九年级《特殊平行四边形》综合测试卷
(典型题)初中数学九年级数学上册第一单元《特殊平行四边形》检测卷(包含答案解析)

一、选择题1.如图,点P 是正方形ABCD 的对角线BD 上一点(点P 不与点B 、D 重合),PE BC ⊥于点E ,PF CD ⊥于点F ,连接EF ,给出下列几个结论:①AP EF =;②AP EF ⊥;③当APD ∆是等腰三角形时,67.5DAP ∠=︒;④PFE BAP ∠=∠.其中有正确有( )个.A .1B .2C .3D .42.如图,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,将纸片展平,再一次折叠,使点D 落到EF 上的点G 处,并使折痕经过点A ,已知2BC =,则线段EG 的长度为( )A .1B .3C .5D .23.如图,矩形纸片ABCD ,3AB =,5AD =,折叠纸片,使点A 落在BC 边上的E 处,折痕为PQ ,当点E 在BC 边上移动时,折痕的端点P 、Q 也随之移动,若限定点P 、Q 分别在AB 、AD 边上移动,则点E 在BC 边上可移动的最大距离为( )A .1B .2C .4D .54.如图,已知正方形ABCD 的边长为4,E 是边CB 延长线上一点,F 为AB 边上一点,BE =BF ,连接EF 并延长交线段AD 于点G ,连接CF 交BD 于点M ,连接CG 交BD 于点N .则下列结论:①AE =CF ;②∠BFM =∠BMF ;③∠CGF ﹣∠BAE =45°;④当∠BAE =15°时,MN =433. 其中正确的个数有( )A .1B .2C .3D .45.如图,在△ABC 中,∠ACB =90°,以△ABC 的各边为边作三个正方形,点G 落在HI 上,若AC +BC =6,空白部分面积为10.5,则AB 的长为( )A .32B .19C .25D .266.下列命题中,正确的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .平行四边形的对角线平分且相等D .顺次连结菱形各边中点所得的四边形是矩形7.如图,四边形ABCD 中,90A B ∠=∠=︒,60C ∠=°,2CD AD =,4AB =,点P 是AB 上一动点,则PC PD +的最小值是( )A .4B .6C .8D .108.以下命题,正确的是( ).A .对角线相等的菱形是正方形B .对角线相等的平行四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形9.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若25CBF ︒∠=,则AED =∠A .60°B .65°C .70°D .75°10.如图,E 为矩形ABCD 的边AB 上一点,将矩形沿CE 折B 叠,使点恰好落在ED 上的点F 处,若5,3CD BC ==,则BE 的长为( )A .0.5B .1C .1.5D .211.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n -1C .(14)n -1D .14n 12.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,7EF =,则AF 的长是( )A 6B 7C .3D .5二、填空题13.如图,以AB 为边作边长为8的正方形ABCD ,动点P 、Q 在正方形ABCD 的边上运动,且PQ =8,若点P 从点A 出发,沿A →B →C →D 的线路,向D 点运动,点Q 只能在线段AD 上运动,求点P 从A 到D 的运动过程中,PQ 的中点O 所经过的路径的长为_____.14.(知识衔接)(1)长方形的对角线相等且互相平分;(2)直角三角形斜边上的中线等于斜边的一半.(问题解决)如图,在ABCD 中,2CD AD =,BE AD ⊥于点E ,F 为DC 的中点,连结EF ,BF .下列结论:①2ABC ABF ∠=∠;②EF BF =;③S 四边形DEBC 2EFB S =△;④4CFE DEF ∠=∠.正确的是_______15.如图,正方形ABCD ,对角线AC ,BD 交于点O ,以OD ,OC 为一组邻边做正方形1DOCC ;CD ,1OC 交于点1O ,以1O D ,11O C 为一组邻边做正方形112DO C C ;1C D ,12O C 交于点2O ,以2O D ,22O C 为一组邻边做正方形223DO C C …….若1AB =,则1n n n DO C C S +正方形的值为_____.16.如图,在菱形ABCD 中,2,60AB BAD =∠=︒,将菱形ABCD 绕点A 逆时针方向旋转,对应得到菱形,AEFG 点E 在AC 上.EF 与CD 交于点,P 则PE 的长是____.17.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为BC 中点,AC =6,BD =8,则线段OH 的长为_____.18.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,若∠DHO=20°,则∠HDB 的度数是________.19.已知:如图,点P 是边长为2的菱形ABCD 对角线AC 上的一个动点,点M 是AB 边的中点,且60BAD ∠=︒,则MP PB +的最小值是_______.20.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.三、解答题21.△ABC 是等腰三角形,其中AB =BC ,将△ABC 绕顶点B 逆时针旋转50°到△A 1BC 1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别相交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=50°时,判断四边形A1BCE的形状并说明理由.22.如图一,在平行四边形ABCD中,AB⊥AC,AB=1,BC=5,对角线AC,BD相交于O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(所需图形须在备用图中画出)(1)试说明在旋转过程中,线段AF与EC总保持相等;(2)求证:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,当EF⊥BD,旋转的角度小于180°时,求出此时绕点O顺时针旋转的度数.23.(1)如图1,点E,F分别在正方形ABCD的边上,且∠EAF=45°,求证:EF=BE+DF;(2)如图2,四边形ABCD中,AD//BC,∠D=90°,AD=DC=10,BC=6,点E在CD上,∠BAE=45°,在(1)的基础上求DE长.24.如图,在Rt∆ABC中,∠ACB=90°,AC的垂直平分线交AB于点E,连接CE,BF//CE 交DE的延长线于点F.(1)求证:四边形BCEF是平行四边形;(2)当∠A满足什么条件时,四边形BCEF是菱形?回答并证明你的结论.25.在四边形ABCD中,AD//BC.∠B=90°,AB=8cm,AD=24cm.BC=26cm.点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以2cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.求:从运动开始,使PQ =CD,需要经过的时间是多少?26.综合与实践问题情境:如图1,已知点O是正方形ABCD的两条对角线的交点,以点O为直角顶点的直角三角形=,30BC=.OEF的两边OE,OF分别过点B,C,且OF OC∠=︒,2E(1)OC的长度为________;操作证明:∆按如图放置,若OE,OF分别与AB,BC (2)如图2,在(1)的条件下,将OEF相交于点M,N.请判断OM和ON有怎样的数量关系,并证明结论;探究发现:∆按如图放置,若点B恰好在EF上,求证:(3)如图3,在(1)的条件下,将OEF=.EM EB【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE 后即可证明①AP=EF;④∠PFE=∠BAP;延长AP到EF,交EF于点H,知∠PAG=∠PFH,结合∠APG=∠FPH得∠PHF=∠PGA=90°,据此知AP⊥EF,②正确;由点P是正方形ABCD的对角线BD上不于点B、D重合的任意一点,∠ADP=45°知当∠PAD=45°或67.5°时,△APD是等腰三角形,可判断③;【详解】过点P作PG⊥AB于点G,∵点P 是正方形ABCD 的对角线BD 上一点(点P 不与点B 、D 重合),∴GB =GP ,同理:PE =BE ,∵AB =BC =GF ,∴AG =AB−GB ,FP =GF−GP =AB−GB ,∴AG =PF ,在△AGP 和△FPE 中,AG PF AGP FPE GP PE =⎧⎪∠=∠⎨⎪=⎩,∴△AGP ≌△FPE (SAS ),∴AP =EF ,①正确,∠PFE =∠GAP ,∴∠PFE =∠BAP ,④正确;延长AP 到EF ,交EF 于一点H ,∴∠PAG =∠PFH ,∵∠APG =∠FPH ,∴∠PHF =∠PGA =90°,∴AP ⊥EF ,②正确,∵点P 是正方形ABCD 的对角线BD 上不与点B 、D 重合的任意一点,∠ADP =45°, ∴当PA =PD 时,∠PAD =45°;当DA =DP 时,∠PAD =67.5°,即当,△APD 是等腰三角形时,∠PAD =45°或67.5°时,故③错误.因此,正确的结论是①②④,共3个,故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质.本题难度较大,综合性较强,在解答时要认真审题.2.B解析:B【分析】由折叠的性质可得AE=12AD=12BC=1,AG=AD=2,由勾股定理得出EG 即可.【详解】解:如图所示:∵四边形ABCD是矩形,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,∴AE=12AD=12BC=1,EF⊥AD,∴∠AEF=90°,∵再一次折叠,使点D落到EF上点G处∴AG=AD=2,∴EG=22213-=,故选:B.【点睛】此题主要考查了翻折变换的性质以及矩形的性质,熟练掌握折叠的性质是解题关键.3.B解析:B【分析】根据翻折变换,当点Q与点D重合时,点E到达最左边,当点P与点B重合时,点E到达最右边,所以点E就在这两个点之间移动,分别求出这两个位置时EB的长度,然后两数相减就是最大距离.【详解】解:如图1,当点D与点Q重合时,根据翻折对称性可得ED=AD=5,在Rt△ECD中,ED2=EC2+CD2,即52=(5-EB)2+32,解得EB=1,如图2,当点P与点B重合时,根据翻折对称性可得EB=AB=3,∵3-1=2,∴点E在BC边上可移动的最大距离为2.故选:B . 【点睛】本题考查的是翻折变换及勾股定理,熟知图形翻折不变性的性质是解答此题的关键.4.B解析:B 【分析】①根据已知条件证明△ABE ≌△CBF ,即可判断;②由△ABE ≌△CBF 和已知条件证明四边形DGEB 是平行四边形,再证明△FBC ≌△GDC ,当且仅当∠FCG=45°时,∠BFM=∠BMF ,即可判断; ③结合①②证明∠FMB=∠CGF ,进而可以判断;④当∠BAE=15°时,∠BCM=∠GCD=∠BAE=15°,可得△CMN 是等边三角形,作CH ⊥BD 于点H ,根据正方形边长为4,即可求出MN 的值,进而可以判断. 【详解】解:①∵四边形ABCD 是正方形, ∴AB =BC ,∠ABE =∠CBF =90°, 在△ABE 和△CBF 中,BE BF ABE CBF AB CB =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CBF (SAS ), ∴AE =CF ,故①正确; ②∵△ABE ≌△CBF , ∴∠BCF =∠BAE ,∵∠GEC =∠DBC =∠ADB =45°, ∴∠BMF =∠FCB +∠DBC =∠FCB +45°, ∵∠GEC =∠DBC , ∴EG ∥DB , ∵DG ∥BE ,∴四边形DGEB 是平行四边形, ∴BE =DG , 在△FBC 和△GDC 中,BF DG FBC GDC BC DC =⎧⎪∠=∠⎨⎪=⎩, ∴△FBC ≌△GDC (SAS ), ∴∠BCF =∠DCG ,∴∠BFM =∠FCD =∠DCG +∠FCG =∠BCF +∠FCG , ∴当且仅当∠FCG =45°时,∠BFM =∠BMF ,故②错误; ③∵GE ∥BD , ∴∠FMB =∠GFC , ∵△FBC ≌△GDC , ∴CF =CG , ∴∠GFC =∠CGF , ∴∠FMB =∠CGF ,∴∠CGF ﹣∠BAE =∠FMB ﹣∠BCM =∠MBC =45°,故③正确; ④当∠BAE =15°时,∠BCM =∠GCD =∠BAE =15°, ∴∠FCG =90°﹣∠BCM ﹣∠GCD =60°, ∵BD ∥EG ,∴∠GFC =∠NMC ,∠FGC =∠MNC , ∵∠GFC =∠FGC , ∴∠NMC =∠MNC , ∴CM =CN ,∠MCN =60°, ∴△CMN 是等边三角形, 作CH ⊥BD 于点H ,如图,∴CH =12BD =122244+=2,∴CM 223×2=463,∴MN =CM 46,故④错误. 所以其中正确有①③,2个. 故选:B . 【点睛】本题是四边形的综合题,考查了正方形、全等三角形、平行四边形的性质和判定,在有中点和直角三角形的前提条件下,可以利用直角三角形斜边上的中线等于斜边的一半来证明两条线段相等.5.B解析:B 【分析】根据余角的性质得到∠FAC =∠ABC ,根据全等三角形的性质得到S △FAM =S △ABN ,推出S △ABC =S 四边形FNCM ,根据勾股定理得到AC 2+BC 2=AB 2,解方程组得到3AB 2=57,于是得到结论. 【详解】解:∵四边形ABGF 是正方形, ∴∠FAB =∠AFG =∠ACB =90°, ∴∠FAC +∠BAC =∠FAC +∠ABC =90°, ∴∠FAC =∠ABC , 在△FAM 与△ABN 中,90F NAB FAM ABN AF AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△FAM ≌△ABN (AAS ), ∴S △FAM =S △ABN , ∴S △ABC =S 四边形FNCM , ∵在△ABC 中,∠ACB =90°, ∴AC 2+BC 2=AB 2, ∵AC +BC =6,∴(AC +BC )2=AC 2+BC 2+2AC•BC =36, ∴AB 2+2AC•BC =36, ∵AB 2﹣2S △ABC =10.5, ∴AB 2﹣AC•BC =10.5, ∴3AB 2=57,解得AB故选:B . 【点睛】本题考查了勾股定理,正方形的性质,全等三角形的判定和性质,掌握割补法得出图形面积之间的关系是解题关键.6.D解析:D 【分析】根据矩形、菱形的判定和平行四边形的性质判断即可. 【详解】解:A、对角线相等的平行四边形是矩形,原命题是假命题,不符合题意;B、对角线互相垂直的平行四边形是菱形,原命题是假命题,不符合题意;C、平行四边形的对角线平分,原命题是假命题,不符合题意;D、顺次连结菱形各边中点所得的四边形是矩形,是真命题,符合题意;故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.C解析:C【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD 最小;再作D'E⊥BC于E,则EB=D'A=AD,先根据等边对等角得出∠DCD'=∠DD'C,然后根据平行线的性质得出∠D'CE=∠DD'C,从而求得∠D'CE=∠DCD',得出∠D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=4,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=60°,∴∠D'CE=30°,∴在Rt△D'CE中,D'C=2D'E=2×4=8,∴PC+PD的最小值为8.