(50解:由图知共有27辆车,所以这些车行驶速度的平均数为127×2+51×5+52×8+53×6+54×4+55×2)≈52.4(千米/时).将这27个数据按从小到大的顺序排列,其中第14个数是52,故这些车行驶速度的中位数是52千米/时.这27个数据中,52出现了8次,出现的次数最多,故这些车行驶速度的众数是52千米/时.【针对训练4】如以下图所示,有两条石级路,哪条路走起来更舒适些?(图中数据表示每一级的高度,单位:厘米)〔解析〕上台阶是否舒适,就看台阶起伏情况如何,因此需要计算两条石级路的台阶高度的平均数、极差、方差.解:通过计算可知台阶的平均高度一样,都是15厘米,上台阶是否舒适,就看台阶的上下起伏情况如何.左边石级路台阶高度的极差为16-14=2(厘米),方差为:16×[(15-15)2+(14-15)2+(14-15)2+(16-15)2+(16-15)2+(15-15)2]=23;右边石级路台阶高度的极差为19-10=9(厘米),方差为: 16×[(19-15)2+(10-15)2+(17-15)2+(18-15)2+(15-15)2+(11-15)2]=353.由此可见,左边石级路的极差、方差都比右边石级路的小,所以左 边石级路的起伏小,走起路来舒适些.专题五 方程思想【专题分析】方程思想是指把详细问题中数量之间的关系用方程加以刻画,并运用方程的知识进展研究、解决.一次数学测试,某班40名学生的成绩统计如下表:成绩/分50 60 70 80 90 100人数 2 ◆10 ◆ 4 2表中测试成绩为60分和80分的人数不小心被墨水污染后已经看不清楚了,如今只知道这次数学测试中,该班的平均分是69分.恳求出测试成绩为60分和80分的人数.〔解析〕根据“平均分是69分〞和“总人数为40人〞可建立二元一次方程组求解.解:设测试成绩为60分的有x人,测试成绩为80分的有y人, 根据题意,得:{2+x+10+y+4+2=40,50×2+60x+70×10+80y+90×4+100×2=69×40,解这个方程组,得{x=18,y=4.所以测试成绩为60分的有18人,测试成绩为80分的有4人.【针对训练5】某班进展个人投篮比赛,受污损的表记录了在规定时间内投进n个球的人数分布情况.假设进球3个或3个以上的人平均每个人投进3.5个球,进球4个或4个以下的人平均每个人投进2.5个球,请你根据上述条件及表中数据求出进球3个和4个的人数.进球数n0 1 2 3 4 5投进n个球的人数 1 2 7 2解:设投进3个球的人数为x ,投进4个球的人数为y.根据题意,得方程组{3x+4y+5×2x+y+2=3.5,0×1+1×2+2×7+3x+4y 1+2+7+x+y =2.5,解得{x =9,y =3.答:投进3个球的人数为9,投进4个球的人数为3.。

河北省邯郸市肥乡县八年级数学上册 第六章 数据的分析复习教案 (新版)北师大版

河北省邯郸市肥乡县八年级数学上册 第六章 数据的分析复习教案 (新版)北师大版

第6章数据的分析授8,10,10,4,8,10(单位:元),这组数据的众数是()A.10 B.9 C.8 D.43.在2016年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,18,1B.18,17.5,3C.18,18,3D.18,17.5,14.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,35.若1,2,3,x的平均数是6.且1,2,3,x,y的平均数是7,则y的值为()A.7 B.9 C.11 D.136.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据不发生变化的是()A.平均数 B.众数 C.方差 D.中位数7.为了解某公司员工的年工资情况,小王随机调查了10位员工,某年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反映该公司员工年工资水平的是()A.方差 B.众数 C.中位数 D.平均数8.一组数据3,4,0,1,2的平均数与中位数之和是____.9.某大学生招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,已知小明数学得分为95分,物理得分为90分,那么小明的综合得分是____分.10.跳远运动员李刚对训练进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为____(精确到0.001).如果李刚再跳两次,成绩分别为7.7,7.9,则李刚这8次跳远成绩的方差____(填“变大”、“不变”或“变小”).11.学校广播站要招收一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%,计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x应超过多少分?选手项目形象知识面普通话李文70 80 88孔明80 75 x二、能力提升12.某校一年级学生的平均年龄为7岁,方差为3,5年后该校六年级学生的年龄中()A.平均年龄为7岁,方差改变 B.平均年龄为12岁,方差不变C.平均年龄为12岁,方差改变 D.平均年龄不变,方差不变13.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位的同学进入决赛,某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学分数的()A.平均数 B.中位数 C.众数 D.方差14.已知一个样本1,3,2,2,a,b,c的众数为3,平均数为2,则该样本的方差为____.15..商场对每个营业员在当月某种商品销售件数统计如下:解答下列问题:(1)设营业员的月销售件数为x(单位:件),商场规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25时为称职;当x≥25时为优秀.试求出优秀营业员人数所占百分比;(2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数;(3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励,如果要使得所有优秀和称职的营业员中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?并简述理由.三、课外拓展16.自然数4,5,5,x,y从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x,y中,x+y的最大值是()A.3 B.4 C.5 D.617.某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有____人,投进4个球的有____人.进球数n(个) 0 1 2 3 4 5投进n个球的人数 1 2 7 218.甲、乙两人在相同的条件下各射靶10次,每次射靶的成绩情况如图.(1)请填写下表:平均数方差中位数命中9环及以上次数甲 1.2 7 1乙7 5.4 3(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力)小谈谈你这节课有什么收获.结作业习题2.1布置板书.设计课后反思。

