15西城理数一模

合集下载

2015北京市西城区中考一模数学试卷及答案(word版)

2015北京市西城区中考一模数学试卷及答案(word版)

北京市西城区2015年初三一模试卷数学 2015.4 一、选择题(本题共30分,每小题3分)1、13的相反数是A. 13B.13C. 3D. -32、据市烟花办相关负责人介绍,2015年除夕零时至正月十五24时,全市共销售烟花爆竹约196 000箱,同比下降了32%,将196 000用科学计数法表示为A.1.96×105B.1.96×104C.19.6×104D.0.196×1053、下列运算正确的是A.3a+3b=6abB.a3-a=a2C.(a2)3=a6D.a6÷a2=a34、如图是一个几何体的直观图,则其主视图是A B C D5、甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道.选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是A.1B.12C.13D.146、下列图形中,既是轴对称图形又是中心对称图形的是A B C D7、如图,线段AB 是圆O 的直径,弦CD ⊥AB ,如果∠BOC=70°,那么∠BAD 等于( )A. 20°B. 30°C. 35°D. 70°8、在平面直角坐标系x O y 中,第一象限内的点P 在反比例函数的图像上,如果点P 的纵坐标是3,OP=5,那么该函数的表达式为( ) A. 12y x=B. 12y x=-C. 15y x=D. 15y x=-9、为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是( )A. 6,4B. 6,6C. 4,4D. 4,610、如图,过半径为6的圆O 上一点A 作圆O 的切线l ,P 为圆O 上的一个动点,作PH ⊥l 于点H ,连接PA.如果PA=x ,AH=y ,那么下列图象中,能大致表示y 与x 的函数关系的是( )lA B C D612 2083二.填空题(本题共18分,每小题3分) 11、如果分式15x 有意义,那么x 的取值范围是 . 12、半径为4cm ,圆心角为60°的扇形面积为 2cm . 13、分解因式:122m -3= .14、如图,△ABC 中,AB=AC,点D,E 在BC 边上,当 时,△ABD ≌△ACE (添加一个适当的条件即可)15、如图是跷跷板的示意图,立柱OC 与地面垂直,以O 为横板AB 的中点,AB 绕点O 上下转动,横板AB 的B 端最大高度h 是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设AB=2m ,OC=0.5m ,通过计算得到此时的1h ,再将横板AB 换成横板A’B’,O 为横板A’B’的中点,且A’B’=3m ,此时B’点的最大高度为2h ,由此得到1h 与2h 的大小关系是1h 2h (填“>”,“=”或“<”),可进一步得出,h 随横板长度的变化而 .(填“不变”或“改变”)16、如图,数轴上,点A 的初始位置表示的数为1.现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,...,按照这种移动方式进行下去,点4A 表示的数是 ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .A 3A 2A A 1123456–1–2–3–4–5–6三.解答题(本题共30分,每小题5分) 17、计算:12+(p -2008)0+(12)-1-6tan30°.18、如图,∠C=∠E ,∠EAC=∠DAB ,AB=AD .求证:BC=DE .19、解不等式组⎩⎨⎧->+≤-.84)15(3.02x x x20、先化简,再求值:a 3+3a a 2+2a +1¸a +3a +1-1a +1,其中a =2.CED21、从北京到某市可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米。