故选:C.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,含30°角的直角三角形的性质等,确定出P点是解答本题的关键.8.A解析:A【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A、对角线相等的菱形是正方形,正确,是真命题;B、对角线相等的平行四边形是矩形,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选A.【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.9.C解析:C【分析】先证明△ABE≌△ADE,得到∠ADE=∠ABE=90°﹣25°=65°,在△ADE中利用三角形内角和180°可求∠AED度数.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选C.【点睛】本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.10.B解析:B 【分析】求出4DF =,设BE x =,则5AE x =-,根据勾股定理列方程可得BE 的长. 【详解】解:设BE x =,则5AE x =-,由折叠得:3CF BC ==,90B CFE ∠=∠=︒,90CFD ∴∠=︒,2222534DF CD CF ∴=-=-=,四边形ABCD 是矩形,3AD BC ∴==,90A ∠=︒,Rt AED ∆中,222AE AD ED +=,222(5)3(4)x x ∴-+=+,1x ∴=, 1BE ∴=, 故选:B . 【点睛】本题考查了翻折变换的性质、矩形的性质、勾股定理;熟练掌握矩形的性质、折叠的性质,并能进行推理计算是解决问题的关键.11.B解析:B 【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA ),由此可知阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为(n -1)个阴影部分的和,即可求解. 【详解】如图作正方形边的垂线,由ASA 可知同正方形中两三角形全等,利用割补法可知一个阴影部分面积等于正方形面积的14,即是12214⨯⨯=, n 个这样的正方形重叠部分(阴影部分)的面积和为:()111n n ⨯-=-. 故选:B . 【点睛】本题考查了正方形的性质、全等三角形的判定与性质.解题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.12.C解析:C 【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论. 【详解】 ∵AB ⊥AF , ∴∠FAB=90°, ∵点D 是BC 的中点,∴AD=BD=12BC=4, ∴∠DAB=∠B ,∴∠ADE=∠B+∠BAD=2∠B , ∵∠AEB=2∠B , ∴∠AED=∠ADE , ∴AE=AD , ∴AE=AD=4, ∵,EF ⊥AF ,∴==3,故选:C . 【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.二、填空题13.4π+8【分析】根据题意将问题分类讨论三种情况依次讨论:一个是依据斜边上的中线+圆的定义得到弧的轨迹一个可以用中垂线来理解【详解】解:(1)当P 在AB 上Q 在AD 上时AO =由圆的定义可以知O 的轨迹为E解析:4π+8【分析】根据题意将问题分类讨论,三种情况依次讨论:一个是依据斜边上的中线+圆的定义得到弧的轨迹,一个可以用中垂线来理解 【详解】解:(1)当P 在AB 上,Q 在AD 上时,AO =142PQ =,由圆的定义可以知O 的轨迹为EF 这段14圆弧 (2)同理当P 在CD 上,Q 在AD 上时,DO =142PQ =,由圆的定义可以知O 的轨迹为EG 这段14圆弧 (3)Q 在AD 上,P 在BC 上,可知PQ ∥AB ,O 的运动轨迹为FG 这条线段 综上分析:O 的运动路径长为:4π+8.故答案:4π+8 【点睛】本题考查了轨迹以及正方形的性质,解题的关键是学会用分类讨论的思想思考问题.14.①②③【分析】利用平行线的性质等腰三角形的性质即可判断①;延长EF 与BC 的延长线相交与点G 易证再根据全等三角形的性质及直角三角形斜边上的中线等于斜边的一半即可判断②;根据三角形中位线的性质即可判断③解析:①②③ 【分析】利用平行线的性质,等腰三角形的性质即可判断①;延长EF 与BC 的延长线相交与点G ,易证DEF CGF ≅△△,再根据全等三角形的性质及直角三角形斜边上的中线等于斜边的一半即可判断②; 根据三角形中位线的性质即可判断③;设DEF x ∠=,根据三角形外角和平行线的性质即可判断④. 【详解】 解:F 为DC 的中点,2CD CF ∴=2CD AD =,AD BC = CF BC AD ∴==CFB CBF ∴∠=∠ //AB CDCFB ABF ∴∠=∠ABF CBF ∴∠=∠2ABC ABF ∴∠=∠,故①正确;延长EF 与BC 的延长线相交与点G ,//AD BC ,BE AD ⊥ DEF G ∴∠=∠,⊥BE BG在DEF 和CGF △中,DEF G EFD GFC DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩DEF CGF ∴≅△△EF GF ∴=在Rt EBG 中,根据直角三角形斜边上的中线等于斜边的一半, EF BF ∴=,故②正确; BF 是EBG 的中线 2BEG BEF S S ∴=△△又DEF CGF S S =△△∴S 四边形DEBC =S △BEC∴S 四边形DEBC =2S △BEF ,故③正确;设DEF x ∠=//AD BCDEF G x ∴∠=∠= FG FB = G FBG x ∴∠=∠=2EFB x ∴∠=,CFB CBF x ∠=∠=233CFE CFB BFE x x x DEF ∴∠=∠+∠=+==∠,故④错误;故答案为:①②③. 【点睛】本题考查了直角三角形斜边上的中线、三角形外角性质、三角形中位线、等腰三角形的三线合一、全等三角形的判定及性质,熟练掌握性质定理是解题的关键.15.【分析】依题意得由从而可得同理继而可得……依此规律作答【详解】解:在正方形中同理∵∴∵……故答案为:【点睛】本题考查了正方形的性质全等三角形的性质及求三角形的面积等知识正确理解正方形的对角线把正方形 解析:+112n【分析】依题意,得1ABCD S =正方形,由ABC DOC 142DOCDOCD C S SS S==正方形正方形,,从而可得11122DOCC ABCD S S ==正方形正方形,同理,111S 4DO C DOCC S =正方形,11112S 2DO C DO C C S=正方形,继而可得 112121111S 2222DO C C DOCC S ==⨯=正方形正方形 ,22112S 4DO C DO C C S =正方形,22223S 2DO C DO C C S=正方形,2231121S 2DO C C DO C C S ==正方形正方形23111222⨯=……,依此规律作答【详解】解:在正方形ABCD 中,,,AC BD AO BO CO DO AB BC CD DA ⊥======,AOB BOC COD DOA ∴≌≌≌,AOBBOCCODDOAS∴=S=S=SS 4DOCABCD S∴=正方形,1S 2DOCDOCC S=正方形,11S 2DOCC ABCD S ∴=正方形正方形,同理∵111S 4DO C DOCC S =正方形,11112S 2DO C DO C C S=正方形∴112121111S 2222DO C C DOCC S ==⨯=正方形正方形 , ∵22112S 4DO C DO C C S =正方形,22223S 2DO C DO C C S=正方形223112231111S 2222DO C C DO C C S ==⨯=正方形正方形, ……111S 2n n n DO C C n ∴++=正方形, 故答案为:112n + 【点睛】本题考查了正方形的性质,全等三角形的性质及求三角形的面积等知识,正确理解正方形的对角线把正方形分成面积相等的四个全等三角形是解题的关键16.【分析】连接BD 交AC 于O 由菱形的性质得出CD=AB=2∠BCD=∠BAD=60°由直角三角形的性质求出OB=AB=1由直角三角形的性质得出由旋转的性质得出AE=AB=2∠EAG=∠BAD=60°求 解析:31- 【分析】连接BD 交AC 于O ,由菱形的性质得出CD=AB=2,∠BCD=∠BAD=60°,1ACD 302︒∠=∠=∠=BAC BAD ,由直角三角形的性质求出OB=12AB=1,由直角三角形的性质得出23AC =,由旋转的性质得出AE=AB=2,∠EAG=∠BAD=60°,求出CE=AC-AE 232=-,证出∠CPE=90°,由直角三角形的性质得出PE 的长【详解】解:连接BD 交AC 于O ,如图所示:∵四边形ABCD 是菱形,∴CD=AB=2,∠BCD=∠BAD=60°,1ACD 302︒∠=∠=∠=BAC BAD ,OA=OC ,AC ⊥BD , ∴112OB AB == ∴33,==OA OB ∴23AC =由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,∴232,=-=CE AC AE∵四边形AEFG 是菱形,∴EF ∥AG ,∴∠CEP=∠EAG=60°,∴∠CEP+∠ACD=90°,∴∠CPE=90°,∴1312PE CE == 31【点睛】本题考查了菱形的性质、旋转的性质、含30°角的直角三角形的性质、平行线的性质等知识;熟练掌握旋转的性质和菱形的性质是解题的关键.17.5【分析】先根据菱形的性质得到AC⊥BDOB=OD=BD=4OC=OA=AC=3再利用勾股定理计算出BC然后根据直角三角形斜边上的中线性质得到OH的长【详解】∵四边形ABCD为菱形AC=6BD=8∴解析:5【分析】先根据菱形的性质得到AC⊥BD,OB=OD=12BD=4,OC=OA=12AC=3,再利用勾股定理计算出BC,然后根据直角三角形斜边上的中线性质得到OH的长.【详解】∵四边形ABCD为菱形,AC=6,BD=8,∴AC⊥BD,OB=OD=12BD=4,OC=OA=12AC=3,在Rt△BOC中,BC5,∵H为BC中点,∴OH=12BC=2.5.故答案为:2.5.【点睛】本题考查菱形的性质、勾股定理及直角三角形斜边中线的性质,菱形的对角线互相垂直且平分;直角三角形斜边的中线等于斜边的一半;熟练掌握相关性质是解题关键.18.20°【分析】根据菱形的性质得出OB=OD根据直角三角形斜边的一半等于斜边的一半得出OH=OD即可得出∠HDB=∠DHO=20°【详解】解:∵四边形ABCD是菱形∴OB=OD∵DH⊥AB于点H∴OH解析:20°【分析】根据菱形的性质得出OB=OD,根据直角三角形斜边的一半等于斜边的一半,得出OH=OD,即可得出∠HDB=∠DHO=20°.【详解】解:∵四边形ABCD是菱形,∴OB=OD,∵ DH⊥AB于点H,∴OH=12BD=OD,∴∠HDB=∠DHO=20°.故答案为:20°.【分析】此题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质.注意证得△OBH 是等腰三角形是关键.19.【分析】根据菱形对角线互相垂直且平分的性质得到点B 的对称点为点D 再由两点之间线段最短解得的最小值再根据题意判定是等边三角形结合三线合一及勾股定理解题【详解】如图连接BD 交AC 于点O 连接DM 交点AC 于 解析:3 【分析】根据菱形对角线互相垂直且平分的性质,得到点B 的对称点为点D ,再由两点之间线段最短解得MP PB +的最小值,再根据题意判定ADM △是等边三角形,结合三线合一及勾股定理解题.【详解】如图,连接BD 交AC 于点O ,连接DM 交点AC 于点P ,连接BP ,在菱形ABCD 中,AC BD ⊥,且OB=OD 即点B 关于AC 的对称点是点D ,PD PB ∴=MP PB MP DP DM ∴+=+=此时MP PB +值的最小,AB=AD ,60BAD ∠=︒,ADB ∴是等边三角形,点M 是AB 边的中点,AB DM ∴⊥,1AM ∴=22213DM ∴=-=.【点睛】本题考查菱形的性质、两点之间线段最短、等边三角形的判定与性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.20.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°再根据折叠的性质可得答案【详解】∵四边形ABCD 是矩形∴AD ∥BC ∴∠B′FC =∠2=70°∴∠1+∠B′FE=180°-∠B解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD 是矩形,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE ,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.三、解答题21.(1)见解析;(2)四边形A 1BCE 是菱形,理由见解析.【分析】(1)根据等腰三角形的性质得到AB=BC ,∠A=∠C ,由旋转的性质得到A 1B=AB=BC ,∠A=∠A 1=∠C ,∠A 1BD=∠CBC 1,根据全等三角形的判定定理得到△BCF ≌△BA 1D ; (2)由旋转的性质得到∠A 1=∠A ,根据平角的定义得到∠DEC=180°-50=130º,根据四边形的内角和得到∠ABC=360°-∠A 1-∠C-∠A 1EC=180°-50=130º,证得四边形A 1BCE 是平行四边形,由于A 1B=BC ,即可得到四边形A 1BCE 是菱形.【详解】解:(1)证明:∵△ABC 是等腰三角形,∴AB=BC ,∠A=∠C ,∵将等腰△ABC 绕顶点B 逆时针方向旋转50度到△A 1BC 1的位置,∴A 1B=AB=BC ,∠A=∠A 1=∠C ,∠A 1BD=∠CBC 1,在△BCF 与△BA 1D 中,111A C AB BCA BD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BCF ≌△BA 1D (ASA );(2)四边形A 1BCE 是菱形,理由:∵将等腰△ABC 绕顶点B 逆时针方向旋转50度到△A 1BC 1的位置,∴∠A 1=∠A ,∵∠ADE=∠A 1DB ,∴∠AED=∠A 1BD=50º,∴∠DEC=180°-50º=130º,∵∠C=50º,∴∠A 1=50º,∴∠A 1BC=360°-∠A 1-∠C-∠A 1EC=180°-50º=130º,∴∠A 1=∠C ,∠A 1BC=∠A 1EC ,∴四边形A 1BCE 是平行四边形,∴四边形A1BCE是菱形.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键.22.(1)答案见解析;(2)证明见解析;(3)45°.