北师大版八年级上册数学第6章《数据的分析》教案

北师大版八年级上册数学第6章《数据的分析》教案

第六章数据的分析1 平均数【学习目标】1.掌握算术平均数、加权平均数的概念. 2.会求一组数据的算术平均数及加权平均数. 【学习重点】算术平均数的概念及计算. 【学习难点】加权平均数的概念及其计算.一、情景导入 生成问题在篮球比赛中,队员的身高、年龄都是影响球队实力的因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队的更高”?怎样理解“甲队队员比乙队更年轻”?中国男子篮球职业联赛2011-2012赛季冠、亚军球队队员身高、年龄如下表:北京金隅队 广东东莞银行队号码 身高/cm 年龄/岁 号码 身高/cm 年龄/岁 3 188 35 3 205 31 6 175 28 5 206 21 7 190 27 6 188 23 8 188 22 7 196 29 9 196 22 8 201 29 10 206 22 9 211 25 12 195 29 10 190 23 13 209 22 11 206 23 20 204 19 12 212 23 21 185 23 20 203 21 25 204 23 22 216 22 31 195 28 30 180 19 32 211 26 32 207 21 51 200 26 0 183 27 55 227 29上述两支篮球队中,哪支球队队员的身高更高?哪支球队的队员更为年轻?你是怎样判断的?与同伴进行交流.二、自学互研 生成能力知识模块一 算术平均数的概念及计算1.阅读教材第136页下面的内容,归纳平均数的定义.在日常生活中,我们常用平均数描述一组数据的集中趋势.一般地,对于n 个数x 1,x 2,…,x n ,我们把1n (x 1+x 2+ …+x n )叫做这n 个数的算术平均数,简称平均数,记为x -=1n(x 1+x 2+…+x n ).2.想一想:小明是这样计算北京金隅队队员的平均年龄的:年龄/岁19 22 23 26 27 28 29 35相应的队员数1 42 2 1 2 2 1平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29×2+35×1)÷(1+4+2+2+1+2+2+1)=25.4(岁).你能说说小明这样做的道理吗?【说明】 通过思考,分析小明的计算方法与以前学过的算术平均数的计算方法有何区别.通过学生的讨论、探究以及教师的引导让学生对加权平均数的计算有个初步的认识了解.知识模块二 加权平均数的概念及计算师生合作完成教材第137页例题的学习与探究.例 某广告公司欲招聘广告策划人员一名,对A 、B 、C 三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:测试项目测试成绩/分A B C 创新 72 85 67 综合知识 50 74 70 语言884567(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4∶3∶1的比例确定各人的测试成绩,此时谁将被录用?(3)(1),(2)问的结果一样吗?说明了什么?【归纳结论】 实际问题中,一组数据里的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.例如在例题中4,3,1分别是创新,综合知识,语言三项测试成绩的权.则72×4+50×3+88×14+3+1为A 的三项测试成绩的加权平均数.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 算术平均数的概念及计算 知识模块二 加权平均数的概念及计算四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________2 中位数与众数【学习目标】1.认识中位数和众数,并会求一组数据的众数和中位数.2.了解平均数、中位数、众数在描述数据时的差异,并能灵活应用这三个数据代表解决实际问题.【学习重点】掌握中位数、众数这两种数据代表的概念.【学习难点】灵活运用平均数、中位数、众数,分析数据信息,做出决策.一、情景导入生成问题某公司员工的月工资如下:员工经理经理副职员A 职员B 职员C 职员D 职员E 职员F 杂工G月工资7000 4400 2400 2000 1900 1800 1800 1800 1200 (元)问题:这个公司员工的月平均工资是多少?这个公司员工收入到底怎样?你如何看待?【说明】为学生提供一个活生生的生活情境和值得深思的问题,激起学生认知的矛盾.因为疑问是构建数学的起点,对学生的心理智力产生刺激,让他们从问题中发现,有利于建立新的认知结构.二、自学互研生成能力知识模块一中位数与众数的概念观察:(1)这个公司员工的工资是按从高到低排列的,哪一位员工工资处在“正中间”?(2)9个员工当中,哪一种月工资出现的次数最多?【说明】这两个问题的提出让学生在心目中对于中位数和众数有了初步的认识,为下面正确理解它们的概念打下了基础.【归纳结论】一般地,几个数据按大小顺序排列,处于最中间位置的一个数据(或最中间的两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.讨论:(1)在上面的问题中,你认为用平均数、中位数和众数中哪个数据描述该公司员工收入的集中趋势更合适?(2)为什么该公司员工收入的平均数比中位数高得多?【说明】在同一个问题中分别求平均数、中位数和众数,这是为了比较三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的联系与区别,体现了它们各自在日常生活中的指导意义,培养了学生的迁移能力.知识模块二平均数、中位数和众数的应用与同伴合作完成下面问题的学习.做一做:(1)2011~2012赛季北京金隅队队员身高的平均数、中位数和众数分别是多少?(2)你课前调查的20位男同学所穿运动鞋尺码的平均数、中位数和众数分别是多少?你认为学校商店应多进哪种尺码的运动鞋?【说明】通过这几个问题的设置,其目的就是让学生根据不同情况从不同的角度灵活运用这三个数据代表处理问题.(3)平均数、中位数和众数都是描述数据集中趋势的统计量,它们各自有哪些特征呢?【说明】学生讨论得出结果,进一步加深了对平均数、中位数和众数的理解,认清了它们各自存在的优劣以及如何利用这三种数据解决实际问题.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一中位数与众数的概念知识模块二平均数、中位数和众数的应用四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________3从统计图分析数据的集中趋势【学习目标】1.进一步认识平均数、众数、中位数都是数据的代表,了解它们在描述数据时的差异.2.会从扇形、折线和条形等统计图中获取信息.【学习重点】对统计图进行分析计算,应用平均数、中位数、众数解决实际问题.【学习难点】灵活运用这三个数据代表解决问题.一、情景导入生成问题教师引导学生研读教材第145页“议一议”上方的内容.【说明】在同一个问题中求出众数,从而估计平均数,这是为了体现这两个量在描述一组数据集中趋势时之间的相互联系.体现了众数在日常生活中的指导意义,培养了学生的迁移能力.二、自学互研生成能力知识模块一从条形统计图分析数据的集中趋势先阅读教材第145页“议一议”的内容,再独立完成书中设置的3个问题,然后与同伴进行交流.【说明】利用统计图让学生在同一个问题中分别求出平均数、众数和中位数,主要是为了比较这三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的区别和联系.知识模块二从扇形统计图分析数据的集中趋势先阅读教材第145页“做一做”和第146页“想一想”的内容,并独立完成书中设置的问题,然后与同伴进行交流.【说明】在扇形统计图中很容易看出众数,从统计图中获取信息求加权平均数,巩固了以前学过的知识,加深了对这个知识点的理解.教师引导学生完成教材第146页例题的学习与探究.仿例:为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题.(1)本次接受随机抽样调查的学生人数为____,图①中m 的值为____; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 解:(1)40;15;(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本的众数为35;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都为36,∴中位数为36+362=36;(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 从条形统计图分析数据的集中趋势 知识模块二 从扇形统计图分析数据的集中趋势四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________4 数据的离散程度【学习目标】1.知道极差、方差、标准差的概念.2.会求一组数据的极差、方差、标准差,并会用它们表示数据的离散程度. 【学习重点】 方差的概念和计算. 【学习难点】应用方差对数据的波动情况进行比较、判断.一、情景导入 生成问题教师引导学生研读教材第149页的内容,找到极差的概念,并完成书中设置的问题.【说明】 应用实例并提问启发思考,导入极差的概念,自然而又有探索性.【归纳结论】 实际生活中,除了关心数据的集中趋势外,人们往往还关注数据的离散程度,即它们相对于集中趋势的偏离情况.一组数据中最大数据与最小数据的差(称为极差),就是刻画数据离散程度的一个统计量.二、自学互研 生成能力知识模块一 方差与标准差的概念先阅读教材第150页“做一做”的内容,并完成书中设置的前两个问题.【说明】 通过问题的分析以及阅读指导的再认识,让学生认识到方差是衡量一组数据的离散程度的常用方法.【归纳结论】 数学上,数据的离散程度还可以用方差或标准差刻画.方差(v ariance )是各个数据与平均数差的平方的平均数,即s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].其中,x -是x 1,x 2,…,x n 的平均数,s 2是方差.而标准差(standard de v iation )就是方差的算术平方根. 一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定. 知识模块二 用计算器计算方差和标准差先自学自研教材第150页“做一做”和上方的例题,然后与同伴进行交流.【说明】 让学生学会用计算器求方差,加深对公式的理解,体会现实生活中常常根据方差考虑数据波动大小,从而作出正确的选择和判断.知识模块三 平均数与方差的综合运用师生合作完成教材第152页的图象问题及教材第153页的“议一议”和“做一做”的内容.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 方差与标准差的概念 知识模块二 用计算器计算方差和标准差 知识模块三 平均数与方差的综合运用四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________本章复习小结【学习目标】1.掌握数据的集中趋势和数据离散程度所表示的意义,并会利用它们解决实际问题.2.通过对本章知识的整理,回顾解决问题中所涉及的转化思想,数形结合的思想,从特殊到一般的思想,加深对知识的理解.【学习重点】掌握平均数、中位数、众数、极差、方差、标准差的概念及各自的计算公式;会利用计算器求平均数,会用极差、方差、标准差来研究数据波动的大小.【学习难点】理解数据代表的意义和方差、标准差代表的意义.一、情景导入 生成问题师生共同回顾本章知识点,构建知识结构图,让学生对本章知识有个整体把握,体会各知识之间的联系与区别,教学时要有的放矢.数据的分析⎩⎪⎪⎪⎨⎪⎪⎪⎧数据的集中趋势⎩⎪⎨⎪⎧平方数⎩⎨⎧算术平均数:x =1n(x 1+x 2+…+x n )加权平均数:x =x 1f 1+x 2f 2+…+x n fnf 1+f 2+…+fn中位数:一般地,n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)众数:一组数据中出现次数最多的那个数据数据的离散程度⎩⎪⎨⎪⎧极差:一组数据中最大数据与最小数据的差方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n-x )]标准差:方差的算术平方根从统计图中分析数据二、自学互研 生成能力知识模块一 知识清单 加深理解 1.求加权平均数求算术平均数是求加权平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权重相等时,就变成了算术平均数.2.求中位数求一组数据的中位数时,要把这些数据按从小到大(或从大到小)的顺序排列起来,然后求中位数,不可直接取中间的数为中位数.3.方差在平均数相差不多的情况下,方差是衡量一组数据波动大小的量,方差越小,数据的波动就越小,证明数据越接近平均数.知识模块二 典例引路 全面复习例1:某鞋店为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这20名女生的鞋号组成的一组数据的平均数是________,中位数是________,众数是________,鞋厂最感兴趣的是________数.分析:平均数可用加权平均数公式计算:x =21.5×3+22×4+22.5×4+23×7+23.5×1+24×120=45120=22.55(cm ).中位数是第10个和第11个两个数据的平均数,而这两个数据均是22.5.众数是出现次数最多的数据,同时也证明这种号码的鞋是学生中穿得最多的,也是厂家销售得最好的,是这组数据中最重要的.解:22.5,22.5,23,众.例2:某样本x 1+1,x 2+1,…x n +1的平均数为10,方差为2,求样本x 1+2,x 2+2…,x n +2的平均数及方差.分析:由平均数及方差的性质可知,若x 1,x 2,x 3…,x n 的平均数为x ,方差为s 2,则ax 1+b ,ax 2+b ,ax 3+b ,…,ax n +b 的平均数为ax +b ,方差为a 2s 2.解:由题意可知:1n [(x 1+1)+(x 2+1)+(x 3+1)+…+(x n +1)]=10,1n [(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2,所以样本x 1+2,x 2+2,x 3+2,…,x n +2的平均数和方差分别为:x =1n [(x 1+2)+(x 2+2)+…+(x n+2)]=1n [(x 1+1)+(x 2+1)+…+(x n +1)]+n n =10+1=11.s 2=1n [(x 1+2-x)2+(x 2+2-x)2+…+(x n +2-x)2]=1n [(x 1+2-11)2+(x 2+2-11)2+…+(x n +2-11)2]=1n[(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 知识清单 加深理解 知识模块二 典例引路 全面复习四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