2024年北京市西城区第十五中学九上数学开学学业质量监测模拟试题【含答案】

2024年北京市西城区第十五中学九上数学开学学业质量监测模拟试题【含答案】

2024年北京市西城区第十五中学九上数学开学学业质量监测模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列式子是分式的是()A .2019x B .2019x C .2019x πD .2019x y +2、(4分)下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是()A .96B .86C .68D .523、(4分)如图,在矩形ABCD 中,AB=1,.将矩形ABCD 绕点A 逆时针旋转至矩形AB′C′D′,使得点B′恰好落在对角线BD 上,连接DD′,则DD′的长度为()A .BC +1D .24、(4分)下列图形中,既是轴对称又是中心对称图形的是()A .菱形B .等边三角形C .平行四边形D .直角三角形5、(4分)电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高h (单位:km )与电视节目信号的传播半径r (单位:km )之间存在近似关系r =其中R 是地球半径.如果两个电视塔的高分别是1h km ,2h km ,那么它化简为()A B12C1D .26、(4分)如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE ,过A 作AE 的垂线交ED 于点P ,若AE=AP=1,,下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③中正确结论的序号是()A .①②B .①③C .②③D .①②③7、(4分)某社区超市以4元/瓶从厂家购进一批饮料,以6元/瓶销售.近期计划进行打折销售,若这批饮料的销售利润不低于20%则最多可以打()A .六折B .七折C .七五折D .八折8、(4分)如图,在平面直角坐示系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的横坐标分別为1,2,反比例函数2y x =的图像经过A ,B 两点,则菱形ABCD 的边长为()A .1BC .2D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.10、(4分)若正多边形的一个内角等于150°,则这个正多边形的边数是______.11、(4分)如图,已知在△ABC 中,AB=AC .以AB 为直径作半圆O,交BC 于点D .若∠BAC=40°,则AD 弧的度数是___度.12、(4分)在学校组织的科学素养竞赛中,八(3)班有25名同学参赛,成绩分为A ,B ,C ,D 四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,现将该班的成绩绘制成扇形统计图如图所示,则此次竞赛中该班成绩在70分以上(含70分)的人数有_______人.13、(4分)如图,x 轴正半轴上,顶点D 在y 轴正半轴上,反比例函数y=6x (x>0)的图象与正比例函数y=23x 的图象交于点A .BC 边经过点A ,CD 边与反比例函数图象交于点E ,四边形OACE 的面积为6.则点A 的坐标为_____;三、解答题(本大题共5个小题,共48分)14、(12分)先化简在求值:,其中15、(8分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,1.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.16、(8分)在平行四边形ABCD 中,C ∠和D ∠的平分线交于,M DM 的延长线交AD 于E ,是猜想:(1)CM 与DE 的位置关系?(2)M 在DE 的什么位置上?并证明你的猜想.(3)若24,5DE CM ==,则点M 到BC 距离是多少?17、(10分)根据下列条件分别确定函数y =kx +b 的解析式:(1)y 与x 成正比例,当x =5时,y =6;(2)直线y =kx +b 经过点(3,6)与点(2,-4).18、(10分)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°.(1)求证:四边形ABCD 是矩形;(2)若∠ADF :∠FDC =3:2,DF ⊥AC ,求∠BDF 的度数.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若4,则x+y=.20、(4分)方程()()3x 2x 122x 1+=+的根为________.21、(4分)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在x 轴上,则A 5的坐标是___.22、(4分)如图,D 、E 分别是AC 和AB 上的点,AD =DC =4,DE =3,DE ∥BC ,∠C =90°,将△ADE 沿着AB 边向右平移,当点D 落在BC 上时,平移的距离为________.23、(4分)如图,四边形ABCD 为菱形,点A 在y 轴正半轴上,AB ∥x 轴,点B ,C 在反比例函数3y x =上,点D 在反比例函数12y x =-上,那么点D 的坐标为________.二、解答题(本大题共3个小题,共30分)24、(8分)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距离 1.25CD m =,颖颖与楼之间的距离30DN m =(C ,D ,N 在一条直线上),颖颖的身高1.6BD m =,亮亮蹲地观测时眼睛到地面的距离0.8AC m =.你能根据以上测量数据帮助他们求出住宅楼的高度吗?25、(10分)某通讯公司推出①、②两种收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x (分钟)与收费y (元)之间的函数关系如图所示.(1)分别求出①、②两种收费方式中y 与自变量x 之间的函数关系式;(2)何时两种收费方式费用相等?26、(12分)如图,已知点()2,A m 是反比例函数k y x =()00k x >>,的图象上一点过点A 作AB x ⊥轴于点B ,连结OA ,ABO ∆的面积为4.(1)求k 和m 的值.(2)直线()102y x n n =+<与AB 的延长线交于点C ,与反比例函数图象交于点E .①若2n =-,求点C 坐标;②若点E 到直线AB 的距离等于AC ,求n 的值.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据分母中含有字母的式子是分式,可得答案.【详解】解:2019x是分式,故选:B.本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式.2、C【解析】根据题意得出第n个图形中白色圆个数为n(n+1)+2(n﹣1),据此可得.【详解】解:∵第①个图形中白色圆个数2=1×2+2×0,第②个图形中白色圆个数8=2×3+2×1,第③个图形中白色圆个数16=3×4+2×2,……∴第⑦个图形中白色圆个数为7×8+2×6=68,故选C.本题主要考查图形的变化规律,解题的关键是根据题意得出第n个图形中白色圆个数为n (n+1)+2(n﹣1).3、A【解析】先求出∠ABD=60°,利用旋转的性质即可得到AB=AB′,进而得到△ABB′是等边三角形,于是得到∠BAB′=60°,再次利用旋转的性质得到∠DAD′=60°,结合AD=AD′,可得到△ADD′是等边三角形,最后得到DD′的长度.【详解】解:∵矩形ABCD中,AB=1,∴AD=BC=,∴tan ∠ABD=AD AB ∴∠ABD=60°,∵AB=AB′,∴△ABB′是等边三角形,∴∠BAB′=60°,∴∠DAD′=60°,∵AD=AD′,∴△ADD′是等边三角形,∴DD′=AD=BC=故选A .4、A 【解析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【详解】A.菱形既是轴对称又是中心对称图形,故本选项正确;B.等边三角形是轴对称,不是中心对称图形,故本选项错误;C.平行四边形不是轴对称,是中心对称图形,故本选项错误;D.直角三角形不是轴对称(等腰直角三角形是),也不是中心对称图形,故本选项错误.故选A.本题主要考查图形的中心对称和图形的轴对称概念,熟悉掌握概念是关键.5、D【解析】乘以分母的有理化因式即可完成化简.【详解】2故选D.本题考查了二次根式的应用,了解二次根式的有理化因式是解答本题的关键,难度不大.6、A 【解析】①利用同角的余角相等,易得∠EAB=∠PAD ,再结合已知条件利用SAS 可证两三角形全等;②利用①中的全等,可得∠APD=∠AEB ,结合三角形的外角的性质,易得∠BEP=90°,即可证;③在Rt △AEP 中,利用勾股定理,可求得EP 、BE 的长,再依据△APD ≌△AEB ,即可得出PD=BE ,据此即可判断.【详解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD ,又∵AE=AP ,AB=AD ,∴△APD ≌△AEB ,故①正确;②∵△APD ≌△AEB ,∴∠APD=∠AEB ,又∵∠AEB=∠AEP+∠BEP ,∠APD=∠AEP+∠PAE ,∴∠BEP=∠PAE=90°,∴EB ⊥ED ,故②正确;③在Rt △AEP 中,∵AE=AP=1,∴,又∵∴,∵△APD ≌△AEB ,∴,故③错误,故选A.本题考查了全等三角形的判定与性质、正方形的性质、三角形面积、勾股定理等,综合性质较强,有一定的难度,熟练掌握相关的性质与定理是解题的关键.7、D设打x 折后销售利润不低于20%,根据这批饮料的销售利润不低于20%列不等式求解即可.【详解】设打x 折后销售利润不低于20%,根据题意得6x -4≥4×20%,解得x≥0.8,所以,最多可以打8折.故选D.此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.8、B 【解析】过点A 作x 轴的垂线,与CB 的延长线交于点E ,根据A ,B 两点的纵坐标分别为1,2,可得出纵坐标,即可求得AE ,BE ,再根据勾股定理得出答案.【详解】解:过点A 作x 轴的垂线,与CB 的延长线交于点E ,∵A ,B 两点在反比例函数2y x=的图象上且横坐标分别为1,2,∴A ,B 纵坐标分别为2,1,∴AE=1,BE=1,∴.故选B .本题考查菱形的性质以及反比例函数图象上点的坐标特征,熟练掌握菱形的性质以及反比例函数图象上点的坐标特征是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)【解析】根据三角形内角和定理求出∠DMC ,求出∠AMF ,根据三角形外角性质得出∠1=∠A+∠AMF ,代入求出即可.【详解】∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故选:C .本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.10、1.【解析】首先根据求出外角度数,再利用外角和定理求出边数.【详解】正多边形的一个内角等于,它的外角是:,它的边数是:.故答案为:1.此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.11、140【解析】首先连接AD ,由等腰△ABC 中,AB=AC ,以AB 为直径的半圆交BC 于点D ,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD 的度数,则可求得AD 弧的度数.【详解】连接AD 、OD ,∵AB 为直径,∴∠ADB=90°,即AD ⊥BC ,∵AB=AC ,∴∠BAD=∠CAD=12∠BAC=20°,BD=DC ,∴∠ABD=70°,∴∠AOD=140°∴AD 弧的度数为140°;故答案为140.本题考查等腰三角形的性质和圆周角定理,解题的关键是掌握等腰三角形的性质和圆周角定理.12、21【解析】首先根据统计图,求出此次竞赛中该班成绩在70分以上(含70分)的人数所占比例,然后已知总数,即可得解.【详解】根据统计图的信息,得此次竞赛中该班成绩在70分以上(含70分)的人数所占比例为44%+4%36%=84%+此次竞赛中该班成绩在70分以上(含70分)的人数为2584%=21⨯故答案为21.此题主要考查扇形统计图的相关知识,熟练掌握,即可解题.13、(3,2)【解析】把反比例函数与正比例函数的解析式组成方程组即可求出A点坐标;【详解】∵点A是反比例函数y=6x(x>0)的图象与正比例函数y=23x 的图象的交点,∴623yxy x ⎧⎪=⎨=⎪⎪⎪⎩,解得32xy=-=-⎧⎨⎩(舍去)或32xy==⎧⎨⎩∴A(3,2);故答案为:(3,2)此题考查反比例函数,解题关键在于把反比例函数与正比例函数的解析式组成方程组三、解答题(本大题共5个小题,共48分)14、-【解析】分析:根据分式的混合运算法则化简,代入化简结果进行计算即可;详解:===-当x =﹣2时原式=.点睛:本题考查分式的化简求值、解题的关键是掌握分式的混合运算的法则,注意最后结果要化成最简分式或整式.15、(1)16,17;(2)14;(3)2.【解析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)10791215173202610⨯+++++⨯++=()14,答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2答:该小区居民一周内使用共享单车的总次数为2次.本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.16、(1)CM DE ⊥;(2)M 在DE 的中点处,见解析;(3)点M 到BC 距离是6013.【解析】(1)根据平行线的性质得到180ADC BCD ∠+∠=︒,根据角平分线的定义得到12MDC ADC ∠=∠,12DCM DCB ∠=∠,于是得到90MDC MCD ∠+∠=︒,即可得到结论;(2)根据平行线的性质得到ADE CEM ∠=∠,等量代换得到CDE CED ∠=∠,得到CD CE =根据等腰三角形的性质即可得到结论;(3)根据(1)(2)可得EC ,再设点M 到BC 的距离是h ,建立等式1122EM MC EC h ⋅=⋅,即可得到h .【详解】解:(1)CM DE ⊥,理由://AD BC180ADC BCD ︒∴∠+∠=,,DE CM 分别平分,ADC BCD ∠∠11,22MDC ADC DCM DCB ∴∠=∠∠=∠,90MDC MCD ︒∴∠+∠=,CM DE ∴⊥;(2)M 在DE 的中点处,理由://AD BC ,ADE CEM ∴∠=∠,ADE CDE ∠=∠,CDE CED ∴∠=∠,CD CE ∴=,CM DE ⊥,EM MD ∴=,∴M 在DE 的中点处;(3)由(1)(2)得112,2EM MD DE CM DE ===⊥,在Rt ECM ∆中,12,5EM CM ==,13EC ∴===设点M 到BC 的距离是h ,则有1122EM MC EC h ⋅=⋅,6013h ∴=.本题考查了平行四边形的性质,角平分线的定义,等腰三角形的性质,正确识别图形是解题的关键.17、(1)65y x =;(2)1024y x =-.【解析】(1)先根据正比例函数的定义可得0b =,再利用待定系数法即可得;(2)直接利用待定系数法即可得.【详解】(1)y 与x 成正比例b ∴=又当5x =时,6y =56k ∴=解得65k =则65y x =;(2)由题意,将点(3,6),(2,4)-代入得:3624k b k b +=⎧⎨+=-⎩解得1024k b =⎧⎨=-⎩则1024y x =-.本题考查了利用待定系数法求正比例函数和一次函数的解析,掌握待定系数法是解题关键.18、(1)见解析;(2)∠BDF =18°.【解析】(1)先证明四边形ABCD 是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC 的度数,根据三角形的内角和,求出∠DCO ,然后得到OD=OC ,得到∠CDO ,即可求出∠BDF 的度数.【详解】(1)证明:∵AO =CO ,BO =DO ,∴四边形ABCD 是平行四边形,∴∠ABC =∠ADC ,∵∠ABC+∠ADC =180°,∴∠ABC =∠ADC =90°,∴四边形ABCD 是矩形;(2)解:∵∠ADC =90°,∠ADF :∠FDC =3:2,∴∠FDC =36°,∵DF ⊥AC ,∴∠DCO =90°﹣36°=54°,∵四边形ABCD 是矩形,∴CO =OD ,∴∠ODC =∠DCO =54°,∴∠BDF =∠ODC ﹣∠FDC =18°.本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】试题解析:∵原二次根式有意义,∴x-3≥0,3-x≥0,∴x=3,y=4,∴x+y=1.考点:二次根式有意义的条件.20、122132x x ==-【解析】运用因式分解法可解得.【详解】由()()3x 2x 122x 1+=+得()()()()123x 2x 122x 1=0322x 1032021021,32x x x x x +-+-+=-=+=∴==-或故答案为:122132x x ==-,考核知识点:因式分解法解一元二次方程.21、(15,16).【解析】根据一次函数图象上点的特征及正方形的性质求出A 1、A 2、A 3的坐标,找出规律,即可解答.【详解】∵直线y =x +1和y 轴交于A 1,∴A 1的坐标(0,1),即OA 1=1,∵四边形C 1OA 1B 1是正方形,∴OC 1=OA 1=1,把x =1代入y =x +1得:y =2,∴A 2的坐标为(1,2),同理A 3的坐标为(3,4),…∴A n 的坐标为(2n ﹣1﹣1,2n ﹣1),∴A 5的坐标是(25﹣1﹣1,25﹣1),即(15,16),故答案为:(15,16).本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.22、1【解析】试题分析:根据勾股定理得到AE==1,由平行线等分线段定理得到AE=BE=1,根据平移的性质即可得到结论.∵∠C=90°,AD=DC=4,DE=3,∴AE==1,∵DE ∥BC ,∴AE=BE=1,∴当点D 落在BC 上时,平移的距离为BE=1.考点:平移的性质23、853552⎛⎫- ⎪ ⎪⎝⎭,【解析】分析:首先设出菱形边长为a,由AB=a,得出C 、D 的坐标,过点C 作CE ⊥AB ,由勾股定理可得D 点坐标.详解:设菱形边长为a,即AB=a,设C 点坐标为(b,3b ),∵BC ∥x 轴,∴D 点纵坐标为:3b,∴D 点横坐标为:123x b =,则x=-4b,∴D (-4b,3b),∵CD=a,∴4b+b=a,a=5b,过点C 作CE ⊥AB,则BE=a-AE=a-b=4b,BC=a=5b,由勾股定理:CE=3b,CE=335b b-,∴b²=1-15=45,b=5,∴D 52⎛⎫- ⎪ ⎪⎝⎭,.故答案为52⎛⎫- ⎪ ⎪⎝⎭,.点睛:本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,解题的关键是设出菱形边长,利用反比例函数的性质表示出菱形各顶点的坐标,进而求解.二、解答题(本大题共3个小题,共30分)24、20.8m .【解析】试题分析:过A 作CN 的平行线交BD 于E ,交MN 于F ,由相似三角形的判定定理得出△ABE ∽△AMF ,再由相似三角形的对应边成比例即可得出MF 的长,进而得出结论.试题解析:过A 作CN 的平行线交BD 于E ,交MN 于F .由已知可得FN=ED=AC=0.8m ,AE=CD=1.25m ,EF=DN=30m ,∠AEB=∠AFM=90°.又∵∠BAE=∠MAF ,∴△ABE ∽△AMF .∴BE AE MF AF =,即:1.60.8 1.251.2530MF -=+,解得MF=20m .∴MN=MF+FN=20+0.8=20.8m .∴住宅楼的高度为20.8m .考点:相似三角形的应用.25、(1)10.130y x =+;20.2y x =;(2)300分钟.【解析】(1)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(2)根据(1)的结论列方程解答即可.【详解】解:(1)设1130y k x =+,22y k x =,由题意得:将(500,80),(500,100)分别代入即可:15003080k +=,2500100k =,20.2k \=故所求的解析式为10.130y x =+;20.2y x =;(2)当通讯时间相同时12y y =,得0.20.130x x =+,解得300x =.答:通话300分钟时两种收费方式费用相等.本题考查的是用一次函数解决实际问题,熟悉相关性质是解题的关键.26、(1)8k =,4m =;(2)①()2,1C -;②3n =.【解析】(1)根据题意将点的坐标代入反比例函数k y x =进行运算即可.(2)①将2n =-,将2x =代入122y x =-即可得出点C 的坐标②将2x =代入12y x n =+求得点()2,1C n +,得出E 的横坐标,再代入反比例函数中计算即可【详解】解:(1)根据题意可知:ABO ∆的面积=12k ,又反比例函数的图象位于第一象限,k>0,则k=8将k=8和()2,A m 代入反比例函数k y x =即可得m=4(2)①若2n =-,将2x =代入122y x =-,可得点()2,1C -.②将2x =代入12y x n =+,可得点()2,1C n +,则()413AC n n =-+=-.点E 的横坐标为:235n n +-=-.点E 在直线上,∴点E 的纵坐标为:()()115522n n n ⨯-+=+,点E 的反比例函数上,∴()()15582n n +⨯-=.解得:13n =,23n =-(舍去)本题考查反比例函数,熟练掌握计算法则是解题关键.。