【分析】(1)根据平行四边形的对边平行可得AD∥BC,对角线互相平分可得OA=OC,再根据两直线平行,内错角相等求出∠FAO=∠ECO,然后利用“角边角”证明△AOF和△COE全等,根据全等三角形对应边相等即可得到AF=CE;(2)根据垂直的定义可得∠BAO=90°,然后求出∠BAO=∠AOF,再根据内错角相等,两直线平行可得AB∥EF,然后根据平行四边形的对边平行求出AF∥BE,再根据两组对边分别平行的四边形是平行四边形证明;(3)根据(1)的结论可得AF=CE,再求出DF∥BE,DF=BE,然后根据一组对边平行且相等的四边形是平行四边形求出四边形BEDF平行四边形,再求出对角线互相垂直的平行四边形是菱形可得EF⊥BD时,四边形BEDF是菱形;根据勾股定理列式求出AC=2,再根据平行四边形的对角线互相平分求出AO=1,然后求出∠AOB=45°,再根据旋转的定义求出旋转角即可.【详解】解:(1)如图一∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE(ASA),∴AF=EC,∴在旋转过程中,线段AF与EC总保持相等.(2)如备用图一:证明:∵AB ⊥AC ,∴∠BAC =90°.∵∠AOF =90°,∴∠BAC =∠AOF ,∴AB ∥EF .∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴四边形ABEF 是平行四边形.(3)如备用图二:在Rt △ABC 中,AC 22BC AB -.∵AO =OC ,∴AO =1=AB .∵∠BAO =90°,∴∠AOB =45°∵EF ⊥BD ,∴∠BOF =90°,∴∠AOF =45°,即AC 绕点O 顺时针旋转45°.【点睛】本题考查了平行四边形的性质和判定,菱形的性质和判定,旋转的性质,勾股定理的应用,能综合运用知识点进行推理是解此题的关键.23.(1)见解析;(2)307【分析】(1)延长EB 至点G ,使BG =DF ,连接AG ,根据题意易证△ADF ≌△ABG (SAS ),即可得到AG =AF ,∠GAB =∠FAD .即可证明△GAE ≌△FAE (SAS ),即得到EF =BE +DF .(2)作AM ⊥BC 点M ,连接BE ,易证四边形AMCD 是正方形,即可得到AD =CD =MC =10,MB =4.再由(1)的结论得BE =MB +DE ,设DE =x ,则EC =10x -,BE =4x +.在Rt △BCE 中,结合勾股定理即可列出关于x 的方程,求出x 即可.【详解】(1)如图,延长EB 至点G ,使BG =DF ,连接AG .在△ADF 和△ABG 中,90AD AB ADF ABG DF BG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADF ≌△ABG (SAS ).∴AG =AF ,∠GAB =∠FAD ,∵45EAF ∠=︒,∴45FAD BAE ∠+∠=︒,∴45GAB BAE ∠+∠=︒,即45GAE EAF ∠=∠=︒.在△GAE 和△FAE 中,45AG AF GAE EAF AE AE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△GAE ≌△FAE (SAS ),∴EG=EF ,即EF=BE+BG=BE+DF .(2)如图,作AM ⊥BC 点M ,连接BE ,由题意可知四边形AMCD 是正方形,∴AD =CD =MC =10,MB =4.由(1)知BE =MB +DE .设DE =x ,则EC =10x -,BE =4x +.在Rt △BCE 中,222BC EC BE +=,即()222610=(4)x x +-+, 解得:307x =,即DE = 307【点睛】本题考查三角形全等的判定和性质,正方形的判定和性质以及勾股定理.作出常用的辅助线是解答本题的关键.24.(1)证明见解析;(2)30A ∠=︒,证明见解析【分析】(1)先根据垂直平分线和直角证得DF//BC ,再结合BF//CE ,根据两组对边分别平行的四边形是平行四边形即可证明;(2)根据有一组临边相等的平行四边形是菱形,所以需添加的条件能证明有一组临边相等据此作答.【详解】解:(1)证明:∵DF 垂直平分AC ,90ACB ∠=︒,∴DF//BC ,又∵BF//CE ,∴四边形BCEF 是平行四边形;(2)当30A ∠=︒时,四边形BCEF 是菱形,理由是:∵DF 垂直平分AC ,90ACB ∠=︒,30A ∠=︒,∴EA=EC ,1903060∠=︒-︒=︒,∴230A ∠=∠=︒,即3903060∠=︒-︒=︒,∴∆BCE 是等边三角形,∴BC=EC ,由(1)得四边形BCEF 是平行四边形,∴四边形BCEF 是菱形.【点睛】本题考查菱形的判定定理,平行四边形的判定定理,垂直平分线的性质,等腰三角形的性质.熟练掌握判定定理,并能结合题意选择合适的定理证明是解题关键.25.8s 或283s 【分析】设运动时间为t 秒,则有AP =t ,CQ =2t ,分PQ//CD 和PQ 与CD 不平行两种情况进行讨论,再根据平行四边形或梯形的性质建立方程即可求解.【详解】解:(1)当PQ//CD 时,∵AD//BC ,∴四边形PDCQ 是平行四边形,∴PD =CQ ,而AP =t ,CQ =2t ,PD =AD -AP =24-t ,即:2t =24-t解得: t =8.(2)当PQ 与CD 不平行时,而AD//BC ,PQ =CD ,∴四边形PDCQ 是等腰梯形,作PM ⊥BC 于M ,DN ⊥BC 于N ,则四边形ABND 、PMND 均是矩形,∴AD =BN =24,CN =BC -BN =2,QM =CN =2,PD =MN ,而CQ =QM +MN +NC ,∴ 2t =24-t +2+2,解得: t =283.【点睛】此题考查了平行四边形的性质及等腰梯形的判定与性质,属于动点型问题,关键是分类讨论点P 及点Q 位置,然后利用方程思想求解t 的值.26.(12;(2)OM ON =,证明详见解析;(3)详见解析【分析】(1)由题意可得OC=OB ,OC ⊥OB ,再根据勾股定理即可得到答案;(2)连接OB ,OC ,证明BOM CON ∆∆≌,即可得出答案;(3)根据题意可推出OBF ∆为等边三角形,可得60OBF F ∠=∠=︒,2BF OF ==45OBC ∠=︒,可得45OBM ∠=︒,从而可推出,EBM EMB ∠=∠,即可得证.【详解】解:(1)∵点O 是正方形ABCD 的两条对角线的交点,以点O 为直角顶点的直角三角形OEF 的两边OE ,OF 分别过点B ,C ,∴OC=OB ,OC ⊥OB ,∵BC=2,∴OC 2=BC 2-OB 2,2OC 2=BC 2,2OC 2=4,即2;(2)OM ON =;证明:如图,连接OB ,OC ,。
九年级专项训练(综合卷)-特殊平行四边形

的周长为 8,则∠DBA 的度数为( )
A.15°
B.20°
C.30°
D.35°
7.如图,菱形 ABCD 的对角线 AC,BD 相交于点 O,过点 A 作 AH⊥BC 于点 H,连接 OH,若 OB=4,
S 菱形 ABCD=24,则 OH 的长为( )
A.3
B.4
C.5
D.6
8.如图,∠MON=90°,动点 A、B 分别位于射线 OM、ON 上,矩形 ABCD 的边 AB=6,BC=4,则
以 2cm/s 的速度向点 B 移动,一直到 B 为止,点 Q 以 1cm/s 的速度向 D 移动.设运动的时间为 t.当
t=
时,以点 P、Q、D 为顶点的三角形是等腰三角形.
三.解答题(共 6 小题,满分 52 分) 17.如图,▱ABCD 的对角线 AC,BD 交于点 O,过点 D 作 DE⊥BC 于 E,延长 CB 到点 F,使 BF=CE,
连接 AF,OF. (1)求证:四边形 AFED 是矩形. (2)若 AD=7,BE=2,∠ABF=45°,试求 OF 的长.
18.如图,已知△ABC 中,AD 是边 BC 上的中线,过点 A 作 AE∥BC,过点 D 作 DE∥AB,DE 与 AC、 AE 分别交于点 O、点 E,联结 EC. (1)求证:四边形 ADCE 是平行四边形; (2)当∠BAC=90°时,求证:四边形 ADCE 是菱形.
20.已知,如图,正方形 ABCD 的对角线 AC,BD 相交于点 O,正方形 A′B′C′D′的顶点 A′与点 O 重合,A′B′交 BC 于点 E,A′D′交 CD 于点 F. (1)求证:OE=OF; (2)若正方形 ABCD 的边长为 1,求两个正方形重叠部分的面积; (3)若正方形 A′B′C′D′绕着点 O 旋转,EF 的长度何时最短?(直接写答案).
北师大版九年级上册数学《特殊的平行四边形》综合练习题

《特殊的平行四边形》综合练习题一、选择题(共10小题)1.如图,两个全等的矩形纸片重叠在一起,矩形的长和宽分别是8和6,则重叠部分的四边形周长是()A.10B.15C.20D.252.菱形,矩形,正方形都具有的性质是()A.四条边相等,四个角相等B.对角线相等C.对角线互相垂直D.对角线互相平分3.平行四边形的四个内角平分线相交所构成的四边形一定是()A.一般平行四边形B.一般四边形C.对角线垂直的四边形D.矩形4.如图,在ABCAC=,6BC=,点P为斜边AB上一动点,过点P作∠=︒,8C∆中,90⊥于点F,连接EF,则线段EF的最小值为()⊥于E,PF BCPE ACA.24B.3.6C.4.8D.55.如图,在矩形ABCD中,点E在AD上,点F是BE的中点,CEF∆的面积记为a,周长记为b,则点E从点A到点D运动过程中()A.a逐渐变大,b保持不变B.a保持不变,b逐渐变小C.a保持不变,b先变小再变大D.a逐渐变大,b先变大再变小6.在菱形ABCD中MN分别在AB、CD上且AM CN=,MN与AC交于点O,连接BO,若62DAC ∠=︒,则OBC ∠的度数为( )A .28︒B .52︒C .62︒D .72︒7.如图,ABC ∆中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .AB AC = B .AD BD = C .BE AC ⊥ D .BE 平分ABC ∠8.在四边形ABCD 中,点O 是对角线的交点,在下列条件中,能判定这个四边形为正方形的是( )A .AC BD =,//AB CDB .//AD BC ,A C ∠=∠ C .OA OB OC OD ===,AC BD ⊥ D .OA OC =,OB OD =,AB BC =9.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,3CE =,H 是AF 的中点,那么CH 的长是( )A .2.5BCD .210.小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件①AB BC =;②90ABC ∠=︒;③AC BD =;④AC BD ⊥中选两个作为补充条件,使ABCD 成为正方形,如图,现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④二、填空题(共8小题)11.有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH 的周长为 .12.如图,在Rt ABC ∆中,90BAC ∠=︒,且3BA =,4AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,则线段MN 的最小值为 .13.如图,在ABC ∆,AB AC =,点D 为BC 的中点,AE 是BAC ∠外角的平分线,//DE AB 交AE 于E ,则四边形ADCE 的形状是 .14.如图,正方形ABCD绕B点逆时针旋转得到正方形BPQR,连接DQ,延长CP交DQ于E.若CE=4ED=,则AB=.15.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是(只填一个你认为正确的即可).16.如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD 的周长为24,则OH的长等于.17.矩形ABCD的中心恰好在原点,且B点坐标为(2,3)--,则D点的坐标为.18.已知,在Rt ABCAB=,D为AB中点,则CD=.∠=︒,12C∆中,90三、解答题(共8小题)19.如图,在ABCD中,BAD∠的平分线交BC于点E,ABC∠的平分线交AD于点F,连接EF.求证:四边形ABEF是菱形.20.如图,把EFP∆放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知6∠=︒,且AB>BADEP FP==,EF=60(1)求EPF∠的大小;(2)若10+的值;AP=,求AE AF(3)若EFP∆的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP 长的最大值和最小值.21.如图,四边形ABCD是正方形,点E是BC的中点,90∠=︒,EF交正方形外角的AEF平分线CF于F.求证:AE EF=.22.如图,在四边形ABCD中,AB AD=,CB CD=,E是CD上一点,BE交AC于F,连接DF.(1)证明:BAC DAC∠=∠.∠=∠,AFD CFE(2)若//AB CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得EFD BCD∠=∠,并说明理由.23.如图所示,矩形ABCD的对角线AC,BD相交于点O,E,F,G,H分别是OA,OB,OC,OD的中点,求证:四边形EFGH是矩形.24.已知:如图,在ABC∆中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,且AF DC=,连接CF.(1)求证:D是BC的中点;(2)如果AB AC=,试判断四边形ADCF的形状,并证明你的结论.25.如图,在Rt ABC ∆中,90C ∠=︒,D 为AB 的中点,DE AC ⊥于点E ,30A ∠=︒,8AB =,求DE 的长.26.已知:O 是ABC ∆所在平面内一动点,连接OB ,OC ,并将AB ,OB ,OC ,AC 的中点D ,E ,F ,G 依次连接,如果DEFG 能构成四边形:(1)如图,当O 点在ABC ∆内部时,证明四边形DEFG 是平行四边形;(2)当O 点移动到ABC ∆外部时,(1)的结论是否还成立?画出图形并说明理由;(3)若四边形DEFG 为矩形,O 点所在位置应满足什么条件?试说明理由.参考答案一、选择题1.【解答】解:如图所示:由题意得:矩形BFDE ≅矩形BHDG ,90G ∴∠=︒,6DG DE ==,//BG DH ,//BE DF ,8BG =, ∴四边形ABCD 平行四边形,∴平行四边形ABCD 的面积AD DG CD DE =⨯=⨯,AD CD ∴=,∴四边形ABCD 是菱形,CD BC AB AD ∴===,设CD BC x ==,则8CG x =-,在Rt CDG ∆中,由勾股定理得:2226(8)x x +-=, 解得:254x =, 254CD ∴=, ∴四边形ABCD 的周长425CD ==;故选:D .2.【解答】解:菱形,矩形,正方形都具有的性质为对角线互相平分. 故选:D .3.【解答】解:如图;四边形ABCD 是平行四边形,180DAB ADC ∴∠+∠=︒;AH 、DH 平分DAB ∠、ADC ∠, 90HAD HDA ∴∠+∠=︒,即90EHG ∠=︒; 同理可证得:90HEF EFG FGH ∠=∠=∠=︒; 故四边形EFGH 是矩形.故选:D .4.【解答】解:连接PC ,PE AC ⊥,PF BC ⊥,90PEC PFC C ∴∠=∠=∠=︒, ∴四边形ECFP 是矩形,EF PC ∴=,∴当PC 最小时,EF 也最小, 即当CP AB ⊥时,PC 最小,8AC =,6BC =,10AB ∴=,PC ∴的最小值为: 4.8AC BC AB⋅=. ∴线段EF 长的最小值为4.8. 故选:C .5. 【解答】解:点E 在AD 上,点F 是BE 的中点,1124CEF BCE ABCD S S S ∆∆∴==矩形,a∴保持不变;连接AF,AC,BD,如图:则12AF BE EF==,AC BD=,EF FC AF FC AC BD+=+>=,CE CD>,EF FC CE BD CD∴++>+,b∴逐渐变小.