新版北师大八年级上第六章4.数据的离散程度(二)导学案

新版北师大八年级上第六章4.数据的离散程度(二)导学案
学科数学课题4.数据的离散程度(二)主备者
参备者执教者班级八、二学生姓名
学习目标:1.进一步了解极差、方差、标准差的求法;
2.会用极差、方差、标准差对实际问题做出判断。
重、难点:极差、方差、标准差的求法




计算下列两组数据的方差与标准差:
①1,2,3,4,5;②103,102,98,101,99。
(4)历届比赛表明,成绩达到596cm就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?
(5)如果历届比赛表明,成绩达到610cm就能打破记录,你认为为了打破记录应选谁参加这项比赛?




1、甲、乙、丙三人的射击成绩如图所示:
请回答:三人中,谁射击成绩更好,谁更稳定?你是怎么判断的?
2、某校从甲乙两名优秀选手中选一名选手参加全市中学生田径百米比赛(100米记录为12.2秒,通常情况下成绩为12.5秒可获冠军)。该校预先对这两名选手测试了8次,测试成绩如下表:
1
2
3
4
5
6
7
8
选手甲的成绩(秒)
12.1
12.4
12.2
选手乙的成绩(秒)
12
11.9
12.8
13
13.2
12.8
11.8
12.5
根据测试成绩,请你运用所学过的统计知识做出判断,派哪一位选手参加比赛更好?为什么?






探索合作:
1、试一试:如图是某一天A、B两地的气温变化图,请回答下列问题:
(1)这一天A、B两地的平均气温分别是多少?
(2)A地这一天气温的极差、方差分别是多少?B地呢?