【初中数学】北京市西城区2015年初三一模数学试卷 人教版

【初中数学】北京市西城区2015年初三一模数学试卷 人教版

北京市西城区2015年初三一模试卷数 学 2015. 4一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.13的相反数是A.13 B.13- C.3 D.3-2.据市烟花办相关负责人介绍,2015年除夕零时至正月十五24时,全市共销售烟花爆竹 约196 000箱,同比下降了32%.将196 000用科学记数法表示应为A.51.9610⨯B.41.9610⨯C.419.610⨯D. 60.19610⨯ 3.下列运算正确的是A. 336a b ab+=B.32a a a -=C.()326a a = D.632a a a ÷=4.如图是一个几何体的直观图,则其主视图是5.甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道,选手以随机 抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是A. 1B.12C. 13D.146.下列图形中,既是轴对称图形又是中心对称图形的是7.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,如果∠BOC =70°, 那么∠BAD 等于A. 20°B. 30°C. 35°D.70°8.在平面直角坐标系xOy 中,第一象限内的点P 在反比例函数的图象上,如果点P 的纵坐 标是3,OP=5,那么该函数的表达式为A. 12y x=B. 12y x =-C. 15y x= D. 15y x =-9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是 A. 6,4 B. 6,6 C. 4,4D. 4,610.如图,过半径为6的⊙O 上一点A 作⊙O 的切线l ,P 为⊙O 上的一个动点,作PH ⊥l 于点H ,连接P A .如果P A =x ,AH=y , 那么下列图象中,能大致表示y 与x 的函数关系的是二、填空题(本题共18分,每小题3分) 11.如果分式15x -有意义,那么x的取值范围是 .12.半径为4cm ,圆心角为60°的扇形的面积为 cm 2.13.分解因式:2123m -= .14.如图,△ABC 中,AB =AC ,点D ,E 在BC 边上,当 时, △ABD ≌△ACE .(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC 与地面垂直,以O为横板AB 的中点..,AB 绕点O 上下转动,横板AB 的B 端最大高度h 是否会随横板长度的变化而变化 呢?一位同学做了如下研究:他先设AB=2 m ,OC=0.5 m ,通过计算得到此时的h 1,再将横板AB换成横板A ′B ′,O 为横板A ′B ′的中点,且A ′B ′=3m ,此时B ′点的最大高度为h 2,由此得 到h 1与h 2的大小关系是:h 1 h 2(填“>”、“=”或“<”).可进一步得出,h 随横板的长度的变化而 (填“不变”或“改变”).16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,…,按照这种移动方式进行下去,点4A 表示的数是 ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .三、解答题(本题共30分,每小题5分)17()011π2008()6tan302--+-︒. 18.如图,∠C =∠E ,∠EAC =∠DAB ,AB=AD .求证:BC=DE .19.解不等式组 ()2035148.x x x -≤⎧⎪⎨+>-⎪⎩,20.先化简,再求值:223312111a a a a a a a ++÷-++++,其中2a =.21.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比 乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时. 22.已知关于x 的一元二次方程0)2()1(22=+---m m x m x . (1)求证:此方程总有两个不相等的实数根; (2)若2x =-是此方程的一个根,求实数m 的值.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F , E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC . (1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.24.在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘坐地铁的相关调查数据,制作了以下统计表以及统计图.根据以上信息解答下列问题:(1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是,调价后里程x(千米)在范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到万人次;(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)25.如图,AB为⊙O的直径,M为⊙O外一点,连接MA与⊙O交于点C,连接MB并延长交⊙O于点D,经过点M的直线l与MA所在直线关于直线MD对称.作BE⊥l于点E,连接AD,DE.(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED相等的角,并加以证明.26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=,CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位, 得到抛物线2C ,将2C 对应的函数表达式记为 22y x mx n =++,求2C 对应的函数表达式; (3)设323y x =+,在(2)的条件下,如果在 2-≤x ≤a 内存在..某一个x 的值,使得2y ≤3y 成立,利用函数图象直接写出a 的取值范围.28. △ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AHB ∠= ︒,AFBE= ; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论; (3)如果BAC α∠=,那么AF= .(用含α的表达式表示)29.给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离. 在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为(1,0)A ,则点(2,3)B 和射线OA 之间的距离为________,点(2,3)C - 和射线OA 之间的距离为________;(2)如果直线y =x 和双曲线ky x=k = ;(可在图1中进 行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M . ① 请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示) ② 将射线OE ,OF 组成的图形记为图形W ,抛物线22-=x y 与图形M 的 公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.。

2015北京市西城区高三(一模)数学(理科)

2015北京市西城区高三(一模)数学(理科)

B 与 C 必须相
邻,那么完成加工该产品的不同工艺的排列顺序有
种 . (用数字作答)
14.如图,四面体 ABCD的一条棱长为 x,其余棱长均为 1 ,记四面体 ABCD的体积为 F x ,
则函数 F x 的单调增区间是
;最大值为
.
三、解答题:本大题共 6 小题,共 80 分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满Байду номын сангаас 13 分)
设函数
(Ⅰ)当
, 时,求函数 f ( x) 的值域;
(Ⅱ)已知函数 y = f ( x) 的图象与直线 y =1有交点,求相邻两个交点间的最短距离.
16.(本小题满分 13 分) 2014 年 12 月 28 日开始,北京市公共电汽车和地铁按照里程分段计价.具体如下表.
2 / 13
(不
则a =
.
12.若数列 an 满足 a1
- 2,且对于任意的 m, n N*,都有 am n am an , 则 a3

数列
an
前 10 项的和 S10
.
13.某种产品的加工需要 A, B, C , D, E五道工艺,其中 A必须在 D的前面完成(不一定相
邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,
D.既不充分也不必要条件
f ( x)
6. 一个几何体的三视图如图所示,则该几何体的体积的是
()
7. 已知 6 枝玫瑰与 3 枝康乃馨的价格之和大于 24 元,而 4 枝玫瑰与 4 枝康乃馨的价格之
和小于 20 元,那么 2 枝玫瑰和 3 枝康乃馨的价格的比较结果是 (
)
A. 2 枝玫瑰的价格高