故选:B.6.【解答】解:四边形ABCD为菱形,//AB CD∴,AB BC=,MAO NCO∴∠=∠,AMO CNO∠=∠,在AMO∆和CNO∆中,MAO NCOAM CNAMO CNO∠=∠⎧⎪=⎨⎪∠=∠⎩,()AMO CNO ASA∴∆≅∆,AO CO∴=,AB BC=,BO AC∴⊥,90BOC∴∠=︒,62DAC∠=︒,62BCA DAC∴∠=∠=︒,906228OBC∴∠=︒-︒=︒.故选:A.7.【解答】解:当BE平分ABC∠时,四边形DBFE是菱形,理由://DE BC ,DEB EBC ∴∠=∠,EBC EBD ∠=∠,EBD DEB ∴∠=∠,BD DE ∴=,//DE BC ,//EF AB ,∴四边形DBFE 是平行四边形,BD DE =,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选:D .8.【解答】解:A 、一组对边平行,对角线相等可能是等腰梯形,故本选项错误; B 、一组对边平行,一组对角相等的四边形可能是矩形,故本选项错误; C 、对角线互相垂直平分且相等的四边形是正方形,故本选项正确; D 、对角线互相平分,邻边相等的四边形有可能是菱形.故本选项错误; 故选:C .9.【解答】解:如图,连接AC 、CF ,正方形ABCD 和正方形CEFG 中,1BC =,3CE =,AC ∴=CF =,45ACD GCF ∠=∠=︒,90ACF ∴∠=︒,由勾股定理得,AF ==, H 是AF 的中点,1122CH AF ∴==⨯ 故选:B .10.【解答】解:A 、四边形ABCD 是平行四边形,当①AB BC =时,平行四边形ABCD 是菱形,当②90ABC ∠=︒时,菱形ABCD 是正方形,故此选项正确,不符合题意; B 、四边形ABCD 是平行四边形,∴当②90ABC ∠=︒时,平行四边形ABCD 是矩形,当AC BD =时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C 、四边形ABCD 是平行四边形,当①AB BC =时,平行四边形ABCD 是菱形,当③AC BD =时,菱形ABCD 是正方形,故此选项正确,不符合题意; D 、四边形ABCD 是平行四边形,∴当②90ABC ∠=︒时,平行四边形ABCD 是矩形,当④AC BD ⊥时,矩形ABCD 是正方形,故此选项正确,不符合题意. 故选:B .二、填空题11.【解答】解:由题意得:矩形ABCD ≅矩形BEDF ,90A ∴∠=︒,7AB BE ==,//AD BC ,//BF DE ,11AD =, ∴四边形BGDH 是平行四边形,∴平行四边形BGDH 的面积BG AB BH BE =⨯=⨯,BG BH ∴=,∴四边形BGDH 是菱形,BH DH DG BG ∴===,设BH DH x ==,则11AH x =-,在Rt ABH ∆中,由勾股定理得:2227(11)x x +-=, 解得:8511x =, 8511BH ∴=, ∴四边形BGDH 的周长340411BH ==, 故答案为:34011. 12. 【解答】解:90BAC ∠=︒,且3BA =,4AC =,5BC ∴==,DM AB ⊥,DN AC ⊥,90DMA DNA BAC ∴∠=∠=∠=︒,∴四边形DMAN 是矩形,MN AD ∴=,∴当AD BC ⊥时,AD 的值最小,此时,ABC ∆的面积1122AB AC BC AD =⨯=⨯, 125AB AC AD BC ⨯∴==, MN ∴的最小值为125; 故答案为:125. 13. 【解答】证明:AB AC =,B ACB ∴∠=∠, 点D 为BC 的中点,90ADC ∴∠=︒, AE 是BAC ∠的外角平分线,FAE EAC ∴∠=∠,B ACB FAE EAC ∠+∠=∠+∠,B ACB FAE EAC ∴∠=∠=∠=∠,//AE CD ∴,又//DE AB ,∴四边形AEDB 是平行四边形,AE ∴平行且等于BD ,又BD DC =,AE ∴平行且等于DC ,故四边形ADCE 是平行四边形,又90ADC ∠=︒,∴平行四边形ADCE 是矩形.即四边形ADCE 是矩形.故答案为矩形.14.【解答】解:如图,设AD 与PQ 相交于点O ,连接BO ,过点C 作CM DQ ⊥交QD 的延长线于M ,在Rt AOB ∆和Rt POB ∆中,BO BO AB PB =⎧⎨=⎩, Rt AOB Rt POB(HL)∴∆≅∆,ABO PBO ∴∠=∠,AO PO =,AD AO PQ PO ∴-=-,即OD OQ =,ODQ OQD ∴∠=∠,11(360902)(180)22PBO AOP AOP ∠=︒-︒⨯-∠=︒-∠, 1(180)2ODQ DOQ ∠=︒-∠, AOP DOQ ∠=∠(对顶角相等), PBO ODQ ∴∠=∠,BC BP =,11(180)(180902)4522PCB PBC POB PBO ∴∠=︒-∠=︒-︒+∠=︒+∠, 45EDB ODQ ADB PBO ∠=∠+∠=∠+︒,EDB PCB ∴∠=∠,45CED CBD ∴∠=∠=︒,CEM ∴∆是等腰直角三角形, 5CE =,5CM EM ∴==,541DM EM ED ∴=-=-=,在Rt CDM ∆中,CD ==AB CD ∴==15.【解答】解:菱形ABCD 的周长等于24,2464AD ∴==, 在Rt AOD ∆中,OH 为斜边上的中线,132OH AD ∴==. 故答案为:3.17. 【解答】解:矩形ABCD 的中心恰好在原点,∴点B 与点D 关于原点对称,又B 点坐标为(2,3)--,D ∴点的坐标为(2,3),故答案为:(2,3).18.【解答】解:如图.在Rt ABC ∆中,90ACB ∠=︒,12AB =,D 为AB 中点,162CD AB ∴==. 故答案为:6.三、解答题(共8小题)19.【解答】证明:BAD ∠的平分线交BC 于点E ,BAE EAF ∴∠=∠,四边形ABCD 是平行四边形,//AD BC ∴,EAF AEB ∴∠=∠,BAE AEB ∴∠=∠,AB BE ∴=,同理,AB AF =,BE AF ∴=.//AD BC ,∴四边形ABEF 是平行四边形,AB BE =,ABEF ∴是菱形,20.【解答】解:(1)过点P 作PG EF ⊥于点G ,如图1所示.6PE PF ==,EF =FG EG ∴==12FPG EPG EPF ∠=∠=∠.在Rt FPG ∆中,sin FG FPG PF ∠===, 60FPG ∴∠=︒,120EPF ∴∠=︒. (2)过点P 作PM AB ⊥于点M ,作PN AD ⊥于点N ,如图2所示.AC 为菱形ABCD 的对角线,DAC BAC ∴∠=∠,AM AN =,PM PN =.在Rt PME ∆和Rt PNF ∆中,PM PN =,PE PF =,Rt PME Rt PNF ∴∆≅∆,ME NF ∴=.又10AP =,1302PAM DAB ∠=∠=︒,cos3010AM AN AP ∴==︒==,()()AE AF AM ME AN NF AM AN ∴+=++-=+=(3)如图,当点P 在EF 右边时,60BAD ∠=︒,120EPF ∠=︒,180BAD EPF ∴∠+∠=︒,∴点A ,E ,P ,F 四点共圆,AP ∴是此圆的直径时,AP 最大,PE PF =,EF AC ∴⊥时,AP 最大,∴当EF AC ⊥,点P 在EF 的右侧时,AP 有最大值,在PEF ∆中,6PE PF ==,EF =由(1)知,120EPF ∠=︒PEF ∴∆是顶角为120︒的等腰三角形,60BAD ∠=︒,∴满足条件的点P 只有两个点,点P 在EF 右侧时,AP 最大,∴点P 再EF 左侧时,AP 最小,即:当EF AC ⊥,点P 在EF 的左侧时,AP 有最小值,设AC 与EF 交于点O ,PE PF =,12OF EF ∴==, 60FPA ∠=︒,3OP ∴=,60BAD ∠=︒,30FAO ∴∠=︒,9AO ∴=,12AP AO PO ∴=+=,同理6AP AO OP '=-=,AP ∴的最大值为12,AP 的最小值为6,21..【解答】证明:取AB 的中点H ,连接EH ;90AEF ∠=︒,290AEB ∴∠+∠=︒,四边形ABCD 是正方形,190AEB ∴∠+∠=︒,12∴∠=∠, E 是BC 的中点,H 是AB 的中点,BH BE ∴=,AH CE =,45BHE ∴∠=︒, CF 是DCG ∠的角平分线,45FCG ∴∠=︒,135AHE ECF ∴∠=∠=︒,在AHE ∆和ECF ∆中,12AH ECAHE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AHE ECF ASA ∴∆≅∆,AE EF ∴=.22.【解答】(1)证明:在ABC ∆和ADC ∆中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆,BAC DAC ∴∠=∠,在ABF ∆和ADF ∆中,AB AD BAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()ABF ADF SAS ∴∆≅∆,AFD AFB ∴∠=∠,AFB CFE ∠=∠,AFD CFE ∴∠=∠;(2)证明://AB CD ,BAC ACD ∴∠=∠,又BAC DAC ∠=∠,CAD ACD ∴∠=∠,AD CD ∴=,AB AD =,CB CD =,AB CB CD AD ∴===,∴四边形ABCD 是菱形;(3)当EB CD ⊥时,即E 为过B 且和CD 垂直时垂线的垂足,EFD BCD ∠=∠, 理由:四边形ABCD 为菱形,BC CD ∴=,BCF DCF ∠=∠,在BCF ∆和DCF ∆中,BC CD BCF DCF CF CF =⎧⎪∠=∠⎨⎪=⎩,()BCF DCF SAS ∴∆≅∆,CBF CDF ∴∠=∠,BE CD ⊥,90BEC DEF ∴∠=∠=︒,BCD CBE CDF EFD ∴∠+∠=∠+∠,EFD BCD ∴∠=∠.23.【解答】证明:E 是OA 的中点,G 是OC 的中点, 12OE AO ∴=,12OG CO =. 四边形ABCD 是矩形,AO CO ∴=,OE OG ∴=.同理可证OF OH =.∴四边形EFGH 是平行四边形. 12OE AO =,12OG OC =, 12EG OE OG AC ∴=+=,同理12FH BD =. 又AC BD =,EG FH ∴=,∴四边形EFGH 是矩形.24. 【解答】(1)证明:E 是AD 的中点, AE DE ∴=.//AF BC ,FAE BDE ∴∠=∠,AFE DBE ∠=∠. 在AFE ∆和DBE ∆中,FAE BDE AFE DBE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFE DBE AAS ∴∆≅∆.AF BD ∴=.AF DC =,BD DC ∴=.即:D 是BC 的中点.(2)解:四边形ADCF 是矩形; 证明:AF DC =,//AF DC , ∴四边形ADCF 是平行四边形.AB AC =,BD DC =,AD BC ∴⊥即90ADC ∠=︒.∴平行四边形ADCF 是矩形.25.【解答】解:8AB =,D 为AB 的中点, 142AD AB ∴==, DE AC ⊥,90DEA ∴∠=︒,30A ∠=︒,114222DE AD ∴==⨯=. 26.【解答】(1)证明:AB 、OB 、OC 、AC 中点分别为D 、E 、F 、G DG ∴、EF 分别为ABC ∆和OBC ∆的中位线 //DG BC ∴//EF BC 12DG BC =12EF BC = //DG EF ∴且DG EF =∴四边形DEFG 是平行四边形; (2)解:成立,理由是:如图所示,由(1)知,//DG BC//EF BC12DG BC=12EF BC=//DG EF∴且DG EF=∴四边形DEFG是平行四边形;(3)解:当点O满足OA BC⊥,四边形DEFG是矩形.由三角形中位线性质得90EDG∠=︒,所以平行四边形DEFG是矩形.故答案是:点O满足OA BC⊥,四边形DEFG是矩形.。
北师大版九年级上《第一章特殊平行四边形》综合测试(含答案)

第一章综合训练(满分120分)一、选择题.(每小题4分,共32分)1.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()2.如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E和F.若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用HL证明Rt△AEP≌Rt△AFPC.AP平分∠BADD.点P一定是菱形ABCD的两条对角线的交点3.对于四边形ABCD,给出下列4组条件:①∠A=∠B=∠C=∠D;②∠B=∠C=∠D;③∠A=∠B,∠C=∠D;④∠A=∠B=∠C=90°,其中能得到“四边形ABCD 是矩形”的条件有()A.1组B.2组C.3组D.4组4.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5C.2.5D.2.85.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E.若∠ADC=130°,则∠AO E的大小为()A.75°B.65°C.55°D.50°6.如图,在矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有()A.3对B.4对C.5对D.6对7.如图,两个正方形的面积分别为16、9,两阴影部分的面积分别为a,b(a>b),则(a-b)等于()A.7 B.6 C.5 D.48.如图,点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()度.A.75B.60C.45D.30二、填空题.(每小题4分,共32分)9.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.10.如图,在矩形ABCD中,A(4,1),B(0,1),C(0,3),则点D的坐标为.11.如图,P为菱形ABCD的对角线AC上一点,PE⊥A B于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是cm.12.(·内蒙古赤峰)如图,M、N分别是正方形AB CD边DC、AB的中点,分别以AE、BF为折痕,使点D、点C落在MN的点G处,则△ABG是三角形.13.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件,使四边形ABCD为矩形.14.矩形ABCD的周长为16cm,但两条邻边之差为4cm,则矩形的面积为______ m2.15.(·广东东莞)如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是.16.如图,E是正方形ABCD的边CD的中点,AE的垂直平分线分别交AE、BC于H、G.若CG=7,则正方形ABCD的面积等于.三、解答题.(共56分)17.(7分)如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是点F,G.求证:AE=FG.18.(9分)蔬菜大户老李有一块正方形菜地,他准备在菜地中间空出两条笔直的交叉小路,把菜地平均分成面积相等的四部分进行特色种植.请你在图中添加两条相交线,帮助老李设计三种不同的分割方案,并简要说明作图方法.19.(9分)(·贵州黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB 交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?20.(10分)如图,将平行四边形ABCD的边DC延长至点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)连接AC、BE,则当∠AFC与∠D满足什么条件时,四边形ABEC是矩形?请说明理由.21.(9分)将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F. (1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)求在(2)的条件下折痕EF的长.22.(12分)如图,在Rt△ABC中,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连接AD、CF,AD与CF交于点M,AB与CF交于点H.(1)求证:△ABD≌△FBC;(2)已知AD=6,求四边形AFDC的面积;(3)在△ABC中,设B C=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2.在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).11 / 11。