北师大版八年级上册第六章数据的分析课程设计 (2)

北师大版八年级上册第六章数据的分析课程设计 (2)

北师大版八年级上册第六章数据的分析课程设计一、课程概述本课程以北师大版八年级上册第六章“数据的分析”为主要内容,旨在帮助学生掌握数据的收集、整理、分析的方法和技能,以及使用数学模型进行数据分析的能力。

本课程包括三个部分,分别是数据收集与整理、数据描述与分析、应用数学模型分析数据。

通过本课程的学习,学生将理解数据的意义与价值,能够采用不同的数据收集与整理方法,熟练掌握数据的分析方法和工具,进而在实际问题中应用数学模型进行数据分析,提高自己的综合能力。

二、课程内容2.1 数据收集与整理数据收集与整理是数据分析的前提和基础,包括以下内容:•数据的来源与类型:学生了解数据的来源有哪些,数据的类型有哪些,并能够根据数据类型采用适当的方法进行整理。

•数据的收集与整理方法:学生学会采用各种方法获取和整理数据,例如问卷调查、实验法、文献调查等。

•数据的质量检验:学生学会采用统计分析等方法检验数据质量,保证数据的准确性和可靠性。

2.2 数据描述与分析数据描述与分析是数据分析的核心,包括以下内容:•描述统计量的计算:学生了解数据的中心趋势和离散程度的概念和计算方法,并在实践中运用。

•数据的可视化展示:学生掌握将数据用图像和表格等形式进行展示的方法,能够分析和比较数据。

•探究数据的规律:学生掌握计算频率、概率等方法获取数据规律,能够进行统计推断分析。

2.3 应用数学模型分析数据数学模型是实际问题解决的有效工具,本部分包括以下内容:•数据建模:学生了解数据分析中数学模型的概念和分类,能够选择合适的模型进行数据建模。

•应用数学模型进行数据分析:学生掌握应用数学模型分析数据的方法,包括回归分析、时序分析、因素分析等。

三、教学方法本课程采用以下教学方法:•讲授法:通过教师讲授,将理论知识传授给学生。

•实践操作:通过案例分析和课堂操作,帮助学生掌握数据分析方法和工具的使用。

•自主探究:通过小组研究、个人探究等形式,激发学生的兴趣,培养学生的独立思考和创新能力。

北师大版八年级上册第六章数据的分析(教案)

北师大版八年级上册第六章数据的分析(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平均数、中位数、众数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对数据分析的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-频数分布表和频数分布直方图的解读:学生可能难以理解频数分布直方图中的每个柱形代表的数据范围和频数。
举例解释:
-统计量选择:解释在不同数据特征下,如何选择平均数、中位数、众数来描述数据集中趋势,如数据存在极端值时宜使用中位数。
-方差计算:通过具体数据,分步骤演示方差计算过程,强调先求平均数,再求各数据与平均数差的平方,最后求平均。
5.培养学生合作交流、分享成果的团队意识,提高数学交流与表达的核心素养。
三、教学难点与重点
1.教学重点
-平均数、中位数、众数的概念及其应用:重点讲解这三个统计量的定义、计算方法以及在描述数据集中趋势时的作用,并通过实例强调其在实际问题中的应用。
-极差、方差的意义和计算:详细解释极差、方差的定义,以及它们在描述数据分布离散程度时的核心地位。
7.利用频数分布表、频数分布直方图分析数据分布特点。
二、核心素养目标
1.培养学生运用数学语言描述数据特征的能力,提高数据分析和解决问题的核心素养。
2.培养学生掌握数据处理的基本方法,增强数学运算和逻辑推理能力。
3.培养学生通过数据分析,发现数据背后的规律和关联性,提高数据解读和批判性思维能力。
4.培养学生在实际问题中运用数据分析的方法,提高数学在实际生活中的应用能力,增强数学实践素养。

八年级数学上册 第六章 数据的分析学案 (新版)北师大

八年级数学上册 第六章 数据的分析学案 (新版)北师大

数据的分析【学习目标】1.掌握数据的集中趋势和数据离散程度所表示的意义,并会利用它们解决实际问题.2.通过对本章知识的整理,回顾解决问题中所涉及的转化思想,数形结合的思想,从特殊到一般的思想,加深对知识的理解. 【学习重点】掌握平均数、中位数、众数、极差、方差、标准差的概念及各自的计算公式;会利用计算器求平均数,会用极差、方差、标准差来研究数据波动的大小. 【学习难点】理解数据代表的意义和方差、标准差代表的意义.学习行为提示:创景设疑,帮助学生知道本节课学什么.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点.情景导入 生成问题师生共同回顾本章知识点,构建知识结构图,让学生对本章知识有个整体把握,体会各知识之间的联系与区别,教学时要有的放矢.数据的分析⎩⎪⎪⎪⎨⎪⎪⎪⎧数据的集中趋势⎩⎪⎨⎪⎧平方数⎩⎪⎨⎪⎧算术平均数:x =1n (x 1+x 2+…+x n)加权平均数:x =x 1f 1+x 2f 2+…+x n fnf 1+f 2+…+fn中位数:一般地,n 个数据按大小顺序排列,处于最中间位置的 一个数据(或最中间两个数据的平均数)众数:一组数据中出现次数最多的那个数据数据的离散程度⎩⎪⎨⎪⎧极差:一组数据中最大数据与最小数据的差方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n-x )]标准差:方差的算术平方根从统计图中分析数据利用本章主要知识解决相关的实际问题,教师适当给予点评,指明应用哪些知识点,需要注意些什么问题,对学生有所警示,以防一错再错.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研 生成能力 知识模块一 知识清单 加深理解 1.求加权平均数求算术平均数是求加权平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权重相等时,就变成了算术平均数. 2.求中位数求一组数据的中位数时,要把这些数据按从小到大(或从大到小)的顺序排列起来,然后求中位数,不可直接取中间的数为中位数. 3.方差在平均数相差不多的情况下,方差是衡量一组数据波动大小的量,方差越小,数据的波动就越小,证明数据越接近平均数. 知识模块二 典例引路 全面复习例1:某鞋店为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这20________,众数是________,鞋厂最感兴趣的是________数.分析:平均数可用加权平均数公式计算:x =21.5×3+22×4+22.5×4+23×7+23.5×1+24×120=45120=22.55(cm ).中位数是第10个和第11个两个数据的平均数,而这两个数据均是22.5.众数是出现次数最多的数据,同时也证明这种号码的鞋是学生中穿得最多的,也是厂家销售得最好的,是这组数据中最重要的. 解:22.5,22.5,23,众.例2:某样本x 1+1,x 2+1,…x n +1的平均数为10,方差为2,求样本x 1+2,x 2+2…,x n +2的平均数及方差.分析:由平均数及方差的性质可知,若x 1,x 2,x 3…,x n 的平均数为x ,方差为s 2,则ax 1+b ,ax 2+b ,ax 3+b ,…,ax n +b 的平均数为ax +b ,方差为a 2s 2.解:由题意可知:1n [(x 1+1)+(x 2+1)+(x 3+1)+…+(x n +1)]=10,1n[(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2,所以样本x 1+2,x 2+2,x 3+2,…,x n +2的平均数和方差分别为:x =1n [(x 1+2)+(x 2+2)+…+(x n +2)]=1n [(x 1+1)+(x 2+1)+…+(x n +1)]+n n =10+1=11.s 2=1n[(x 1+2-x)2+(x 2+2-x)2+…+(x n +2-x)2]=1n [(x 1+2-11)2+(x 2+2-11)2+…+(x n +2-11)2]=错误![(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2. 交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑. 2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 知识清单 加深理解 知识模块二 典例引路 全面复习 检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书. 课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