2015年北京市西城区中考数学一模试卷-含详细解析

2015年北京市西城区中考数学一模试卷-含详细解析

2015年北京市西城区中考数学一模试卷副标题一、选择题(本大题共10小题,共30.0分)1.的相反数是()A. B. C. 3 D.2.据市烟花办相关负责人介绍,2015年初夕零时至正月十五24时,全市共销售烟花爆竹约196 000箱,同比下降了32%,将196 000用科学记数法表示应为()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.如图是一个几何体的实物图,则其主视图是()A. B. C. D.5.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A. 1B.C.D.6.下列图形,既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A.B.C.D.8.在平面直角坐标系xOy中,第一象限内的点P在反比例函数的图象上,如果点P的纵坐标是3,OP=5,那么该函数的表达式为()A. B. C. D.9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,这组数据的众数和中位数分别是()A. 6,4B. 6,6C. 4,4D. 4,610.如图,过半径为6的圆O上一点A作圆O的切线l,P为圆O的一个动点,作PH⊥l于点H,连接PA.如果PA=x,AH=y,那么下列图象中,能大致表示y与x的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)11.如果分式有意义,那么的取值范围是______.12.半径为4cm,圆心角为60°的扇形的面积为______cm2.13.分解因式:12m2-3=______.14.如图,△ABC中,AB=AC,点D,E在BC边上,当______时,△ABD≌△ACE.(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC与地面垂直.以O为横板AB的中点,AB绕点O上下转动,横板AB的B端最大高度h是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设AB=2m,OC=0.5m,通过计算得到此时的h1,再将横板AB换成横板A′B′,O为横板A′B′的中点,且A′B′=3m,此时B′点的最大高度为h2,由此得到h1与h2的大小关系是:h1______h2(填“>”、“=”或“<”).可进一步得出h随横板的长度的变化为______(填“不变”或“改变”)16.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第一次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A4表示的数是______,如果点A n与原点的距离不小于20,那么n的最小值是______.三、计算题(本大题共3小题,共15.0分)17.计算:.18.化简求值:,其中a=2.19.阅读下面的材料小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且tanα=,tan,求α+β的度数.小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA,BC在直线BD的两侧,连接AC,可证得△ABC是等腰三角形,因此可求得α+β=∠ABC=______°请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tanα=4,tanβ=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=α-β,由此可得α-β=______°.四、解答题(本大题共10小题,共57.0分)20.如图,∠C=∠E,∠EAC=∠DAB,AB=AD.求证:BC=DE.21.解不等式组:.22.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比乘坐普通列车少用3小时,求高铁的平均速度是多少千米/时?23.已知关于x的一元二次方程x2-2(m-1)x-m(m+2)=0.(1)求证:方程总有两个不相等的实数根;(2)若x=-2是此方程的一个根,求实数m的值.24.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.25.在北京,乘坐地铁是市民出行时经常采用的一种交通方式,据调查,新票改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘坐地铁的相关调查数据,制作了一下统计表以及统计图.根据以上信息解答下列问题:(1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是______,调价后里程x(千米)在______范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到______万人次(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出______元.(不考虑使用一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)26.如图,AB为⊙O的直径,M为⊙O外一点,连接MA与⊙O交于点C,连接MB并延长交⊙O于点D,经过点M的直线l与MA所在直线关于直线MD对称,作BE⊥l 于点E,连接AD,DE(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED相等的角,并加以证明.27.已知二次函数y1=x2+bx+c的图象C1经过(-1,0),(0,-3)两点.(1)求C1对应的函数表达式;(2)将C1先向左平移1个单位,在向上平移4个单位,得到抛物线C2,将C2对应的函数表达式记为y2=x2+mx+n,求C2对应的函数表达式;(3)设y3=2x+3在(2)的条件下,如果在-2≤x≤a内存在某一个x的值,使得y2≤y3成立,结合函数图象直接写出a的取值范围.28.△ABC中,AB=AC,取BC的中点D,做DE⊥AC与点E,取DE的中点F,连接BE,AF交于点H.(1)如图1,如果∠BAC=90°,那么∠AHB=______°,=______;(2)如图2,如果∠BAC=60°,猜想∠AHB的度数和的值,并证明你的结论;(3)如果∠BAC=α,那么=______.(用含α表达式表示)29.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点(2,3)和射线OA之间的距离为______,点(-2,3)和射线OA之间的距离为______;(2)如果直线y=x和双曲线y=之间的距离为,那么k=______;(可在图1中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O逆时针旋转60°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE,OF组成的图形记为图形W,抛物线y=x2-2与图形M的公共部分记为图形N,请直接写出图形W与图形N之间的距离.答案和解析1.【答案】B【解析】解:的相反数是-,添加一个负号即可.故选:B.根据相反数的概念解答即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】A【解析】解:将196 000用科学记数法表示为:1.96×105.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:A、3a与3b不是同类项,不能合并,错误;B、a3与a不是同类项,不能合并,错误;C、(a2)3=a6,正确;D、a6÷a3=a3,错误;故选:C.分别根据同底数幂的除法、幂的乘方与积的乘方、合并同类项的法则进行逐一计算即可.本题考查合并同类项、同底数幂的除法、幂的乘方,熟练掌握性质和法则是解题的关键.4.【答案】C【解析】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图,故选C.找到从正面看所得到的图形即可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.【答案】D【解析】解:∵设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:.故选D.由设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.【答案】D【解析】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.7.【答案】C【解析】解:∵弦CD⊥直径AB,∴=,∴∠BAD=∠BOC=×70°=35°.故选C.先根据垂径定理得到=,然后根据圆周角定理得∠BAD=∠BOC=35°.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.8.【答案】A【解析】解:在RT△OPD中,过P作PD⊥x轴于D,则PD=3,∴OD==4,∴P(4,3),∴代入反比例函数y=得,3=,解得k=12,∴反比例函数的解析式为y=,故选A.过P作PD⊥x轴于D,则PD=3,根据勾股定理求得OD,得出D的坐标,然后根据待定系数法即可求得反比例函数的解析式.本题考查了待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.9.【答案】B【解析】解:出现最多的是6小时,则众数为6;按大小顺序排列在中间的两个人的锻炼时间都为6小时,则中位数为6.故选:B.在这50人中,参加6个小时体育锻炼的人数最多,则众数为6;50人中锻炼时间处在第25和26位的都是6小时,则中位数为6.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.【答案】C【解析】解:如图,当PH与圆O相切时,∵四边形OAHP是正方形,∴AH=6,PA=6,当点P在圆O上运动时,y与x之间的关系既不是一次函数也不是二次函数,并且在x=6时,函数取得最大值6,因为6<6<12,故选:C.当PH与圆O相切时,y取得最大值6,x=6,据此分析即可得出结论.本题主要考查了动点问题的图象,通过计算发现在函数取得最大值时,x的值大于6是解决问题的关键.11.【答案】x≠5【解析】解:分式有意义,得x-5≠0.解得x≠5,故答案为:x≠5.根据分母为零,分式无意义;分母不为零,分式有意义.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.12.【答案】π【解析】解:半径为4cm,圆心角为60°的扇形的面积为:=π(cm2).故答案为:π.直接利用扇形面积公式求出即可.此题主要考查了扇形的面积公式应用,熟练记忆扇形面积公式是解题关键.13.【答案】3(2m+1)(2m-1)【解析】解:12m2-3=3(4m2-1)=3(2m+1)(2m-1).故答案为:3(2m+1)(2m-1).首先提取公因式3,进而利用平方差公式分解因式得出即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.14.【答案】BD=CE【解析】解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中∴△ABD≌△ACE(SAS),故答案为:BD=CE.根据等边对等角得出∠B=∠C,根据全等三角形的判定推出即可.本题考查了等腰三角形的性质,全等三角形的判定的应用,此题是一道开放型的题目,答案不唯一,只要填上一个符合的即可.15.【答案】=;不变【解析】解:过点B作BD⊥AD,B′D′⊥A′B′,∵OC是△ABD与△A′B′D′的中位线,∴BD=B′D′=OC,即h1=h2,故答案为:=,不变.过点B作BD⊥AD,B′D′⊥A′B′,根据三角形中位线定理即可得出结论.本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.16.