中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在平行四边形ABCD 中 AB AD ≠ ()0180A αα∠=︒<<︒ 点E F G H 分别是AB BC CD DA 的中点 连接EF FG GH HE 当α从锐角逐渐增大到钝角的过程中 四边形EFGH 的形状的变化依次为( )A .平行四边形→菱形→平行四边形B .平行四边形→菱形→矩形→平行四边形C .平行四边形→矩形→平行四边形D .平行四边形→菱形→正方形→平行四边形 2.如图 平行四边形ABCD 中 16AB = 12AD = 60A ∠=︒E 是边AD 上一点 且8AE =F 是边AB 上的一个动点 将线段EF 绕点E 逆时针旋转60︒ 得到EG 连接BG CG 则BG CG +的最小值是( ).A .4B .415C .421D 373.图1是一张菱形纸片ABCD 点,EF 是边,AB CD 上的点.将该菱形纸片沿EF 折叠得到图2 BC 的对应边B C ''恰好落在直线AD 上.已知60,6B AB ∠=︒= 则四边形AEFC '的周长为( )A .24B .21C .15D .124.如图 在矩形ABCD 中 8AB = 6BC = 点H 是AC 的中点 沿对角线AC 把矩形剪开得到两个三角形 固定ABC 不动 将ACD 沿AC 方向平移 (A '始终在线段AC 上)得到A C D '''△ 连接HD ' 设平移的距离为x 当HD '长度最小时 平移的距离x 的值为( )A .710B .185C .75D .2455.如图 Rt ABC △中 90C ∠=︒ 30A ∠=︒ 9AC = D 为AB 中点 以DB 为对角线长作边长为3的菱形DFBE 现将菱形DFBE 绕点D 顺时针旋转一周 旋转过程中当BF 所在直线经过点A 时 点A 到菱形对角线交点O 之间的距离为( )A B C D 6.中国结寓意团圆 美满 以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴 小陶家有一个菱形中国结装饰.测得8cm,6cm BD AC ==.则该菱形的面积为( )A .224cmB .248cmC .210cmD .212cm7.如图 在矩形ABCD 中 点O M 分别是,AC AD 的中点 3,5OM OB == 则AD 的长为( )A .12B .10C .9D .88.如图 已知正方形ABCD 和正方形BEFG 且A B E 三点在一条直线上 连接CE 以CE 为边构造正方形CPQE PQ ,交AB 于点M 连接CM 设APM BCM αβ∠=∠=,.若点Q B F 三点共线 tan tan n αβ= 则n 的值为( )A .12 B .23 C .35 D .67二 填空题9.如图 矩形ABCD 中 BE BF 将ABC ∠三等分 连接EF .若90BEF ∠=︒ 则:AB BC 的比值为 .10.如图 四边形ABCD 是边长为6的正方形 点E 在直线BC 上 若2BE = 连接AE 过点A 作AF AE ⊥ 交直线CD 于点F 连接EF 点H 是EF 的中点 连接BH 则BH = .11.如图 在平行四边形ABCD 中 对角线AC BD 、相交于点O 在不添加任何辅助线的情况下 请你添加一个条件 使平行四边形ABCD 是菱形.12.如图 在矩形ABCD 中 2AB = 对角线AC 与BD 交于点O 且120AOD ∠=︒ DE OC ∥ CE OD ∥ 则四边形OCED 的周长为 .13.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .三 解答题14.如图 在菱形ABCD 中 连接AC 过B 作BE BA ⊥交AC 于点E 过D 作DF DC ⊥交AC 于点F .(1)求证:ADF CBE △≌△(2)若12AD = 60DAB ∠=︒ 求EF 的长.15.已知:在梯形ABCD 中 AD BC ∥ 90ABC ∠=︒ 6AB = :1:3BC AD = O 是AC 的中点 过点O 作OE OB ⊥ 交BC 的延长线于点E .(1)当BC EC =时 求证:AB OE =(2)设BC a = 用含a 的代数式表示线段BE 的长 并写出a 的取值范围(3)连结OD DE 当DOE 是以DE 为直角边的直角三角形时 求BC 的长.16.如图 平行四边形ABCD 中 点E 是对角线AC 上一点 连接BE DE , 且BE DE =.(1)求证:四边形ABCD 是菱形(2)若5AB = tan 2BAC ∠= 求四边形ABCD 的面积.17.已知:矩形ABCD 中 动点M 在BC 边上(不与点B C 、重合) MN AM ⊥交CD 于点N 连接DM .(1)如图1 若DM 平分ADC ∠ 求证:BM CN =(2)如图2 若2,3AB BC == 动点M 在移动过程中 设BM 的长为,x CN 的长为y ①则y 与x 之间的函数关系式为______①线段CN 的最大值为______.18.如图1 正方形ABCD 和正方形QMNP M 是正方形ABCD 的对称中心 MN 交AB 于F QM 交AD 于E .(1)猜想:ME 与MF 的数量关系为______(2)如图2 若将原题中的“正方形”改为“菱形” 且NMQ ABC 其它条件不变 探索线段ME 与线段MF 的数量关系 并说明理由(3)如图3 若将原题中的“正方形”改为“矩形” 且:1:2AB BC = 其它条件不变 直接写出:线段ME 与线段MF 的数量关系为______.参考答案:1.A2.C3.C4.C5.D6.A7.D8.B93:10.24211.AC BD ⊥12.8133①点E 是BC 的中点14.(1)解:①菱形ABCD①ADC CBA ∠=∠ AD BC = DAC BCA ∠=∠①BE BA ⊥ DF DC ⊥①90CDF ABE ∠=∠=︒①ADC CDF CBA ABE ∠-∠=∠-∠ 即:ADF CBE ∠=∠①()ASA ADF CBE ≌(2)解:①60DAB ∠=︒ 12AD = ①11603022BAE BAD ∠=∠=⨯︒=︒ 12AB CD AD === 33123AC AB ===①cos30ABAE===︒同理FC=BE CE==AC AE CE∴=+=①EF AE FC AC=+-==故答案为:15.(1)证明:90ABC∠=︒O是AC的中点OB OC∴=OBC OCB∴∠=∠OE BC⊥90BOEBC EC=CO BC∴=BC BO∴=90ABC BOE∠=∠=︒()ASAABC EOB∴≌AB EO∴=(2)解:OBC OCB∠=∠ABC BOE∠=∠ABC EOB∴∽∴BC ACOB BE=BC a=6AB=AC∴∴1a=236(06)2aBE aa+∴=<<(3)解:设BC a=则3AD a=①当90OED∠=︒时延长BO交AD于点G90BOE =︒∠BOE OED ∴∠=∠∴BG ED ∥//BE AD∴四边形BGDE 是平行四边形 BE DG ∴=BC AD ∥ ∴BCCOAG AO =BC AG a ∴== ∴23632a a a a +=-23a ∴= ①当90ODE ∠=︒时 分别过点O E 作OM AD ⊥ EN AD ⊥ 垂足分别为MNOMD DNE ∴∠=∠ MOD EDN ∠=∠OMD DNE ∴∽ ∴OMMDDN EN = 1122AM CB a ==52MD a ∴=2236365322a a DN AN AD a a a +-=-=-=∴253236562aa a=-a ∴=.综上所述BC 的长为 16.(1)证明:如图 连接BD 交AC 于O①平行四边形ABCD①BO DO =①BO DO = OE OE = BE DE = ①()SSS BOE DOE ≌①BEO DEO ∠=∠①AE AE = BEA DEA ∠=∠ BE DE = ①()SAS BEA DEA ≌①AB AD =①四边形ABCD 是菱形(2)解:①tan 2BAC ∠= ①2BO AO= 即2BO AO = ①四边形ABCD 是菱形①AC BD ⊥ 22AC AO BD BO ==,由勾股定理得 AB =解得 2AO =①48AC BD ==, ①1162ABCD S AC BD =⨯=四边形 ①四边形ABCD 的面积为16. 17.(1)解:在矩形ABCD 中 ,90AB CD B C ADC =∠=∠=∠=︒ DM 平分ADC ∠1452CDM ADC ∴∠=∠=︒ 45CDM CMD ∴∠=∠=︒CM CD AB ∴==90,BAM AMB MN AM ∠+∠=︒⊥90AMB CMN ∴∠+∠=︒BAM CMN ∴∠=∠()ABM MCN ASA ∴≌BM CN ∴=(2)解:①设BM 的长为,x CN 的长为y 则3MC x =- 由(1)得 ,,90BAM CMN AB CD B C ∠=∠=∠=∠=︒ ABM MCN ∴∽AB BM MC CN∴= 23x x y∴=- 213(03)22y x x x ∴=-+<< 故答案为:213(03)22y x x x =-+<< ①当32x =时 y 有最大值 最大值为98. 即线段CN 的最大值为98. 故答案为:98. 18.(1)解:①正方形ABCD 和正方形QMNP①90AMD EMF ∠=∠=︒ ,45DM AM ADM FAM =∠=∠=︒ DME AMF ∴∠=∠()ASA MDE MAF ∴≌ME MF ∴=.故答案为:相等.(2)解:过点M 作MH AD ⊥于H MG AB ⊥于G .①M 是菱形ABCD 的对称中心 ①M 是菱形ABCD 对角线的交点 ①AM 平分BAD ∠①MH MG =.①QMN B ∠=∠①180EMF BAD ∠+∠=︒. 又90MHA MGF ∠=∠=︒ ①180HMG BAD ∠+∠=︒ ①EMF HMG ∠=∠①EMH FMG ∠=∠. ①MHE MGF ∠=∠①()ASA MHE MGF ≌ ①ME MF =.(3)解:过点M 作MH AD ⊥于HMG AB ⊥于G .①QMN ABC ∠=∠①90BAD EMF ∠=∠=︒. 又①90MHA MGA ∠=∠=︒ ①90HMG ∠=︒.①EMF HMG ∠=∠①EMH FMG ∠=∠.①MHE MGF ∠=∠①MHE MGF △△∽①ME MH MF MG=.又①M是矩形ABCD的对称中心①M是矩形ABCD对角线的交点.又①MG AB⊥①MG BC∥且12MG BC=.同理可得12 MH AB=①2ME MF=.。
新北师大版九年级数学上册《特殊平行四边形》试卷(附答案)

新北师大版九年级数学上册《特殊平行四边形》试卷(附答案)特殊平行四边形》试卷一、填空题1、如图,将△ABC绕AC的中点O按顺时针旋转180°得到△CDA,添加一个条件使四边形ABCD为矩形.条件:AB=CD2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.四边形EFGH的面积为24.3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________.DQ+PQ的最小值为√10.二、选择题4、矩形具有而菱形不具有的性质是() A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等答案:D5、如图,菱形ABCD的两条对角线相交于点O,若AC =6,BD=4,则菱形ABCD的周长是()。
A.24B.16C.413D.213答案:B6、如图,将△XXX沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是() A.AB =XXX.∠B=60°D.∠ACB=60°答案:C7、如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABDC与S四边形ECDF的大小关系是() A.S四边形ABDC=S四边形ECDFB.S四边形ABDC<S四边形ECDFC.S四边形ABDC=S四边形ECDF+1D.S四边形ABDC=S四边形ECDF+2答案:A8、如图,菱形ABCD中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF的周长为() A.14B.15C.16D.17答案:C9、如图,把矩形ABCD沿EF翻折,点B恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是() A.12B.24C.123D.163答案:B三、XXX10、如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F。