最新北师大版八年级数学上册 第六章 数据的分析 教案教学设计(含教学反思)

最新北师大版八年级数学上册 第六章 数据的分析 教案教学设计(含教学反思)

第六章数据的分析6.1 平均数 (1)第1课时平均数 (1)第2课时加权平均数的应用 (5)6.2 中位数与众数 (9)6.3 从统计图分析数据的集中趋势 (12)6.4 数据的离散程度 (15)第1课时极差、方差和标准差 (15)第2课时方差的应用 (18)第六章归纳总结 (21)6.1 平均数第1课时平均数【知识与技能】掌握算术平均数,加权平均数的概念,会计算一组数的算术平均数和加权平均数.【过程与方法】1.通过小组合作活动,培养学生的合作意识.2.通过解决实际问题,让学生体会数学与生活的密切关系.【情感态度】经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理的能力;通过有关平均数问题的解决,发展学生的数学应用能力.【教学重点】掌握算术平均数、加权平均数的概念,会求一组数据的平均数.【教学难点】利用加权平均数解决一些实际问题.一、创设情境,导入新课在篮球比赛中,队员的身高、年龄都是影响球队实力的因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队的更高”?怎样理解“甲队队员比乙队更年轻”?中国男子篮球职业联赛2011-2012赛季冠、亚军球队队员身高、年龄如下表:上述两支篮球队中,哪支球队队员的身高更高?哪支球队的队员更为年轻?你是怎样判断的?与同伴进行交流.【教学说明】一连串跟球赛有关的问题的提出,学生比较熟悉又容易接受,从而达到激发学生新知识的强烈欲望,引入新课的目的.想一想:小明是这样计算北京金隅队队员的平均年龄的;平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29×2+35×1)÷(1+4+2+2+1+2+2+1)=25.4(岁)你能说说小明这样做的道理吗?【教学说明】一连串跟球赛有关的问题的提出,学生比较熟悉又容易接受,从而激发学生对新知识的强烈欲望,达到引入新课的目的..二、思考探究,获取新知例其广告公司欲招聘广告策划人员一名,对A 、B 、C 候选人进行了三项素质测试.他们的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?(3)(1)、(2)问的结果一样吗?说明了什么?【教学说明】通过实际问题的解决,让学生体会数据中权的作用,理解加权平均数的计算方法,体验成功的乐趣.【归纳结论】实际问题中,一组数据里的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.例如在例题中4,3,1分别是创新,综合知识,语言三项测试成绩的权.则724503881431⨯+⨯+⨯++为A 的三项测试成绩的加权平均数. 三、运用新知,深化理解1.八年级某个班40名学生中,22名男生的平均身高为1.65米,18名女生的平均身高为1.57米,则这个班学生的平均身高是 .2.某超市购进了一批不同价格的运动鞋,根据近几年统计的平均数据,运动鞋单价为40元,35元,30元,25元的销售百分率分别为60%,75%,82%,98%.要使之前超市销售运动鞋收入最大,之前超市应多购单价为的运动鞋.( )A.40元B.35元C.30元D.25元3.某校对初中毕业生根据综合素质、考试成绩、体育测试这三项得分按4∶4∶2的比例评定毕业成绩,达到80分以上(含80分)为优秀毕业生,小明、小亮的成绩(单位:分)如下表:(1)小明、小亮谁能达到“优秀毕业生”水平?谁的毕业成绩更好些?(2)升入高中后,请你对于他们今后的发展给每人提一条建议.【教学说明】通过生活中的数据,引导学生学会分析问题,利用数学指导我们学习和生活,体现数学来源于生活.【答案】1.1.614m;2.B;四、师生互动,课堂小结1.回顾加权平均数的概念和计算方法.2.本节课你掌握了哪些知识?还有哪些不足的地方?与同学们交流.【教学说明】教师引导学生回顾,再次巩固加权平均数的计算,进一步加深学生对应用公式计算加权平均数的理解.完成练习册中本课时相应练习.学生初学加权平均数,理解还不够准确,应再引导学生自行举例说明对加权平均数及其计算公式的理解,加深对“权重”意义的理解.第2课时加权平均数的应用【知识与技能】会求加权平均数,体会权的差异对平均数的影响,能利用平均数解决实际问题.【过程与方法】1.理解算术平均数与加权平均数的联系与区别.2.通过解决与平均数有关的问题,发展学生的数学应用能力.【情感态度】通过解决实际问题,体会数学和生活的密切联系;增强学好数学,用好数学的信心.【教学重点】会求加权平均数,理解算术平均数和加权平均数的联系和区别.【教学难点】体会权的差异对结果的影响,并能用其解决实际问题.一、创设情境,导入新课森林中心举行了一场“森林卫士”的选拔活动,选拔分100米赛跑、举圆木、跨越障碍、紧急情况处理能力四项(每项满分10分).熊大、熊二与光头强都参加了选拔活动,它们的成绩如下:活动1:请你根据四项的平均成绩进行排名,并确定冠军是谁.活动2:如果将这四项得分按3∶3∶2∶2的比例确定它们的成绩,那么谁是冠军?活动3:光头强不甘心落后,一直丰想当“森林卫士”,眼珠一转,想到一个办法,他悄悄地将得分比例改成了4∶1∶3∶2,于是他拿到了这个冠军.你知道这是什么吗?【教学说明】说明:用现在热播的动画片《熊出没》中的光头强可瞬间吸引学生的注意力,产生极大兴趣,快速进入学习情境,让学生回顾了上节课中学习的知识,为本节课的学习做了铺垫;同时学生可以感受到数学知识就在自己的身边.在学生操作时,引导学生进行思考、分析,为进一步学习积累数学活动经验.二、思考探究,获取新知某学校进行广播比赛,比赛打分包括以下几项:服装统一,进退场有序、动作规范、动作整齐(每项满分10分).其中三个班级的成绩分别如下:(1)若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,那么哪个班的成绩最高?(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案.根据你的评分方案,哪一个班的广播操比赛成绩最高?与同伴进行交流.【教学说明】使学生理解日常生活中的许多“平均”现象并非算术平均.由于多数情况下,各项的重要性不一定相同(即权数不同),所以应将其视为加权平均,加深对加权平均数的理解,特别是权的差异对结果的影响,认识到日常生活中的许多“平均”现象是“加权平均”.三、运用新知,深化理解1.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元2.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩,孔明的笔试成绩是90分,面试成绩是85分,那么孔明的总成绩是分.3.某公司欲聘请一名员工,三位应聘者甲、乙、丙原始评分如下表:(1)若按仪表、工作经验、电脑操作、社交能力、工作效率五项评分别占10%,15%,20%,25%,30%,综合得分,谁的最高?(2)你认为上述五项中,哪一项更为重要?请你按自己的想法设计一个评分方案.根据你的评分方案,谁的得分最高?【教学说明】学生在练习中可能出现对加权平均数的公式运用不当,对数据的权理解错误等问题,教师应引导学生分析其错误并及时纠正,强化对概念的理解和知识的掌握.【答案】1.C;2.88;3.解:(1)甲的得分是:410515*********1015202530%%%%%%%%%%⨯+⨯+⨯+⨯+⨯++++=3.8(分).乙的得分是:410315*********1015202530%%%%%%%%%%⨯+⨯+⨯+⨯+⨯++++=3.65(分).