【答案】7 13【解析】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1-3=-2-2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为-2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4-9=-5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为-5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7-15=-8;…;则A7表示的数为-8-3=-11,A9表示的数为-11-3=-14,A11表示的数为-14-3=-17,A13表示的数为-17-3=-20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为7,13.序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为-17-3=-20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.本题考查了规律型:认真观察、仔细思考,找出点表示的数的变化规律.17.【答案】解:原式=.【解析】本题涉及零指数幂、负指数幂、二次根式化简、特殊角的三角函数值等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.【答案】原式=×-,=,=,当a=2时,原式==.【解析】将原式的分子、分母因式分解,除法化为乘法,约分,再代值计算.本题考查了分式的化简求值.解答此题的关键是把分式化到最简,然后代值计算.19.【答案】45;45【解析】解:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA,BC在直线BD的两侧,连接AC,可证得△ABC是等腰三角形,因此可求得α+β=∠ABC=45°;参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tanα=4,tanβ=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=α-β,由此可得α-β=45°.故答案为:45;45如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA,BC在直线BD的两侧,连接AC,可证得△ABC是等腰三角形,可求得α+β=∠ABC=45°如图2,把α,β放在正方形网格中,使得∠MOG=α,∠NOH=β,且ON在∠MOG 内,连接MN,可证得△MON是等腰三角形,可求得α-β=45°.本题考查了作图-应用与设计图,等腰三角形的性质,解直角三角形等,根据函数值作出直角三角形是解题的关键.20.【答案】证明:∵∠DAB=∠EAC,∴∠DAB+∠BAE=∠EAC+∠BAE,即∠DAE=∠BAC,在△DAE和△BAC中,∴△DAE≌△BAC,∴BC=DE.【解析】因为∠DAB=∠EAC,从图上可以看出∠DAB+∠BAE=∠EAC+∠BAE,即∠DAE=∠BAC,又因为,∠C=∠E,AB=AD,所以很容易证明△DAE≌△BAC,从而得出结论.本题考查全等三角形的判定定理,根据ASA可证明三角形全等,从而可得出结论.21.【答案】解:∵解不等式①得:x≥2,解不等式②得:x>-1,∴不等式组的解集为x≥2.【解析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能根据找不等式组解集的规律找出不等式组的解集,难度适中.22.【答案】解:设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:-=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.【解析】设普通列车平均速度是x千米/时,则高铁的平均速度是2.5x千米/时,根据乘坐高铁比乘坐普通列车少用3小时,列出分式方程,然后求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.【答案】(1)证明:∵关于x的一元二次方程x2-2(m-1)x-m(m+2)=0.∴△=4×(m-1)2+4m(m+2)=8m2+4>0,∴方程总有两个不相等的实数根;(2)解:∵x=-2是此方程的一个根,∴把x=-2代入方程中得到4-2(m-1)×(-2)-m(m+2)=0,∴4+4(m-1)-m(m+2)=0,∴m2-2m=0,∴m1=0,m2=2.【解析】(1)根据根的判别式求出△的值,再进行判断即可;(2)先把x=-2代入方程,然后解关于m的一元二次方程,即可求出m的值.此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.【答案】(1)证明:∵∠ADE=∠BAD,∴AB∥DE,∵AE⊥AC,BD⊥AC,AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵DA平分∠BDE,∴∠AED=∠BDA,∴∠BAD=∠BDA,∴BD=AB=5,设BF=x,则DF=5-x,∴AD2-DF2=AB2-BF2,∴62-(5-x)2=52-x2,∴x=,∴AF==,∴AC=2AF=.【解析】(1)由平行四边形的判定定理:两组对边分别平行得到结论;(2)由角平分线、等量代换得到角相等,由等角对等边得到BD=AB=5,根据勾股定理列方程求解.本题考查了平行四边形的判定和性质,角平分线的性质,勾股定理的应用,解题的关键是利用勾股定理列方程.25.【答案】2号线;52<x≤72;22.2;30【解析】解:(1)每周乘地铁1-2次的所占的百分比是:1-29.7%-12.1%-9.0%-12.2%=37%;;(2)调价后客流量下降百分比最高的线路是2号线,调价后里程x(千米)在52<x≤72范围内的客流量下降最明显.增长率最高的线路是15号线,预计2016年1月这条线路的日均客流量将达到:17.3×(1+28.15%)≈22.2(万人);故答案是:2号线,52<x≤72,22.2;(3)调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出:5×2×(5-2)=30(元).故答案是:30.(1)利用1减去其它组的百分比,即可求得每周乘地铁1-2次的所占的百分比;(2)根据调整后部分路线的客流量及变化率即可直接求得;(3)根据15.9公里确定调整后的票价,即可求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.【答案】解:(1)如图,(2)∠BAD=∠BED.理由如下:连结BC、CD,如图,∴AB为⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∵直线l与MA所在直线关于直线MD对称,∴MD平分∠EMC,∴BC=BE,∴点C与点E关于直线MD对称,∴△BCD≌△BED,∴∠BCD=∠BED,∵∠BCD=∠BAD,∴∠BAD=∠BED.【解析】(1)连结两条线段即可;(2)连结BC、CD,如图,根据圆周角定理得到∠ACB=90°,则BC⊥AC,再根据轴对称的性质得到MD平分∠EMC,于是根据角平分线的性质得BC=BE,所以可判断点C与点E关于直线MD对称,得到△BCD≌△BED,则∠BCD=∠BED,再由圆周角定理得∠BCD=∠BAD,于是得到∠BAD=∠BED.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了轴对称的性质.27.【答案】解:(1)∵二次函数y1=x2+bx+c的图象C1经过(-1,0),(0,-3)两点,∴ .解得,∴抛物线C1的函数解析式为y=x2-2x-3;(2)∵y1=x2-2x-3=(x-1)2-4,∴抛物线的顶点坐标为(1,-4),∵C1先向左平移1个单位,在向上平移4个单位,得到抛物线C2,∴平移后C2的顶点坐标为(0,0),C2对应的函数表达式记为y2=x2;(3)如图:由图象,得只要-1≤a就肯定存在-2≤x≤a中的某一个x的值使得y2≤y3成立【解析】(1)根据待定系数法,可得函数解析式;(2)根据抛物线平移的规律:向左平移加,向上平移加,可得答案;(3)根据函数与不等式的关系,可得答案.本题考查了二次函数与不等式组,函数图象平移的规律是:左加右减,上加下减;利用函数图象在上方的部分函数值大是解不等式组的关键.28.【答案】90;;tan(90°-α)【解析】解:连接AD,∵AB=AC,点D是BC的中点,∴∠ABC=∠C,∠BAD=∠DAC=∠BAC,AD⊥BC,∵AD⊥BC,DE⊥AC,∴∠ADE+∠CDE=90°,∠C+∠CDE=90°,∴∠ADE=∠C.又∵∠ADB=∠DEC=90°,∴△ADB∽△DEC,∴=即AD•CE=BD•DE.∵点D是BC的中点,点F是DE的中点,∴BD=BC,DE=2DF,∴AD•CE═BC•2DF=BC•DF,∴=,又∵∠ADE=∠C,∴△AFD∽△BEC,∴=.在Rt△ADB中,∵∠ABD=90°-∠BAD=90°-∠BAC,BD=BC,∴tan∠ABD=tan(90°-∠BAC)==,∴==tan(90°-∠BAC).∵△AFD∽△BEC,∴∠DAF=∠CBE.∵∠CBE+∠BOD=90°,∠AOH=∠BOD,∴∠DAF+∠AOH=∠CBE+∠BOD=90°,∴∠AHO=180°-90°=90°,即∠AHB=90°.(1)如图1,根据以上结论可得:∠AHB=90°,=tan(90°-×90°)=.故答案分别为:90°、;(2)如图2,猜想:∠AHB=90°,=.证明:根据以上结论可得:∠AHB=90°,=tan(90°-×60°)=.(3)如图3,根据以上结论可得:=tan(90°-α).故答案为:tan(90°-α).连接AD,根据等腰三角形的性质可得∠ABC=∠C,∠BAD=∠BAC,AD⊥BC,然后根据同角的余角相等可得∠ADE=∠C.易证△ADB∽△DEC,可得AD•CE=BD•DE.由此可得AD•CE=BC•2DF=BC•DF,即=,由此可证到△AFD∽△BEC,则有=.在Rt△ADB中根据三角函数的定义可得tan∠ABD=tan(90°-∠BAC)==,从而可得=tan(90°-∠BAC).由△AFD∽△BEC可得∠DAF=∠CBE,即可得到∠DAF+∠AOH=∠CBE+∠BOD=90°,即可得到∠AHB=90°.利用以上结论即可解决题中的三个问题.本题主要考查的是相似三角形的判定与性质、三角函数的定义、等腰三角形的性质、同角的余角相等等知识,证到△AFD∽△BEC是解决本题的关键.29.【答案】3;;-1【解析】解:(1)点(2,3)和射线OA之间的距离为3,点(-2,3)和射线OA之间的距离为=,故答案分别为:3、;(2)∵直线y=x和双曲线y=之间的距离为,∴k<0(否则直线y=x和双曲线y=相交,它们之间的距离为0).过点O作直线y=x的垂线,与双曲线y=交于点A、B,过点B作BH⊥x轴,如图1,在Rt△OHB中,∠HOB=∠HBO=45°,OB=,则有OH=BH=OB=1,∴点B的坐标为(1,-1),∴k=1×(-1)=-1,故答案为:-1;(3)①过点O分别作射线OE、OF的垂线OG、OH,如图2,则图形M为:y轴的正半轴、∠GOH的边及其内部所有的点(图2中的阴影部分);②图形W与图形N之间的距离为.提示:设抛物线y=x2-2与射线OG的交点为N,如图3,图形N上点的坐标可设为(x,x2-2),则图形W与图形N之间的距离为的最小值.易求出点N的坐标为(,-),从而有0≤x2≤,由此可得x2+(x2-2)2=(x2-)2+的最小值为(-)2+=,则图形W与图形N之间的距离为=.(1)只需根据新定义即可解决问题;(2)过点O作直线y=x的垂线,与双曲线y=交于点A、B,过点B作BH⊥x轴,如图1,根据新定义可得直线y=x和双曲线y=之间的距离就是线段OB 的长,如何只需求出点B的坐标,运用待定系数法就可求出k的值;(3)①过点O分别作射线OE、OF的垂线OG、OH,如图2,根据新定义可得图形M为y轴的正半轴、∠GOH的边及其内部所有的点;②设抛物线y=x2-2与射线OG的交点为N,如图3,图形N上点的坐标可设为(x,x2-2),根据新定义可得图形W与图形N之间的距离为的最小值.可通过求出点N的坐标得到x2的范围,然后利用二次函数的增减性求出x2+(x2-2)2=(x2-)2+的最小值,就可解决问题.本题属于新定义型,考查了用待定系数法求反比例函数的解析式、抛物线的增减性、勾股定理、求直线与抛物线的交点等知识,解决本题的关键是对新定义的理解.。