2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)一.选择题(共9小题,满分36分)1.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行另外一组对边相等的四边形是平行四边形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形2.已知四边形ABCD中,AC⊥BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BD B.AB=BCC.AC与BD互相平分D.∠ABC=90°3.如图,平面直角坐标系中,菱形ABCD的顶点A(3,0),B(﹣2,0),顶点D在y轴正半轴上,则点C的坐标为()A.(﹣3,4)B.(﹣4,5)C.(﹣5,5)D.(﹣5,4)4.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH是()A.矩形B.菱形C.正方形D.平行四边形5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连接EF,则线段EF的最小值为()A.24B.3.6C.4.8D.56.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作CE⊥BD,垂足为E.已知∠BCE=4∠DCE,则∠COE的度数为()A.36°B.45°C.60°D.67.5°7.在正方形ABCD的外侧,作等边三角形ADE,则∠CBE的度数为()A.80°B.75°C.70°D.65°8.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30B.34C.36D.409.如图,矩形ABCD和矩形BDEF,点A在EF边上,设矩形ABCD和矩形BDEF的面积分别为S1、S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2 C.S1<S2D.3S1=2S2二.填空题(共8小题,满分32分)10.如图,菱形ABCD中,若BD=24,AC=10,则AB的长等于.菱形ABCD的面积等于.11.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=度.12.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.13.如图所示,在矩形ABCD中,DE平分∠ADC,且∠EDO等于15°,∠DOE=°.14.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.15.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.16.如图是阳光广告公司为某种商品设计的商标图案,图中阴影部分为红色.若每个小长方形的面积都是1,则红色的面积是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三.解答题(共7小题,满分52分)18.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.19.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.20.如图,过△ABC的顶点A分别作∠ACB及其外角的平分线的垂线,垂直分布为E、F,连接EF交AB于点M,交AC于点N,求证:(1)四边形AECF是矩形;(2)MN=BC.21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB 于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.如图,平行四边形ABCD中,AD=9cm,CD=3cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.23.如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F 作FG⊥AE交BC于点G.(1)求证:AF=FG;(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.24.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A =PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一.选择题(共9小题,满分36分)1.解:A、正确.两组对边分别平行的四边形是平行四边形;B、错误.比如等腰梯形,满足条件,不是平行四边形;C、正确.对角线互相平分且垂直的四边形是菱形;D、正确.有一组邻边相等的矩形是正方形;故选:B.2.解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.故选:C.3.解:∵菱形ABCD的顶点A(3,0),B(﹣2,0),∴CD=AD=AB=5,OA=3,∴OD===4∵AB∥CD,∴点C的坐标为(﹣5,4)故选:D.4.解:∵在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,∴EF∥AD,HG∥AD,∴EF∥HG,同理:HE∥GF,∴四边形EFGH是平行四边形,∵E、F、G、H分别是AB、BD、CD、AC的中点,∴GH=AD,GF=BC,∵AD=BC,∴GH=GF,∴平行四边形EFGH是菱形;故选:B.5.解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:C.6.解:∵四边形ABCD为矩形,∴∠BCD=90°,OC=OB,∵∠BCE=4∠DCE,∴5∠DCE=90°,∴∠DCE=18°,∴∠BCE=72°,∵CE⊥BD,∴∠EBC=90°﹣∠BCE=18°,∵OB=OC,∴∠OCB=18°,∴∠COE=36°,故选:A.7.解:∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=AD,∵△ADE是等边三角形,∴∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=15°,∴∠CBE=90°﹣15°=75°,故选:B.8.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选:B.9.解:∵矩形ABCD的面积S1=2S△ABD,S△ABD=S矩形BDEF,∴S1=S2.故选:A.二.填空题(共8小题,满分32分)10.解:∵菱形ABCD中,BD=24,AC=10,∴BO=12,AO=5,AC⊥BD,∴AB==13,∴菱形ABCD的面积==120故答案为:13,12011.解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.12.解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.13.解:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AO=CO,BO=DO,AC=BD,∴OA=OD,∵DE平分∠ADC∴∠CDE=∠ADE=45°,∴△ADE是等腰直角三角形,∴AD=AE,又∵∠EDO=15°,∴∠ADO=60°;∴△OAD是等边三角形,∴∠AOD=∠OAD=60°,∴AD=AO=DO,∴AO=AE,∴∠AOE=∠AEO,∵∠OAE=90°﹣∠OAD=30°,∴∠AOE=∠AEO=(180°﹣30°)=75°,∴∠DOE=60°+75°=135°,故答案为:135.14.解:连接ED,如图,∵点B关于OC的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形OBCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().15.解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:.16.解:设每个小长方形长为a,宽为b,则ab=1.用大长方形的面积减去三个空白部分的三角形面积,就等于阴影部分的面积.4a×4b﹣a×4b﹣3a×3b﹣×3a×3b=5ab=5.故填5.17.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.三.解答题(共7小题,满分52分)18.(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CF A=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.19.(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∴∠PDE=∠PED=40°.20.证明:(1)∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠BCE=∠ACB,∠ACF=∠ACD,∵∠ACB+∠ACD=180°,∴∠ACE+∠ACF=90°,即∠ECF=90°,又∵AE⊥CE,AF⊥CF,∴∠AEC=∠AFC=90°,∴四边形AECF是矩形;(2)∵四边形AECF是矩形,∴EN=FN,AN=CN=AC,∴CN=EF=EN,∴∠NEC=∠ACE=∠BCE,∴EN∥BC,∴==,∴MN=BC.21.(1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE;(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.4.22.解:(1)∵四边形ABCD是平行四边形,∴AB=CD=3cm.在直角△ABE中,∵∠AEB=90°,∠B=45°,∴AE=AB•sin∠B=3×=3(cm);(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),∴AM=CN=t,∵AM∥CN,∴四边形AMCN为平行四边形,∴当AN=AM时,四边形AMCN为菱形.∵BE=AE=3,EN=6﹣t,∴AN2=32+(6﹣t)2,∴32+(6﹣t)2=t2,解得t=.故当t为时,四边形AMCN为菱形;(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,∴四边形MPNQ为矩形,∴当QM=QN时,四边形MPNQ为正方形.∵AM=CN=t,BE=3,∴AQ=EN=BC﹣BE﹣CN=9﹣3﹣t=6﹣t,∴QM=AM﹣AQ=|t﹣(6﹣t)|=|2t﹣6|(注:分点Q在点M的左右两种情况),∵QN=AE=3,∴|2t﹣6|=3,解得t=4.5或t=1.5.故当t为4.5或1.5秒时,四边形MPNQ为正方形.23.(1)证明:如图①,连接CF,在正方形ABCD中,AB=BC,∠ABF=∠CBF=45°,在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵FG⊥AE,∴在四边形ABGF中,∠BAF+∠BGF=360°﹣90°﹣90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF,∴∠CGF=∠BCF,∴AF=FG;(2)如图②,把△ADE顺时针旋转90°得到△ABH,则AH=AE,BH=DE,∠BAH=∠DAE,∵AF=FG,FG⊥AE,∴△AFG是等腰直角三角形,∴∠EAG=45°,∴∠HAG=∠BAG+∠DAE=90°﹣45°=45°,∴∠EAG=∠HAG,在△AHG和△AEG中,,∴△AHG≌△AEG(SAS),∴HG=EG,∵HG=BH+BG=DE+BG=2+3=5,∴EG=5.24.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,。
(典型题)初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(包含答案解析)

一、选择题1.如图,已知△ABC 中,AB =AC ,AD 是∠BAC 的平分线,AE 是∠BAC 的外角平分线,ED ∥AB 交AC 于点G .下列结论:①AD ⊥BC ;②AE ∥BC ;③AE =AG ;④AD 2+AE 2=4AG 2,其中正确结论的个数是( )A .1B .2C .3D .42.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个 3.如图所示,在菱形ABCD 中,5AC =,120BCD ∠=︒,则菱形ABC 的周长是( ).A .20B .15C .10D .54.如图,四边形ABCD 中,90A B ∠=∠=︒,60C ∠=°,2CD AD =,4AB =,点P 是AB 上一动点,则PC PD +的最小值是( )A.4B.6C.8D.105.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AE⊥BC于点E,连接OE.若OB=6,菱形ABCD的面积为54,则OE的长为()A.4 B.4.5 C.8 D.96.如图,公路,AC BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为4.8km,则,M C两点间的距离为()A.1.2km B.2.4km C.3.6km D.4.8km7.如图,将长方形纸片ABCD沿AE折叠,使点D恰好落在BC边上点F处.若6AB=,10AD=,则EC的长为()A.2 B.83C.3 D.1038.给出下列命题,其中错误命题的个数是()①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .49.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.510.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,延长CB 至E 使BE=CB ,连续AE .下列结论①AE=2OE ;②90EAC ∠=︒;③四边形ADBE 为平行四边形;④34AEBO ABCD S S =四边形菱形中,正确的个数有( )A .1个B .2个C .3个D .4个11.如图,四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC ,垂足是E ,若线段AE =4,则四边形ABCD 的面积为( )A .12B .16C .20D .2412.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把CDB 旋转90°,则旋转后点D 的对应点D 的坐标是( )A .(2,10)B .(﹣2,0)C .(2,10)或(﹣2,0)D .(10,2)或(﹣2,0)二、填空题13.如图,在菱形ABCD 中,2,60AB BAD =∠=︒,将菱形ABCD 绕点A 逆时针方向旋转,对应得到菱形,AEFG 点E 在AC 上.EF 与CD 交于点,P 则PE 的长是____.14.如图,在菱形ABCD 中,E 、F 分别是AC 、BC 的中点,如果EF =5,那么菱形ABCD 的周长_____.15.如图所示,在矩形ABCD 中,AB a ,BC b =,两条对角线相交于点O ,OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ,以为11A B 、1A C 邻边作第2个平行四边形111A B C C ,对角线相交于1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ……此类推,第2020个平行四边形的面积__________.16.如图,矩形ABOC 的顶点B 、C 分别在x 轴、y 轴上,顶点A 在第一象限,点B 的坐标30),将线段OC 绕点O 顺时针旋转60°至线段OD ,若反比例函数k y x=(k ≠0)的图象进过A 、D 两点,则k 值为_____.17.如图,△ABC 中,13AB AC ==,10BC =,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是________.18.如图,点H 在菱形ABCD 的边BC 上,连结AH ,把菱形ABCD 沿AH 折叠,使B 点落在边BC 上的点E 处,若∠B=70°,则∠AED 的度数为_____.19.如下图,在平面直角坐标系中有一边长为l 的正方形OABC ,边OA 、OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB l 为边作第三个正方形OB l B 2C 2,照此规律作下去,则点B 2020的纵坐标为_______.20.请你写出一个原命题与它的逆命题都是真命题的命题____________________ .三、解答题21.已知矩形ABCD 中,点F 在AD 边上,四边形EDCF 是平行四边形,请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹,不必写画法).(1)在图1画出BCD △中DC 边上的中线BG ;(2)在图2中画出线段AF 的垂直平分线.22.如图,过ABC 边AC 的中点O ,作OE AC ⊥,交AB 于点E ,过点A 作//AD BC ,与BO 的延长线交于点D ,连接CD ,CE ,若CE 平分ACB ∠,CE BO ⊥于点F .(1)求证:①OC BC =,②四边形ABCD 是矩形;(2)若3BC =,求DE 的长.23.