丙的得分是:310315*********1015202530%%%%%%%%%%⨯+⨯+⨯+⨯+⨯++++=4.05(分).∴丙的最高.(2)每个人的观点不一样,灵活处理.四、师生互动,课堂小结1.回顾加权平均数的概念和计算公式.2.本节课你掌握了哪些知识?还有哪些不足的地方?与同学们交流.【教学说明】教师引导学生回顾,加深对数据的权和加权平均数的掌握与理解,通过学生归纳和教师释疑,让学生优化概念,消化知识.四、师生互动,课堂小结1.回顾加权平均数的概念和计算公式.2.本节课你掌握了哪些知识?还有哪些不足的地方?与同学们交流.【教学说明】教师引导学生回顾,加深对数据的权和加权平均数的掌握与理解,通过学生归纳和教师释疑,让学生优化概念,消化知识.完成练习册中本课时相应练习.在加权平均数的计算过程中,有部分同学对权的理解还不是很清楚,对分母上的数据表示的意义并不明白,在今后的教学中要帮助学生不断排除障碍.由于数据较多,可以用计算器使计算方便快捷.6.2 中位数与众数【知识与技能】1.认识中位数和众数,并会求出一组数据中的众数和中位数.2.了解平均数、中位数、众数在描述数据时的差异,并能灵活应用这三个数据代表解决实际问题.【过程与方法】经历探索中位数、众数的概念的过程,学会根据数据做出判断的初步思想,合理论证.领会平均数、中位数、众数这三个特征数的联系与区别.【情感态度】培养学生良好的数字信息处理的意识,建立学好数学的自信心,体会发展的内涵与价值.【教学重点】认识中位数、众数这两种数据代表.【教学难点】灵活运用平均数、中位数、众数,分析数据信息,做出决策.一、创设情境,导入新课某公司员工的月工资如下:问题:这个公司员工的月平均工资是多少?这个公司员工收入到底怎样?你如何看待?【教学说明】为学生提供一个活生生的生活情境和值得深思的问题,激起学生认知的矛盾.因为疑问是构建数学的起点,对学生的心理智力产生刺激,让他们从问题中发现,有利于建立新的认知结构.二、思考探究,获取新知1.中位数与众数概念.观察:(1)这个公司员工的工资是按从高到低排列的,哪一位员工工资处在“正中间”?(2)9个员工当中,哪一种月工资出现的次数最多?【教学说明】这两个问题的提出让学生在心目中对于中位数和众数有了初步的认识,为下面正确理解它们的概念打下了基础.【归纳结论】一般地,几个数据按大小顺序排列,处于最中间位置的一个数据(或最中间的两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.讨论:(1)在上面的问题中,你认为用平均数、中位数和众数中哪个数据描述该公司员工收入的集中趋势更合适?(2)为什么该公司员工收入的平均数比中位数高得多?【教学说明】在同一个问题中分别求平均数、中位数和众数,这是为了比较三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的联系与区别,体现了它们各自在日常生活中的指导意义,培养了学生的迁移能力.2.平均数、中位数和众数的应用.做一做:(1)2011~2012寒季北京金隅队队员身高的平均数、中位数和众数分别是多少?(2)你课前调查的20位男同学所穿运动鞋尺码的平均数、中位数和众数分别是多少?你认为学校商店应多进哪种尺码的运动鞋?【教学说明】通过这几个问题的设置,其目的就是让学生根据不同情况从不同的角度灵活运用这三个数据代表处理问题.(3)平均数、中位数和众数都是描述数据集中趋势的统计量,它们各自有哪些特征呢?【教学说明】学生讨论得出结果,进一步加深了对平均数、中位数和众数的理解,认清了它们各自存在的优劣以及如何利用这三种数据解决实际问题.三、运用新知,深化理解1.为筹备班里的新年晚会,班长以全班同学爱吃哪几种水果作民意调查,以决定买什么水果,那么他应该以调查数据的决定.2.若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是()A.3和2B.2和3C.2和2D.2和43.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数,如下表:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个合理吗?为什么?【教学说明】教师引导学生独立完成,加深对平均数、中位数和众数概念的理解和检验他们掌握的程度,对于需要帮助的学生及时点拨.【答案】1.众数;2.A ; 3.(1)平均数=540450300224062103120215++⨯+⨯+⨯+⨯=260,中位数为240,众数为240(2)合理,因为所定的件数等于平均数值. 四、师生互动,课堂小结1.回顾平均数、中位数、众数的概念和各自特征.2.你是如何利用平均数、中位数、众数这三个特征数来描述一组数据的集中趋势.3.这节课你掌握了哪些知识?还有什么疑问?与同学们交流.【教学说明】通过回顾知识点加深印象.让学生总结几个概念的不同侧重点以提高他们分析问题和解决问题的能力.1.布置作业:习题6.3中的第1、2、4题.2.完成练习册中本课时相应练习.学生对于两个概念的把握上还比较清晰,但在具体的实际问题中采用哪一种数据来分析不是很明确,对于一些问题中理由的说明还不是很充分,以后的教学中要正解引导.6.3 从统计图分析数据的集中趋势【知识与技能】1.进一步认识平均数、众数、中位数都是数据的代表,了解它们在描述数据时的差异.2.利用统计图灵活应用这三个数据代表解决实际问题.【过程与方法】经历探索常见的数据集中趋势的特征数的过程,感受其实际应用,掌握判断方法.【情感态度】培养数据信息素养,体会数据的集中趋势的特征数的实际应用价值.【教学重点】了解平均数、中位数、众数之间的差异.【教学难点】灵活运用这三个数据代表解决问题.一、创设情境,导入新课教材第145页“议一议”上方的内容.【教学说明】在同一个问题中求出众数,从而估计平均数,这是为了体现这两个量在描述一组数据集中趋势时之间的相互联系.体现了众数在日常生活中的指导意义,培养了学生的迁移能力.二、思考探究,获取新知从统计图中分析数据的集中趋势.思考并讨论:问题1:教材第145页“议一议”.【教学说明】利用统计图让学生在同一个问题中分别求出平均数、众数和中位数,主要是为了比较这三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的区别和联系.问题2:教材第145~146页“做一做”和“想一想”.【教学说明】在扇形统计图中很容易看出众数,从统计图中获取的信息求加权平均数,巩固了以前学过的知识,加深了对这个知识点的理解.采用问题2中的方法,教师引导学生完成教材第146页例题.三、运用新知,深化理解1.物理教师布置了10道选择题作为课堂练习,如图是全班解题情况统计,平均每个学生做对了道题;做对题数的中位数为;众数为 .2.某班50名同学为玉树灾区捐款,捐款情况如图,这些同学捐款的中位数是()A.2元B.5元C.10元D.20元3.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图所示的折线统计图.下列说法正确的是()A.各月阅读量最多相差47本B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月4.某中学为了了解八年级学生的课外阅读情况,随机调查了该年级的25名学生,得到了他们上周双休日课外阅读时间(记为t,单位:小时)的一组样本数据,其扇形统计图如图,其中y表示与t对应的学生数占被调查人数的百分比.(1)求与t=4相对应的y值;(2)试确定这组样本数据的中位数和众数;(3)请估计该校八年级学生上周双休日的平均课外阅读时间.【教学说明】让学生独立完成,考查学生对知识的理解和掌握运用情况,教师对解题过程中突出的问题要及时纠正和必要的点拨.【答案】1.8.78,9,8和10;2.B;3.C;4.