2015年西城区初三一模考试数学试题word版(已排版)

2015年西城区初三一模考试数学试题word版(已排版)

北京市西城区2015年初三一模试卷 数学2015.4一、选择题(本题共30分,每小题3分) 1、13的相反数是()A .13B .13-C .3D .3-2、据市烟花办相关负责人介绍,2015年除夕夜零时至正月十五24时,全市共销售烟花爆竹约196 000箱,同比下降了32%.将196 000用科学记数法表示应为() A .51.960⨯ B .41.9610⨯ C .419.610⨯D .60.19610⨯ 3、下列运算正确的是() A .336a b ab +=B .32a a a -=C .()326a a =D .632a a a ÷=4、如图是一个几何体的直观图,则其主视图是()5、甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道.选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是() A .1B .12C .13D .146、下列图形中,既是轴对称图形又是中心对称图形的是()7、如图,线段AB 是O 的直径,弦CD ⊥AB ,如果70BOC ∠=︒, 那么∠BAD 等于( )A .20°B .30°C .35°D .70° 8、在平面直角坐标系xOy 中,第一象限内的点P 在反比例函数的图象上,如果点P 的纵坐标是3,5OP =,那么该函数的表达式为() A .12y x=B .12y x=-C .15y x=D .15y x=-9、为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是()A .6,4B .6,6C .4,4D .4,610、如图,过半径为6的O 上一点A 作O 的切线l ,P 为O 上的一个动点,作PH ⊥l 于点H ,连接P A .如果PA x =,AH y =,那么下列图象中,能大致表示y 与x 的函数关系的是()二、填空题(本题共18分,每小题3分) 11、如果分式15x -有意义,那么x 的取值范围是__________. 12、半径为4cm ,圆心角为60°的扇形的面积为__________cm 2. 13、分解因式:2123m -=__________.14、如图,△ABC 中,AB AC =,点D 、E 在BC 边上,当__________时, △ABD ≌△ACE .(添加一个适当的条件即可)15、如图是跷跷板的示意图,立柱OC 与地面垂直,以O 为横板AB 的中点,AB 绕点O 上下转动,横板AB 的B 端最大高度h 是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设2AB =m ,0.5OC =m ,通过计算得到此时的1h ,再将横板AB 换成横板''A B ,O 为横板''A B 的中点,且''3A B =m ,此时'B 点的最大高度为2h ,由此得到1h 与2h 的大小关系是:1h ________2h (填“>”“=”或“<”).可进一步得出,h 随横板的长度的变化而_________(填“不变”或“改变”).16、如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,……,按照这种移动方式进行下去,点4A 表示的数是________,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.三、解答题(本题共30分,每小题5分) 17()1120086tan 302π-⎛⎫-+-︒ ⎪⎝⎭.18、如图,C E ∠=∠,EAC DAB ∠=∠,AB AD =,求证:BC DE =.19、解不等式组()2035148x x x -≤⎧⎪⎨+>-⎪⎩.20、先化简,再求值:223312111a a a a a a a ++÷-++++,其中2a =.21、从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时.22、已知关于x 的一元二次方程()()22120x m x m m ---+=.(1)求证:方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求实数m 的值.四、解答题(本题共20分,每小题5分) 23、如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且ADE BAD ∠=∠,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,5AB =,6AD =,求AC 的长.24、在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘坐地铁的相关调查数据,制作了一下统计表以及统计图.根据以上信息解答下列问题: (1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是___________,调价后里程x (千米)在___________范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到___________万人次;(精确到0.1) (3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出__________元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)25、如图,AB 为O 的直径,M 为O 外一点,连接MA 与O 交于点C ,连接MB 并延长交O 于点D ,经过点M 的直线l 与MA 所在直线关于直线MD 对称.作BE ⊥l 于点E ,连接AD ,DE . (1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED 相等的角,并加以证明.26、阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题: 如果α、β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α、β放在正方形网格中,使得ABD α∠=,CBE β∠=,且BA 、BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得ABC αβ+=∠=____________°. 请参考小敏思考问题的方法解决问题:如果α、β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出MON αβ∠=-,由此可得αβ-=____________°.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27、已知二次函数21y x bx c =++的图象1C 经过()1,0-,()0,3-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位,得到抛物线2C .将2C 对应的函数表达式记为22y x mx n =++,求2C 对应的函数表达式;(3)设323y x =+,在(2)的条件下,如果在2x a -≤≤内存在某一个x 的值,使得23y y ≤成立,结合函数图象直接写出a 的取值范围.28、△ABC 中,AB AC =,取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE 、AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AHB ∠=___________°,AFBE=___________; (2)如图2,如果60BAC ∠=︒,猜想∠AHB 的度数和AFBE的值,并证明你的结论;(3)如果BAC α∠=,那么AFBE=___________.(用含α的表达式表示)29、给出如下规定:两个图形1G 和2G ,点P 为1G 上任一点,点Q 为2G 上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形1G 和2G 之间的距离. 在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为()1,0A ,则点()2,3B 和射线OA 之间的距离为___________,点()2,3C -和射线OA 之间的距离为____________; (2)如果直线y x =和双曲线ky x=,那么k =____________;(可在图1中进行研究) (3)点E的坐标为(,将射线OE 绕原点O 逆时针旋转60°,得到射线OF ,在坐标平面内所有和射线OE 、OF 之间的距离相等的点所组成的图形记为图形M . ①请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示) ②将射线OE 、OF 组成的图形记为图形W ,抛物线22y x =-与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.。

2015西城初三数学一模

2015西城初三数学一模

北京市西城区2015年初三一模试卷数 学 2015. 4一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.13的相反数是A.13 B.13- C.3 D.3-2.据市烟花办相关负责人介绍,2015年除夕零时至正月十五24时,全市共销售烟花爆竹 约196 000箱,同比下降了32%.将196 000用科学记数法表示应为A.51.9610⨯B.41.9610⨯C.419.610⨯D. 60.19610⨯ 3.下列运算正确的是A. 336a b ab+=B.32aa a -=C.()326a a = D.632a a a ÷=4.如图是一个几何体的直观图,则其主视图是5.甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是A. 1B. 12C.13D.146.下列图形中,既是轴对称图形又是中心对称图形的是7.如图,线段AB是⊙O的直径,弦CD丄AB,如果∠BOC=70°,那么∠BAD等于A. 20°B. 30°C. 35°D.70°8.在平面直角坐标系xOy中,第一象限内的点P在反比例函数的图象上,如果点P的纵坐标是3,OP=5,那么该函数的表达式为A.12yx= B.12yx=-C.15yx= D.15yx=-9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是A. 6,4B. 6,6C. 4,4D. 4,610.如图,过半径为6的⊙O上一点A作⊙O的切线l,P为⊙O上的一个动点,作PH ⊥l 于点H ,连接P A .如果P A =x ,AH=y , 那么下列图象中,能大致表示y 与x 的函数关系的是二、填空题(本题共18分,每小题3分) 11.如果分式15x -有意义,那么x 的取值范围是 .12.半径为4cm ,圆心角为60°的扇形的面积为 cm 2. 13.分解因式:2123m -= .14.如图,△ABC 中,AB =AC ,点D ,E 在BC 边上,当 时, △ABD ≌△ACE .(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC 与地面垂直,以O为横板AB 的中点..,AB 绕点O 上下转动,横板AB 的B 端最大高度h 是否会随横板长度的变化而变化 呢?一位同学做了如下研究:他先设AB=2 m , OC=0.5 m ,通过计算得到此时的h 1,再将横板AB换成横板A ′B ′,O 为横板A ′B ′的中点,且A ′B ′=3m ,此时B ′点的最大高度为h 2,由此得 到h 1与h 2的大小关系是:h 1 h 2(填“>”、“=”或“<”).可进一步得出,h 随横板的长度的变化而 (填“不变”或“改变”).16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,…,按照这种移动方式进行下去,点4A 表示的数是 ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .三、解答题(本题共30分,每小题5分)17()011π2008()6tan302--+-︒. 18.如图,∠C =∠E ,∠EAC =∠DAB ,AB=AD .求证:BC=DE .19.解不等式组 ()2035148.x x x -≤⎧⎪⎨+>-⎪⎩,20.先化简,再求值:223312111a a a a a a a ++÷-++++,其中2a =.21.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比 乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时.22.已知关于x 的一元二次方程0)2()1(22=+---m m x m x .(1)求证:此方程总有两个不相等的实数根; (2)若2x =-是此方程的一个根,求实数m 的值.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.24.在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘坐地铁的相关调查数据,制作了以下统计表以及统计图.根据以上信息解答下列问题:(1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是,调价后里程x(千米)在范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到万人次;(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)25.如图,AB为⊙O的直径,M为⊙O外一点,连接MA与⊙O交于点C,连接MB并延长交⊙O于点D,经过点M的直线l与MA所在直线关于直线MD对称.作BE⊥l于点E,连接AD,DE.(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED相等的角,并加以证明.26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且1tan2α=,1tan3β=,求αβ+的度数.小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=,CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °. 请参考小敏思考问题的方法解决问题: 如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点. (1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位, 得到抛物线2C ,将2C 对应的函数表达式记为 22y x mx n =++,求2C 对应的函数表达式;(3)设323y x =+,在(2)的条件下,如果在2-≤x ≤a 内存在..某一个x 的值,使得2y≤3y 成立,利用函数图象直接写出a 的取值范围.28.△ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AHB ∠= ︒,AFBE= ; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论; (3)如果BAC α∠=,那么AFBE= .(用含α的表达式表示)29.给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离. 在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为(1,0)A ,则点(2,3)B 和射线OA 之间的距离为________,点(2,3)C - 和射线OA 之间的距离为________;(2)如果直线y =x 和双曲线ky x=,那么k = ;(可在图1中进行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M . ① 请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)② 将射线OE ,OF 组成的图形记为图形W ,抛物线22-=x y 与图形M 的 公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.。

2015西城初三一模数学试卷及答案概要.