如图所示,平行四边形,ABCD 对角线BD 平分ABC ∠;()1求证:四边形ABCD 为菱形;()2已知AE BC ⊥于E ,若24CE BE ==,求BD .24.已知:如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点.(1)求证:△ABM ≌△DCM ;(2)当AB :AD 的值为多少时,四边形MENF 是正方形?请说明理由.25.如图,在ABC 中,已知105BAC ∠=︒,45ACB ∠=︒,AD 是BC 边上的高线,CE 是AB 边上的中线,DG CE 于点G ,且42AC =.(1)求AB 的长;(2)求证:CG EG .26.如图,E 、F 分别是矩形ABCD 的边 BC 、AD 上的点,且BE = DF .(1)求证:四边形 AECF 是平行四边形;(2)若四边形 AECF 是菱形,且 CE = 10,AB = 8,求线段BE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接EC ,根据等腰三角形的性质得出AD ⊥BC ,即可判断①;求出∠FAE=∠B ,再根据平行线的性质得出AE ∥BC ,即可判断②;求出四边形ABDE 是平行四边形,根据平行四边形的性质得出AE=BD ,求出AE=CD ,根据矩形的判定推出四边形ADCE 是矩形,根据矩形的性质得出AC=DE ,AG=CG ,DG=EG ,求出DG=AG=CG=EG ,根据勾股定理判断④即可;根据AE=BD=12BC 和AG=12AC 判断③即可. 【详解】解:连接EC ,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠FAC,∴∠FAC=2∠FAE,∵∠FAC=∠B+∠ACB,∴∠FAE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴AC=DE,AG=CG,DG=EG,∴DG=AG=CG=EG,在Rt△AED中,AD2+AE2=DE2=AC2=(2AG)2=4AG2,故④正确;∵AE=BD=12BC,AG=12AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.【点睛】本题考查了勾股定理,等腰三角形的性质,平行线的性质和判定,平行四边形的性质和判定,矩形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.2.C解析:C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①,AC BD ⊥∴新的四边形成为矩形,符合条件; ②四边形ABCD 是平行四边形,,AO OC BO DO ∴==.ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件; ③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键. 3.A解析:A【分析】根据题意可得出∠B=60︒,结合菱形的性质可得BA=BC ,判断出△ABC 是等边三角形即可得出菱形的周长.【详解】解:∵四边形ABCD 是菱形,∴//BA CD ,又∵∠BCD=120︒,∴∠B=180︒-∠BCD= 60︒,又∵四边形ABCD 是菱形,∴BA=BC ,∴△ABC 是等边三角形,∴BA=BC=AC=5,故可得菱形的周长=4AB=20.故选:A .【点睛】本题考查了菱形的性质及等边三角形的判定与性质,根据菱形的性质判断出△ABC是等边三角形是解答本题的关键,难度一般.4.C解析:C【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD 最小;再作D'E⊥BC于E,则EB=D'A=AD,先根据等边对等角得出∠DCD'=∠DD'C,然后根据平行线的性质得出∠D'CE=∠DD'C,从而求得∠D'CE=∠DCD',得出∠D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=4,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=60°,∴∠D'CE=30°,∴在Rt△D'CE中,D'C=2D'E=2×4=8,∴PC+PD的最小值为8.故选:C.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,含30°角的直角三角形的性质等,确定出P点是解答本题的关键.5.B解析:B【分析】由菱形的性质得出BD=12,由菱形的面积得出AC=9,再由直角三角形斜边上的中线性质即可得出结果.【详解】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=12BD,BD⊥AC,∴BD=2OB=12,∵S菱形ABCD═12AC×BD=54,∴AC=9,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4.5,故选:B.【点睛】本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.6.B解析:B【分析】根据直角三角形斜边上的中线性质得出CM=12AB,代入求出即可.∵AC⊥BC,∴∠ACB=90°,∵M为AB的中点,∴CM=12AB,∵AB=4.8km,∴CM=2.4km,故选:B.【点睛】本考考查了直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出CM=12AB是解此题的关键.7.B解析:B【分析】由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=6-x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=6,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10,DE=EF,设EC=x,则DE=EF=6-x.在Rt△ABF中,8BF===,∴CF=BC-BF=10-8=2,在Rt△EFC中,EF2=CE2+CF2,∴(6-x)2=x2+22,∴x=83,∴EC=83.故选:B.【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.8.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.9.A解析:A【分析】根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数.【详解】解:∵OG AC ⊥,∴90COG ∠=︒,∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒,∵四边形ABCD 是矩形,∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =, ∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒, ∴37.5ACD BCD OCB ∠=∠-∠=︒, ∵//AB CD ,∴37.5GAC ACD ∠=∠=︒,∵OG AC ⊥,OA OC =,∴GO 是AC 的垂直平分线,∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.10.D解析:D【分析】先判定四边形AEBD 是平行四边形,再根据平行四边形的性质以及菱形的性质,即可得出结论.【详解】 解:四边形ABCD 是菱形,AD BC ∴=,//AD BC ,2BD DO =,又BC BE =,AD BE ∴=,∴四边形AEBD 是平行四边形,故③正确,AE BD ∴=,2AE DO ,故①正确;四边形AEBD 是平行四边形,四边形ABCD 是菱形,//AE BD ∴,AC BD ⊥,AE AC ∴⊥,即90CAE ∠=︒,故②正确;四边形AEBD 是平行四边形, 12ABE ABD ABCD S S S 菱形, 四边形ABCD 是菱形,14ABO ABCDS S 菱形, 34ABE ABO AEBO ABCDS S S S 四边形菱形,故④正确; 故选:D .【点睛】本题主要考查了菱形的性质以及平行四边形的判定与性质,熟悉相关性质是解题的关键. 11.B解析:B【分析】延长CD ,作AF CD ⊥的延长线于点F ,构造出全等三角形,()ABE ADF AAS ≅,即可得到四边形ABCD 的面积就等于正方形AECF 的面积.【详解】解:如图,延长CD ,作AF CD ⊥的延长线于点F ,∵AE BC ⊥,∴90AEC AEB ∠=∠=︒,∵AF CD ⊥,∴90AFC ∠=︒,∵90C ∠=︒,∴四边形AECF 是矩形,∴90EAF ∠=︒,∵BAD EAF ∠=∠,∴BAD EAD EAF EAD ∠-∠=∠-∠,即BAE DAF ∠=∠,在ABE △和ADF 中,BAE DAF AEB AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADF AAS ≅,∴AE AF =,∴四边形AECF 是正方形,∵ABE ADF S S ,∴216ABCD AECF S S AE ===.故选:B .【点睛】本题考查全等三角形的性质和判定,正方形的性质和判定,解题的关键是作辅助线构造全等三角形.12.C解析:C【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【详解】解:∵点D (5,3)在边AB 上,∴BC =5,BD =5﹣3=2,①若顺时针旋转,则点D 在x 轴上,O D =2,所以,D (﹣2,0),②若逆时针旋转,则点D 到x 轴的距离为10,到y 轴的距离为2,所以,D (2,10),综上所述,点D 的坐标为(2,10)或(﹣2,0).故选:C .【点睛】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.二、填空题13.【分析】连接BD 交AC 于O 由菱形的性质得出CD=AB=2∠BCD=∠BAD=60°由直角三角形的性质求出OB=AB=1由直角三角形的性质得出由旋转的性质得出AE=AB=2∠EAG=∠BAD=60°求 解析:31- 【分析】连接BD 交AC 于O ,由菱形的性质得出CD=AB=2,∠BCD=∠BAD=60°,1ACD 302︒∠=∠=∠=BAC BAD ,由直角三角形的性质求出OB=12AB=1,由直角三角形的性质得出23AC =,由旋转的性质得出AE=AB=2,∠EAG=∠BAD=60°,求出CE=AC-AE 232=-,证出∠CPE=90°,由直角三角形的性质得出PE 的长【详解】解:连接BD 交AC 于O ,如图所示:∵四边形ABCD 是菱形,∴CD=AB=2,∠BCD=∠BAD=60°,1ACD 302︒∠=∠=∠=BAC BAD ,OA=OC ,AC ⊥BD , ∴112OB AB == ∴33,==OA OB∴23AC =由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,∴232,=-=CE AC AE∵四边形AEFG 是菱形,∴EF ∥AG ,∴∠CEP=∠EAG=60°,∴∠CEP+∠ACD=90°,∴∠CPE=90°,∴112PE CE ==1【点睛】本题考查了菱形的性质、旋转的性质、含30°角的直角三角形的性质、平行线的性质等知识;熟练掌握旋转的性质和菱形的性质是解题的关键.14.40【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得AB =2EF 然后根据菱形的四条边都相等列式计算即可得解【详解】解:∵EF 分别是ACBC 的中点∴EF 是△ABC 的中位线∴AB =2EF =解析:40【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得AB =2EF ,然后根据菱形的四条边都相等列式计算即可得解.【详解】解:∵E 、F 分别是AC 、BC 的中点,∴EF 是△ABC 的中位线,∴AB =2EF =2×5=10,∴菱形ABCD 的周长=4×10=40.故答案为:40.【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.15.【分析】结合题意根据矩形性质得平行四边形为菱形从而依次计算前4个平行四边形的面积并通过归纳计算规律即可得到第2020个平行四边形的面积【详解】∵矩形中两条对角线相交于点∴∵为邻边作第1个平行四边形∴ 解析:20202ab【分析】结合题意,根据矩形性质,得平行四边形1OBB C 为菱形,从而依次计算前4个平行四边形的面积,并通过归纳计算规律,即可得到第2020个平行四边形的面积.【详解】∵矩形ABCD 中,AB a ,BC b =,两条对角线相交于点O∴OB OC OA ==∵OB 、OC 为邻边作第1个平行四边形1OBB C∴11OB OC BB CB ===∴平行四边形1OBB C 为菱形∵平行四边形1OBB C ,对角线相交于点1A ,∴1OA BC ⊥,1112BA CA BC ==,111OA A B = ∵OC OA = ∴11122OA AB a == ∴第1个平行四边形1OBB C 面积112BC OA a b =⨯=⨯ ∴第2个平行四边形111A B C C 面积1111122AC A B a b =⨯=⨯ 同理,得第3个平行四边形1121O B B C 面积21111122222a b a b ⎛⎫=⨯⨯=⨯ ⎪⎝⎭第4个平行四边形2221A B C C 面积2221111122222a b a b ⎛⎫⎛⎫⎛⎫=⨯⨯=⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭以此类推,第2020个平行四边形2221A B C C 面积为:10101010202020201112222ab a b ab ⎛⎫⎛⎫⎛⎫⨯== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:20202ab . 【点睛】 本题考查了数字及图形规律、三角形中位线、幂的乘方、平行四边形、矩形、菱形的知识;解题的关键是熟练掌握数字及图形规律、幂的乘方、平行四边形、矩形的性质,从而完成求解.16.4【分析】过点D 作DH ⊥x 轴于H 四边形ABOC 是矩形由性质有AB =CO ∠COB =90°将OC 绕点O 顺时针旋转60°OC =OD ∠COD =60°可得∠DOH =30°设DH =x 点D (xx )点A (2x )反比解析:【分析】过点D 作DH ⊥x 轴于H ,四边形ABOC 是矩形,由性质有AB =CO ,∠COB =90°, 将OC 绕点O 顺时针旋转60°,OC =OD ,∠COD =60°,可得∠DOH =30°,设DH =x ,点D ,x ),点A ,2x ),反比例函数k y x=(k ≠0)的图象经过A 、D 两点,构造方程求出即可.