解:(1)y=28%;(2)中位数是3小时,众数是4小时;(3)3.36小时.四、师生互动,课堂小结师生共同回顾如何从统计图中分析平均数、中位数、众数之间的密切关系?你还有哪些收获?与大家共同交流.【教学说明】教师引导学生归纳总结,对知识不断搜集整理形成体系.为学生解决实际问题提出了很好的方法和技巧.1.布置作业:习题6.4中的第1、2、3题.2.完成练习册中本课时相应练习.在实际问题中利用统计图获取信息,并求出或估计相关数据的平均数、中位数、众数的问题,发展学生初步的统计意识和数据处理的能力.通过相互合作交流,让所有学生都有所收获,共同发展.6.4 数据的离散程度第1课时极差、方差和标准差【知识与技能】通过分析数据,知道描述数据的不同方法.【过程与方法】通过极差和方差的计算方法,体会对数据的不同描述方法,并利用极差与方差求知量,激发学生们对学习的兴趣.【情感态度】培养学生对数据的集中趋势和波动大小的理解.【教学重点】理解极差和方差的计算方法. 【教学难点】理解极差与方差的意义.一、创设情境,导入新课 教材第149页问题【教学说明】应用实例并提问启发思考,导入极差的概念,自然而又有探索性.【归纳结论】实际生活中,除了关心数据的集中趋势外,人们往往还关注数据的离散程度,即它们相对于集中趋势的偏离情况.一组数据中最大数据与最小数据的差(称为极差),就是刻画数据离散程度的一个统计量.二、思考探究,获取新知 方差的计算和应用.问题1:教材第150页“做一做”【教学说明】通过问题的分析以及阅读指导的再认识,让学生认识到方差是衡量一组数据的离散程度的常用方法.【归纳结论】数学上,数据的离散程度还可以用方差或标准差刻画.方差(variance )是各个数据与平均数差的平方的平均数,即2222121()()()n s x x x x x x .n=-+-+⋯+-其中,x 是x 1,x 2,…,x n 的平均数,s 2是方差.而标准差(standard deviation )就是方差的算术平方根.一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定. 三、运用新知,深化理解1.数学课上,小明拿出了连续五天最低气温的统计表.那么,这组数据的平均数和极差分别是 .2. 一个样本为1,3,2,2,a,b,c 已知这个样本的众数为3,平均数为2,那么这个样本的方差为 .3. 五个数1,3,a ,5,8的平均数是4,则a= ,这五个数的方差是 .4.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:根据上表解答下列问题:(1)完成下表:(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含 80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含 80分)就很可能获奖,成绩达到90分以上(含 90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.【教学说明】通过极差与方差的计算,加深对极差与方差的理解,熟练掌握对数据的描述方法.【答案】1. 24,4; 2. 8/7; 3. 3, 5.64.解:(1)从左到右依次是20,80,80,80,40;(2)成绩比较稳定的同学是小李,小王的优秀率是40%,小李的优秀率是80%.(3)若为了获奖,选取小李,因为小李的优秀率高,有4次得80分以上(含80分),成绩比较稳定,获奖机会大.若想得一等奖,选小王,因为小王的成绩获得一等奖的概率较高,有2次90分以上(含90分),因此更有可能获得一等奖.(注:答案不唯一,可任选其中一人,只要分析合理即可,若选两人都去参加,不合题意)四、师生互动,课堂小结1.师生共同回顾极差,方差的概念和计算公式等知识点.2.通过本节课的学习,你已经掌握了哪些知识?还有哪些疑问?与同学们交流.【教学说明】通过回顾与思考巩固本节课所学知识,让学生体会进步与成功的喜悦,有信心更好的学下去.完成练习册中本课时相应练习.本节主要是学习极差、方差的概念并能进行计算,理解极差、方差在描述数据时的意义.第2课时方差的应用【知识与技能】1.通过实例,知道描述一组数据的分布时,除关心它的集中趋势外,还需分析数据的波动大小.2.了解数据离散程度的意义.【过程与方法】经历探索方差的应用过程,体会数据波动中方差的求法,积累统计经验,培养学生用统计的知识描述.分析数据,解决实际问题的能力.【情感态度】培养学生统计意识,形成尊重事实,用数据说话的态度.认识数据处理的实际意义.【教学重点】理解极差和方差的概念,掌握其求法.【教学难点】应用方差对数据波动情况的比较、判断.一、创设情境,导入新课 教材第150页例题【教学说明】应用实例掌握方差的概念及计算方法. 二、思考探究,获取新知 方差的计算和应用.问题1:教材第150页“做一做”【教学说明】让学生学会用计算器求方差,加深对公式的理解,体会现实生活中常常用方差考虑数据波动大小作出正确的选择和判断.问题2:教材第152页下方的问题.【教学说明】利用图象证明数据的离散程度,再通过计算加以验证,让学生进一步体会方差是衡量一组数据稳定性的重要标志.教师引导学生完成“议一议”和“做一做”.三、运用新知,深化理解1.甲、乙两个样本,甲的样本方差是2.15,乙的样本方差是2.21,那么样本甲和样本乙的波动大小是( )A.甲、乙的波动大小一样B.甲的波动比乙的波动大C.乙的波动比甲的波动大D.无法比较2.10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为x 甲,x 乙,身高的方差依次为s 2甲,s 2乙,则下列关系中完全正确的是( )A.乙甲=x x ,s 2甲>s 2乙B.乙甲=x x ,s 2甲<s 2乙 C 乙甲>.x x ,s 2甲<s 2乙 D.乙甲<x x ,s 2甲<s 2乙3.新星公司到某大学招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试,三项的得分满分都为100分,三项的分数分别按5∶3∶2的比例记入每人的最后总分,有4位应聘者的得分如下表所示.(1)写出4位应聘者的总得分;(2)就表上专业知识、英语水平、参加社会实践与社团活动等三项的得分,分别求出三项中4人所得分数的方差;(3)由(1)和(2),你对应聘者有何建议?【教学说明】学生独立完成,加深对概念和计算公式的理解,同时对方差的实际应用也是个考查,教师根据情况适时指导和点拨.【答案】1.C 2. B;3.解:(1)应聘者A总分为86分;应聘者B总分为82分;应聘者C总分为81分;应聘者D总分为82分.(2)4位应聘者的专业知识测试的平均分数1x=85,方差为:s21=14[(85-85)2+(85-85)2+(80-85)2+(90-85)2]=12.5;4位应聘者的英语水平测试的平均分数2x=87.5,方差为s22=14×2.52×4=6.25;4位应聘者参加社会实践与社团活动等的平均分数为3x=70,方差为s23=14[(90-70)2+(70-70)2+(70-70)2+(50-70)2]=200.(3)应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅要注重自己的文化知识的学习,更应注重社会实践与社团活动的参与,从而促进学生综合素质的提升.四、师生互动,课堂小结1.师生共同回顾极差,方差的概念和计算公式等知识点.2.通过本节课的学习,你已经掌握了哪些知识?还有哪些疑问?与同学们交。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第六章数据的分析导学案2
(新版)北师大版
【学习目标】
1、进一步理解平均数、中位数和众数等统计量的统计意义。