2015西城初三一模数学试卷及答案概要.

北京市西城区2015年初三一模试卷数学2015. 41.13的相反数是A .13B .13- C .3 D .3- 2.据市烟花办相关负责人介绍,2015年除夕零时至正月十五24时,全市共销售烟花爆竹约196000箱,同比下降了32%.将196 000用科学记数法表示应为A .51.9610⨯B .41.9610⨯C .419.610⨯D .60.19610⨯ 3.下列运算正确的是A .336a b ab +=B .32a a a -= C .236()a a = D .632a a a ÷=4.如图是一个几何体的直观图,则其主视图是5.甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是A .1B .12C .13D .146.下列图形中,既是轴对称图形又是中心对称图形的是7.如图,线段AB是⊙O的直径,弦CD丄AB,如果∠BOC=70°,那么∠BAD等于A.20°B.30°C.35°D.70°8.在平面直角坐标系xOy中,第一象限内的点P在反比例函数的图象上,如果点P的纵坐标是3,OP=5,那么该函数的表达式为A.12yx=B.12yx=-C.15yx=D.15yx=-9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是A.6,4 B.6,6C.4,4 D.4,610.如图,过半径为6的⊙O上一点A作⊙O的切线l,P为⊙O上的一个动点,作PH⊥l于点H,连接P A.如果P A=x,AH=y,那么下列图象中,能大致表示y与x的函数关系的是二、填空题(本题共18分,每小题3分)11.如果分式15x-有意义,那么x的取值范围是.12.半径为4cm,圆心角为60°的扇形的面积为cm2.13.分解因式:2123m -= .14.如图,△ABC 中,AB =AC ,点D ,E 在BC 边上,当 时, △ABD ≌△ACE .(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC 与地面垂直,以O为横板AB 的中点..,AB 绕点O 上下转动,横板AB 的B 端最大高度h 是否会随横板长度的变化而变化 呢?一位同学做了如下研究:他先设AB=2 m ,OC=0.5 m ,通过计算得到此时的h 1,再将横板AB换成横板A ′B ′,O 为横板A ′B ′的中点,且A ′B ′=3m ,此时B ′点的最大高度为h 2,由此得 到h 1与h 2的大小关系是:h 1 h 2(填“>”、“=”或“<”).可进一步得出,h 随横板的长度的变化而 (填“不变”或“改变”).16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,…,按照这种移动方式进行下去,点4A 表示的数是 ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .三、解答题(本题共30分,每小题5分)17()011π2008()6tan302--+-︒.18.如图,∠C =∠E ,∠EAC =∠DAB ,AB=AD .求证:BC=DE .19.解不等式组 203(51)48x x x -≤⎧⎨+>-⎩20.先化简,再求值:223312111a a a a a a a ++÷-++++,其中2a =.21.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比 乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时.22.已知关于x 的一元二次方程0)2()1(22=+---m m x m x . (1)求证:此方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求实数m 的值.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.24.在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据2015年1月公布的调价后市民当时乘 坐地铁的相关调查数据,制作了以下统计表以及统计图.根据以上信息解答下列问题: (1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是 ,调价后里程x (千米)在 范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2016年1月这条线路的日均客流量将达到 万人次;(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出 元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)25.如图,AB 为⊙O 的直径,M 为⊙O 外一点,连接MA 与⊙O 交于点C ,连接MB 并延长交⊙O 于点D ,经过点M 的直线l 与MA 所在直线关于直线MD 对称.作BE ⊥l 于点E ,连接AD ,DE .(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED 相等的角,并加以证明.26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=, CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知二次函数21y x bx c =++的图象1C 经过(1,0)-,(0,3)-两点.(1)求1C 对应的函数表达式;(2)将1C 先向左平移1个单位,再向上平移4个单位,得到抛物线2C ,将2C 对应的函数表达式记为22y x mx n =++,求2C 对应的函数表达式;(3)设323y x =+,在(2)的条件下,如果在2x a -≤≤内存在..某一个x 的值,使得23y y ≤成立,利用函数图象直接写出a 的取值范围.28.△ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AH B ∠= ︒,AFBE= ; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论; (3)如果BAC α∠=,那么AFBE= .(用含α的表达式表示)29.给出如下规定:两个图形1G 和2G ,点P 为1G 上任一点,点Q 为2G 上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形1G 和2G 之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为(1,0)A ,则点(2,3)B 和射线OA 之间的距离为________,点(2,3)C -和射线OA 之间的距离为________;(2)如果直线y x =和双曲线ky x=k = ; (可在图1中进行研究)(3)点E 的坐标为,将射线OE 绕原点O 逆时针旋转60︒,得到射线OF ,在坐标平面内所有和射线,OE OF 之间的距离相等的点所组成的图形记为图形M .① 请在图2中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示) ② 将射线,OE OF 组成的图形记为图形W ,抛物线22y x =-与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.北京市西城区2015年初三一模试卷数学试卷参考答案及评分标准2015.4一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17()011π2008()6tan302--+-︒=3362132⨯-++………………………………………………………… 4分 =32332-+=3.…………………………………………………………………………………… 5分 18.证明:如图1.∵ ∠EAC =∠DAB ,∴ 11EAC DAB ∠+∠=∠+∠.即 ∠BAC =∠DAE . …………………… 1分 在△ABC 和△ADE 中,,,,C E BAC DAE AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩………………………3分∴ △ABC ≌△ADE .…………………………………………………………… 4分 ∴ BC= DE .…………………………………………………………………… 5分 19.解:()2035148.x xx -≤⎧⎪⎨+>-⎪⎩, 由①,得2x ≥. ………………………………………………………………… 2分由②,得 15348x x +>-移项,合并,得 1111x >-系数化1,得 1x >-. ………………………………………………………… 4分 所以原不等式组的解集为2x ≥.…………………………………………………5分20.解: 223312111a a a a a a a ++÷-++++=()()2331111a a a a a a ++÷-+++……………………………………………………………2分 ()()2311311a a a a a a ++=⋅-+++ =111+-+a a a …………………………………………………………………………3分 =11a a -+.………………………………………………………………………………4分 当2=a 时,原式=311212=+-.………………………………………………………5分 21.解:设普通列车的平均速度为x 千米/时.…………………………………………… 1分 则高铁的平均速度是2.5x 千米/时.依题意,得40052032.5x x+=.…………………………………………………… 2分 解得 120=x .……………………………………………………………………3分 经检验,120=x 是原方程的解,且符合题意.……………………………… 4分 所以 30052=x ..答:高铁的平均速度是300千米/时.………………………………………………… 5分 22.(1)证明: []22(1)4(2)m m m ∆=--++ 2248448m m m m =-+++284m =+.……………………………………………………………………1分∵ 28m ≥0,∴ 284m +>0.………………………………………………………………2分∴ 方程总有两个不相等的实数根. ……………………………………… 3分(2)解:∵ 2x =-是此方程的一个根,∴ 2(2)2(2)(1)(2)0m m m --⨯---+=.整理得 220m m -=.解得 10m =,22m =.……………………………………………………… 5分四、解答题(本题共20分,每小题5分)23.(1)证明:∵ ADE BAD ∠=∠,∴ AB ∥ED .…………………………………………………………… 1分 ∵ BD 垂直平分AC ,垂足为F , ∴ BD AC ⊥,AF=FC .又∵ AE AC ⊥,∴ 90EAC DFC ∠=∠=︒.∴AE ∥BD .∴ 四边形ABDE 是平行四边形.…………………………………………2分(2)解:如图2,连接BE 交AD 于点O . ∵ DA 平分∠BDE ,∴ ∠ADE=∠1.又∵ ADE BAD ∠=∠, ∴ ∠1=∠BAD .∴ AB= BD .………………………………3分 ∴ABDE 是菱形. ∵ AB=5,AD=6,∴ BD=AB=5,AD BE ⊥,132OA AD ==.在Rt △OAB 中,4OB =.∵ 1122ABD S AD OB BD AF =⋅=⋅V , ∴ 645AF ⨯=.解得 4.8AF =. …………………………4分 ∵ BD 垂直平分AC ,∴ 29.6AC AF ==.……………………5分 注:其他解法相应给分. 24.解:(1)补全扇形图如图3所示.…………………1分 (2)2号线,52<x ≤72 ,22.2.(各1分)………………………………………… 4分 (3)30.……………………………………… 5分 25.解:(1)依题意,补全图形如图4.……………… 1分 (2)BAD ∠.…………………………………… 2分 证明:如图5,连接BC ,CD .∵ 直线l 与直线MA 关于直线MD 对称, ∴ 12∠=∠.………………………3分 ∵ AB 为⊙O 的直径,∴ 90ACB ∠=︒,即BC MA ⊥. 又∵ BE l ⊥,∵ cos 1MC MB =⋅∠,cos 2ME MB =⋅∠∴ MC=ME . 又∵ C ,E 两点分别在直线MA 与直线l 可得C ,E 两点关于直线MD 对称.∴ 3BED ∠=∠. ………………… 4分 又∵ 3BAD ∠=∠,∴ BAD BED ∠=∠. ……………… 5分26.解:45. …………………………………………………1分画图见图6. ………………………………………3分 45.………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.解:(1)∵ 二次函数21y x bx c =++的图象1C 经过(1,0)-,∴10,3.b c c -+=⎧⎨=-⎩………………………………1分 解得2,3.b c =-⎧⎨=-⎩…………………………………2分 ∴ 抛物线1C 的函数表达式为3221--=x x y . …………………………………… 3分(2)∵ 22123=(1)4y x x x =----,∴ 抛物线1C 的顶点为(1,4)- ∴ 平移后抛物线2C 的顶点为(0,0),它对应的函数表达式为22y x =.… 5分(3)a ≥1-(见图7).………………………………………………………………7分28.解:(1)90,12.……………………………………………………………………… 2分 (2)结论:90AHB ∠=︒,AF BE =. 证明:如图8,连接AD .∵ AB =AC ,∠BAC =60°,∴ △ABC 是等边三角形.∵ D 为BC 的中点,∴ AD ⊥BC .∴ ∠1+∠2=90°.又∵ DE ⊥AC ,∴ ∠DEC =90°.∴ ∠2+∠C =90°.∴ ∠1=∠C =60°.设AB =BC=k (0k >), 则124k CE CD ==,DE =. ∵ F 为DE 的中点,∴ 12DF DE ==,AD AB ==. ∴AD BC =,DF CE ∴ =BC AD CE DF .…………………………………………………………3分又∵ ∠1=∠C ,∴ △ADF ∽△BCE .………………………………………………… 4分∴AF AD BE BC ==,………………………………………………… 5分 ∠3=∠4.又∵ ∠4+∠5=90°,∠5=∠6,∴ ∠3+∠6=90°.∴ 90AHB ∠=︒.………………………………………………………6分 (3)1tan 9022α︒-().………………………………………………………………7分 注:写1cos 2sin αα+或其他答案相应给分.29.解:(1)3.(每空各1分)…………………………………………………… 2分(2)-1.…………………………………………………………………………… 4分(3)①如图9,过点O 分别作射线OE 、OF 的垂线OG 、OH ,则图形M 为:y 轴正半轴,∠GOH 的边及其内部的所有点(图中的阴影部分)………… 7分说明:(画图2分,描述1分)(图形M 也可描述为:y 轴正半轴,直线x y 33=下方与直线x y 33-=下方重叠的部分(含边界)) ②34 …………………………………………………………………………8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015西城高三理科数学一模2015.一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合0,1{}A =,集合{|}B x x a =>,若A B =∅,则实数a 的取值范围是( )(A )1a ≤(B )1a ≥(C )0a ≥(D )0a ≤3. 在极坐标系中,曲线2cos ρ=θ是( )(A )过极点的直线 (B )半径为2的圆 (C )关于极点对称的图形 (D )关于极轴对称的图形4.执行如图所示的程序框图,若输入的x 的值为3, 则输出的n 的值为( ) (A )4 (B )5 (C )6 (D )72.复数z 满足i 3i z ⋅=-,则在复平面内,复数z 对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限5.若函数()f x 的定义域为R ,则“x ∀∈R ,(1)()f x f x +>”是“函数()f x 为增函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 已知抛物线214y x =和21516y x =-+所围成的封闭曲线如图所示,给定点(0,)A a ,若在此封闭曲线上恰有 三对不同的点,满足每一对点关于点A 对称,则实数a 的取值范围是( )第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知平面向量,a b 满足(1,1)=-a ,()()+⊥-a b a b ,那么|b |= ____.10.已知双曲线C :22221(0,0)x y a b a b-=>>的一个焦点是抛物线28y x =的焦点,且双曲线C 的离心率为2,那么双曲线C 的方程为____.11.在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若π3A =,cos B =,2b =,则a =____. 6. 一个几何体的三视图如图所示,则该几何体的体积的是( ) (A )476(B )233(C )152(D )77. 已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是( ) (A )2枝玫瑰的价格高 (B )3枝康乃馨的价格高 (C )价格相同(D )不确定(A )(1,3) (B )(2,4) (C )3(,3)2(D )5(,4)2侧(左)视图正(主)视图俯视图12.若数列{}n a 满足12a =-,且对于任意的*,m n ∈N ,都有m n m n a a a +=⋅,则3a =___;数列{}n a 前10项的和10S =____.13. 某种产品的加工需要A ,B ,C ,D ,E 五道工艺,其中A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有____种. (用数字作答) 14. 如图,四面体ABCD 的一条棱长为x ,其余棱长均为1, 记四面体ABCD 的体积为()F x ,则函数()F x 的单 调增区间是____;最大值为____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明。