【详解】解:如图,过点D 作DH ⊥x 轴于H ,∵四边形ABOC是矩形,∴AB=CO,∠COB=90°,∵将线段OC绕点O顺时针旋转60°至线段OD,∴OC=OD,∠COD=60°,∴∠DOH=30°,∴OD=2DH,OH3,设DH=x,∴点D3,x),点A32x),∵反比例函数kyx=(k≠0)的图象经过A、D两点,∴3×x3x,∴x=2,∴点D(32),∴k=3=3故答案为:3【点睛】本题考查反比例函数解析式问题,关键利用矩形的性质与旋转找到AB=CO=OD,∠DOH =30°,DH=x,会用x表示点D3,x),点A3,2x),利用A、D在反比例函数kyx=(k≠0)的图象上,构造方程使问题得以解决.17.18【详解】根据等腰三角形三线合一的性质可得AD⊥BCDC=BC再根据直角三角形的性质可得DE=EC=AC=65然后可得答案【解答】解:∵AB=ACAD平分∠BAC∴AD⊥BCDC=BC∵BC=10解析:18【详解】根据等腰三角形三线合一的性质可得AD⊥BC,DC=12BC,再根据直角三角形的性质可得DE=EC=12AC=6.5,然后可得答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=12BC,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC=12AC=6.5,∴△CDE的周长为:DC+EC+DE=13+5=18,故答案为:18.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.18.55°【分析】根据翻折变换的性质可得AB=AE然后根据等腰三角形两底角相等求出∠B=∠AEB=70°根据菱形的四条边都相等可得AB=AD菱形的对角相等求出∠ADC再求出∠DAE然后根据等腰三角形两底解析:55°【分析】根据翻折变换的性质可得AB=AE,然后根据等腰三角形两底角相等求出∠B=∠AEB=70°,根据菱形的四条边都相等可得AB=AD,菱形的对角相等求出∠ADC,再求出∠DAE,然后根据等腰三角形两底角相等求出∠AED.【详解】解:∵菱形ABCD沿AH折叠,B落在BC边上的点E处,∴AB=AE,∵∠B=70°,∴∠AEB=70°在菱形ABCD中,AB=AD,∠ADC=∠B=70°,AD∥BC,∴∠DAE=∠AEB=70°,∵AB=AE,AB=AD,∴AE=AD,∴∠AED=12(180°-∠DAE)=12(180°-70°)=55°.故答案为:55°.【点睛】本题考查了翻折变换的性质,菱形的性质,等腰三角形两底角相等的性质,翻折前后对应边相等,菱形的四条边都相等,对角相等.19.【分析】首先求出B1B2B3B4B5B6B7B8B9的坐标找出这些坐标的之间的规律然后根据规律计算出点B2020的坐标【详解】解:∵正方形OABC边长为1∴OB=∵正方形OBB1C1是正方形OABC解析:10102-【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2020的坐标.【详解】解:∵正方形OABC边长为1,∴,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(0,2),同理可知OB2,B2点坐标为(-2,2),同理可知OB3=4,B3点坐标为(-4,0),B4点坐标为(-4,-4),B5点坐标为(0,-8),B6(8,-8),B7(16,0)B8(16,16),B9(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形倍,∵2020÷8=252…4,∴B2020的纵横坐标符号与点B4的相同,横坐标为负值,纵坐标是负值,∴B2020的坐标为(-21010,-21010).故答案为:10102-.【点睛】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变倍,此题难度较大.20.对角线互相平分且相等的四边形是矩形(答案不唯一)【分析】命题由题设和结论两部分组成题设是已知事项结论是由已知事项推出的事项;题设成立结论也成立的叫真命题而题设成立结论不成立的为假命题把一个命题的题设解析:对角线互相平分且相等的四边形是矩形(答案不唯一)【分析】命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项;题设成立,结论也成立的叫真命题,而题设成立,结论不成立的为假命题,把一个命题的题设和结论互换即可得到其逆命题.【详解】解:如命题:对角线互相平分且相等的四边形是矩形,真命题,逆命题是矩形的对角线互相平分且相等,真命题,故答案为:对角线互相平分且相等的四边形是矩形(答案不唯一).【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题.三、解答题21.(1)见解析(2)见解析【分析】(1)(1)延长EF交BC于H,连结DH,交CF于N,连结AH,FB交于M,过M、N作直线交DC于G,连结BG即可;(2)连接AH,BF,相交于M,连接BE并交AD于N,由四边形EDCF是平行四边形,矩形ABCD,可得EF=CD=AB,EF∥CD∥AB,可证△ANB≌△FNE(AAS),可得AN=FN过M、N作直线l即可.【详解】解:(1)如图,延长EF交BC于H,连结DH,交CF于N,连结AH,FB交于M过M、N作直线交DC于G连结BG如图1,线段BG即为所求作;(2)如图,连接AH,BF,相交于M,连接BE并交AD于N,∵四边形EDCF是平行四边形,矩形ABCD∴EF=CD=AB,EF∥CD∥AB∴∠ABN=∠FEN,∠ANB=∠FNE∴△ANB≌△FNE(AAS)∴AN=FN过M、N作直线l如图2,直线l即为所求作.【点睛】本题考查的是利用无刻度的直尺作图,平行四边形的性质,矩形的性质,三角形的中位线的性质,三角形的中线的概念,线段垂直平分线,掌握以上知识是解题的关键. 22.(1)①证明见解析;②证明见解析;(2)21DE =【分析】(1)①运用ASA 证明OCF BCF ≌△△即可得出结论;②先证明四边形ABCD 是平行四边形,再证明90EBC ∠=︒即可得出结论;(2)证明△OCB 是等边三角形,得∠ECB=30°,求出3AE 的长,再运用勾股定理求出DE 的长即可.【详解】证明:(1)①∵CE 平分BCA ∠,∴OCE BCE ∠=∠.∵BO CE ⊥,∴90∠∠==︒CFO CFB .又∵CF CF =,∴()≌OCF BCF ASA △△∴OC BC =.②∵O 是AC 的中点,∴OA OC =.又∵//AD BC .∴DAO BCO ∠=∠,ADO CBO ∠=∠.∴()≌OAD OCB ASA △△.∴AD BC =.∵//AD BC ,∴四边形ABCD 是平行四边形.∵OE AC ⊥,∴90EOC ∠=︒∵OCE BCE ∠=∠,CE CE =,OC BC =,∴()≌OCE BCE ASA △△.∴90∠∠==︒EBC EOC .∴四边形ABCD 是矩形.(2)∵四边形ABCD 是矩形,∴3AD BC ==,90DAB ∠=︒,AC BD =.∴OB OC =.∵OC BC =,∴OB OC BC ==.∴OBC 是等边三角形.∴60OCB ∠=︒ ∴1302∠∠︒==ECB OCB . ∵90EBC ∠=︒, ∴12=EB EC . ∵222BE BC EC +=,3BC =. ∴EB =EC = ∵OE AC ⊥,OA OC =, ∴==EC EA .在Rt ADE △中,90DAB ∠=︒,∴===DE 【点睛】此题主要考查了全等三角形的判定与性质,矩形的判定与性质,勾股定理以及直角三角形的性质,熟练掌握矩形的判定与性质是解答此题的关键.23.(1)证明见解析;(2)BD =【分析】(1)由角平分线的定义得ABD CBD ∠=∠,再证明CDB CBD ∠=∠,从而得BC DC =,即可利用一组邻边相等的平行四边形是菱形证明出四边形ABCD 是菱形; (2)分别求出BE EC BC AB AE AC 、、、、、,再根据菱形的面积等于平行四边形的面积求解即可.【详解】解:(1)∵BD 平分ABC ∠∴ABD CBD ∠=∠∵四边形ABCD 是平行四边形∴//AB CD∴CDB ABD ∠=∠∴CDB CBD ∠=∠∴BC DC =∴四边形ABCD 是菱形;(2)连接AC ,如图,∵ABCD 是菱形∴3BC AB BE EC BE ==+=又∵24BE EC ==∴2BE =∴246BC BE EC AB =+=+==又AE BC ⊥ ∴22226242AE AB BE =-=-=2222(42)443AC AE EC =+=+= ∴642242ABCD S BC AE =⨯=⨯= 而242ABCD ABCD S S==菱形 ∴114324222BD AC BD ⨯=⨯= ∴6BD =【点睛】此题主要考查了菱形的性质与判定,关键是掌握菱形的判定定理.24.(1)见解析;(2)当AB :AD =1:2时,四边形MENF 是正方形,理由见解析【分析】(1)求出AB =DC ,∠A =∠D =90°,AM =DM ,根据全等三角形的判定定理推出即可; (2)求出∠EMF =90°,根据正方形的判定推出即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,∠A =∠D =90°,∵M 为AD 中点,∴AM =DM ,在△ABM 和△DCM ,AM DM A D AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△DCM (SAS );(2)解:当AB :AD =1:2时,四边形MENF 是正方形,理由:当四边形MENF 是正方形时,则∠EMF =90°,∵△ABM≌△DCM,∴∠AMB=∠DMC=45°,∴△ABM、△DCM为等腰直角三角形,∴AM=DM=AB,∴AD=2AB,即当AB:AD=1:2时,四边形MENF是正方形.【点睛】本题考查了正方形的判定,全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质定理是解题的关键.25.(1)8;(2)见解析【分析】(1)证明△ADC是等腰直角三角形,求出AD和CD,根据∠BAC的度数求出∠BAD,根据直角三角形的性质可得AB;(2)连接DE,求出DE的长,再根据三线合一的性质证明即可.【详解】解:(1)∵AD是BC边上的高线,∴AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ACB=45°,∴△ADC是等腰直角三角形,∴AD=CD=2AC=4,∠DAC=45°,2∵∠BAC=105°,∴∠BAD=∠BAC-∠DAC=60°,∴∠ABD=30°,∴AB=2AD=8;(2)连接DE,∵CE是AB边上中线,∴E是AB中点,在Rt△ABD中,E是斜边AB中点,∴DE=1AB=4,2∵DC=4,∴DE=DC,∵DG ⊥CE ,∴CG =EG .【点睛】本题考查了直角三角形斜边中线的性质,30度的直角三角形的性质,等腰三角形三线合一的性质,属于基本定理,解题的关键是利用好“中点”这样的条件.26.(1)见解析;(2)6【分析】(1)证明AF EC =,利用一组对边平行且相等证明平行四边形;(2)根据菱形的性质得到10AE CE ==,再用勾股定理求出BE 的长.【详解】解:(1)∵四边形ABCD 是矩形,∴AD BC =,//AD BC ,∵BE DF =,∴AD DF BC BE -=-,即AF EC =,∵//AF EC ,∴四边形AECF 是平行四边形;(2)∵四边形AECF 是菱形,∴10AE CE ==,在Rt ABE △中,6BE ===. 【点睛】本题考查平行四边形的判定,矩形的性质,菱形的性质,解题的关键是掌握这些性质定理进行证明求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D C
B
A E
F 特殊平行四边形综合测试卷
1、下列命题中,真命题是 ( )
A .两条对角线垂直的四边形是菱形
B .对角线垂直且相等的四边形是正方形
C .两条对角线相等的四边形是矩形
D .两条对角线相等的平行四边形是矩形 2、下列说法错误的是( )
A.一组对边平行且一组对角相等的四边形是平行四边形.
B.每组邻边都相等的四边形是菱形.
C. 对角线互相垂直的平行四边形是正方形.
D.四个角都相等的四边形是矩形.
3.能判定一个四边形是菱形的题设是( )
A.有一组邻边相等
B.对角线互相垂直
C.有三边相等
D.四条边都相等 4.下列命题中,不成立的是( )
A 对角线互相平分的四边形是平行四边形
B 对角线相等的平行四边形是矩形
C 对角线互相垂直的平行四边形是菱形
D 对角线互相垂直且相等的四边形是正方形 5.如图,正方形ABCD 的对角线AC 是菱形AEFC 的一边,则∠FAB 等于( )
A.135°
B.45°
C.22.5°
D.30° 6.□ABCD 是正方形需增加的条件是( )
A.邻边相等
B.邻角相等
C.对角线互相垂直
D.对角线互相垂直且相等 7.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边 的中点,已知菱形的周长是16厘米,那么它的面积是(
A.16cm 2
B. 163cm 2
C. 83cm 2
D. 8 cm 2
8.如图,过矩形ABCD 的顶点A 作对角线BD
的平行 线交CD
的延长线于E ,则△AEC 是( ) A.等边三角形 B.等腰三角形 C.不等边三角形 D.等腰直角三角形 9.下列命题中正确的是( )
A.有一个角是直角的四边形是矩形
B.三个角是直角的多边形是矩形
C.两条对角线相等的四边形是矩形
D.两条对角线相等的平行四边形是矩形
10.如图矩形ABCD 中,AB=2AD,E 是CD 上一点,AE=AB, 则∠CBE 等于( )
A.30°
B.22.5°
C.15°
D.以上答案都不对
11. 如图所示,矩形ABCD 沿AE 折叠,使D 点落在BC 边 上的F 点处,如果∠BAF =60°,则∠DAE 等于( ) A 15° B 30° C 45° D 60°
12、如图,把矩形ABCD 沿EF 对折后使两部分重合, 若150∠=
,则AEF ∠=( )
A .110°
B .115°
C .120°
D .130°
13.已知菱形ABCD 的两条对角线长分别是6 cm 和8 cm ,则菱形的周长是_________.
14.矩形的对角线长10 cm ,顺次连结矩形四边中点
所得四边形的周长为_________
15.若菱形ABCD 的周长为16,∠A ∶∠B=1∶5,则菱形的面积为____________
16.如图右图,四边形ABCD 是菱形,对角线AC =8 cm , BD =6 cm, DH ⊥AB 于H ,求:DH 的长_______cm 。
17.如图,矩形纸片ABCD ,长AD =9cm ,宽AB =3 cm ,
将其折叠,使点D 与点B 重合,那么折叠后DE 的长 为 ,折痕EF 的长为 。
18.在矩形ABCD 中,点O 是BC 的中点,∠AOD=90°, 矩形ABCD 的周长为20cm ,则AB 的长为_________
5题图
8题图
17题图
D
C
B
A F E
G
10题图
19、如图,矩形ABCD 的对角线AC=8cm , ∠AOD=120°,则AB 的长为________
20、如图,ABCD 中,AE 平分∠BAD 交BC 于E ,EF ∥AB 交AD 于F ,试问:四边形
ABEF 是什么图形吗?请说明理由.
B C
D
E
20.如图,在ABCD
中,E F ,为BC 上两点,且BE CF =,AF DE =. 求证:(1)ABF DCE △≌△;
(2)四边形ABCD 是矩形.
21. 如图,四边形ABCD 中,CD //AB ,AC 平分BAD ∠,AD //CE 交AB 于
E .
(1)求证:四边形AECD 是菱形; (2)若点E 是AB 的中点,试判断
ABC ∆的形状,并说明理由.
22、已知如图,平行四边形ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H 。
求证:四 边形EFGH 是矩形。
23.如图,菱形ABCD 的边长为2,BD =2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE +CF =2. (1)求证:△BDE ≌△BCF ;
(2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为S ,求S 的取值范围.
(第20
题)
A B C
D
E F。