2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。

3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。

4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。

5、积极合作、阳光展示、精彩点评知识梳理:(自主预习,独立完成,小组互查)
1、加权平均数的公式是:若n个数的权分别是,则:
叫做这n个数的加权平均数。

2、在求n个数的算术平均数时,如果x1出现f1次,x2出现f2次,…,xk出现fk次(这里f1+f2+…+fk=n)那么这n个数的算术平均数。

3、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的。

如果数据的个数是偶数,则就是这组数据的中位数。

如果已知一组
数据的中位数,那么可以知道,小于等于或大于等于这个中位数的数据各占一半。

4、一组数据中出现次数最多的数据就是这组数据的。

5、平均数、中位数、众数比较:(1)联系:平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据,平均数是应用较多的一种量。

实际问题中求得的平均数、众数、中位数应带上。

(2)区别:①平均数计算要用到所有数据,它能充分利用所有的数据信息,任何一个数据的变动都会相应引起平均数的变动,并且它受的影响较大;②中位数仅与数据的有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势;③众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受的影响,它是它的一个优势。

6、极差:一组数据中数据与数据的差。

极差是最简单的一种度量数据情况的量,但只能反映数据的波动范围,不能衡量每个数据的变化情况,而且受极端值的影响较大、
7、各数据与平均数的差的平方的平均数叫做这批数据的方差。

公式为:。

方差,波动越小。

方差,波动越大。

巩固提高:(小组合作,积极展示、点评)
一、填空题
1、从一组数据中取出m个x1,n个x2,p个x3组成一个数
据样本,则这个样本的平均数为______、2、数据1,x,2,5的
中位数是3,则x=______、3、甲、乙两人在相同情况下各射靶10次,环数的方差分别是=
1、4,=
1、2,则射击稳定性高的是______、4、某中学举行一次演讲比赛,分段统计参赛学生的成绩如下表(分数为整数,满分为100分),分数段(分)60≤x<7070≤x<8080≤x<9090≤x<100人数(人)2864则这次比赛的平均成绩为______分、5、若x
1、x
2、x3的方差为4,则2x1+3,2x2+3,2x3+3的方差为
______、
二、选择题
6、若x,y,z的平均数是6,则5x+3,5y-2,5z+5的平均数是( )、(A)6(B)30(C)33(D)3
27、从某市5000名初一学生中,随机地抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、
中位数、众数、方差四个统计量中,服装厂最感兴趣的是( )、(A)平均数(B)中位数(C)众数(D)方差
8、小明对本班同学每天花多少零用钱进行了调查,计算出平均数为3,中位数为3,众数为2,极差为8,假如老师随机问一
名同学每天花多少零用钱,最有可能得到的回答是( )、
(A)3(B)2(C)8(D)不能确定
9、甲乙两人在跳远练习中,6次成绩分别为(单位:米):甲:
3、8
3、8
3、9
3、944;乙:
3、8
3、9
3、9
3、9
3、9
4、则这次跳远练习中,甲乙两人成绩方差的大小关系是( )、(A)>(B)<(C)=(D)无法确定
三、解答题
10、某农户在山上种了脐橙果树44株,现进入第三年收获期,收获时,先随意采摘5株果树上的脐橙,称得每株树上的脐橙重量如下(单位:千克):35,35,34,39,
37、若市场上的脐橙售价为每千克5元,估计这年该农户卖脐橙的收入为多少元?
11、如图,是某单位职工年龄的频数分布直方图,根据图形提供的信息,回答下列问题:(1)该单位职工的平均年龄为多少?(2)该单位职工在哪个年龄段的人数最多?(3)该单位职工年龄的中位数在哪个年龄段内?
12、学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为
3∶3∶4,通过计算说明谁应当选为优秀学生干部、
13、如图是甲、乙二人在八年级下学期的9次数学考试成绩:(1)填写下表:分类平均数方差中位数甲学科乙(2)请从不同的角度对两人的考试成绩进行分析、(至少写出三条)
14、为了迎接新中国成立六周年,某中学九年级组织了《祖国在我心》征文比赛,共收到一班、二班、三班、四班参赛学生的文章共100篇(参赛学生每人只交一篇),下面扇形统计图描述了各班参赛学生占总人数的百分比情况(尚不完整)、比赛
一、二等奖若干,结果全年级25人获奖,其中三班参赛学生的获奖率为20%,
一、
二、
三、四班获奖人数的比为6∶7∶a∶
5、(1)填空:①四班有______人参赛,②a=______,各班获奖学生数的众数是______、(2)获一等奖、二等奖的学生每人分别得到价值100元、60元的学习用品,购买这批奖品共用去1900元,问一等奖、二等奖的学生人数分别是多少?回顾反思:(谈谈本节课的收获)
1、知识点
2、思想方法
3、易错点检测反馈。

相关文档
最新文档