15.(本小题满分13分)设函数π()4cos sin()3f x x x =-x ∈R .(Ⅰ)当π[0,]2x ∈时,求函数()f x 的值域; (Ⅱ)已知函数()y f x =的图象与直线1=y 有交点,求相邻两个交点间的最短距离.16.(本小题满分13分)2014年12月28日开始,北京市公共电汽车和地铁按照里程分段计价. 具体如下表.(不考虑公交卡折扣情况)已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X 为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X 的分布列和数学期望;(Ⅲ)小李乘坐地铁从A 地到陶然亭的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s 公里,试写出s 的取值范围.(只需写出结论)BADC17.(本小题满分14分)如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,//EF AD , 平面ADEF ⊥平面ABCD ,且2BC EF =, AE AF =,点G 是EF 的中点.(Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE9AG 的长;(Ⅲ)判断线段AC 上是否存在一点M ,使MG //平面ABF ?若存在,求出AM MC的值;若不存在,说明理由.18.(本小题满分13分)设*n ∈N ,函数ln ()n x f x x =,函数e ()xn g x x=,(0,)x ∈+∞.(Ⅰ)当1n =时,写出函数()1y f x =-零点个数,并说明理由;(Ⅱ)若曲线()y f x =与曲线()y g x =分别位于直线1l y =:的两侧,求n 的所有可能取值. 19.(本小题满分14分)设1F ,2F 分别为椭圆)0(1:2222>>=+b a by a x E 的左、右焦点,点)23,1(P 在椭圆E 上,且点P 和1F 关于点)43,0(C 对称.(Ⅰ)求椭圆E 的方程;(Ⅱ)过右焦点2F 的直线l 与椭圆相交于A ,B 两点,过点P 且平行于AB 的直线与椭圆交于另一点Q ,问是否存在直线l ,使得四边形PABQ 的对角线互相平分?若存在,求出l 的方程;若不存在,说明理由. 20.(本小题满分13分)已知点列111222:(,),(,),,(,)k k k T P x y P x y P x y (*k ∈N ,2k ≥)满足1(1,1)P ,且111,i i ii x x y y --=+⎧⎨=⎩与11,1i i ii x x y y --=⎧⎨=+⎩(2,3,,i k =) 中有且仅有一个成立.(Ⅰ)写出满足4k =且4(3,2)P 的所有点列;(Ⅱ) 证明:对于任意给定的k (*k ∈N ,2k ≥),不存在点列T ,使得112k kki i i i x y ==+=∑∑;(Ⅲ)当21k n =-且21(,)n P n n -(*,2n n ∈N ≥)时,求11k ki i i i x y ==⨯∑∑的最大值.FCADBG E北京市西城区2015年高三一模试卷参考答案及评分标准高三数学(理科) 2015.4一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.B 5.B 6.A 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9 10.2213y x -=11 12.8- 68213.2414. (或写成) 18注:第12,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为3)cos 23sin 21(cos 4)(+-=x x x x f ……………… 1分 3cos 32cos sin 22+-=x x xx x 2cos 32sin -= ……………… 3分=π2sin(2)3x -, ……………… 5分因为 π02x ≤≤, 所以ππ2π2333x --≤≤, ……………… 6分所以 sin(π2)123x --≤,即()2f x ≤, 其中当5π12x =时,)(x f 取到最大值2;当0=x 时,)(x f 取到最小值3-, 所以函数()f x 的值域为]2,3[-. ……………… 9分(Ⅱ)依题意,得π2sin(2)13x -=,π1sin(2)32x -=, ……………… 10分 所以ππ22π36x k -=+或 π5π22π36x k -=+, ……………… 12分所以ππ4x k =+或 7ππ12x k =+()k ∈Z , 所以函数()y f x =的图象与直线1=y 的两个相邻交点间的最短距离为π3. …… 13分16.(本小题满分13分)(Ⅰ)解:记事件A 为“此人乘坐地铁的票价小于5元”, ………………1分由统计图可知,得120人中票价为3元、4元、5元的人数分别为60,40,20(人).所以票价小于5元的有6040100+=(人). ………………2分 故120人中票价小于5元的频率是10051206=. 所以估计此人乘坐地铁的票价小于5元的概率5()=6P A . ………………4分 (Ⅱ)解:X 的所有可能取值为6,7,8,9,10. ……………… 5分根据统计图,可知120人中地铁票价为3元、4元、5元的频率分别为60120,40120, 20120,即12,13,16, ……………… 6分以频率作为概率,知乘客地铁票价为3元、4元、5元的概率分别为12,13,16. 所以111(6)224P X ==⨯=,11111(7)23323P X ==⨯+⨯=,1111115(8)26623318P X ==⨯+⨯+⨯=,11111(9)36639P X ==⨯+⨯=,111(10)6636P X ==⨯=,……………… 8分所以随机变量X 的分布列为:……………… 9分所以1151122()67891043189363E X =⨯+⨯+⨯+⨯+⨯=. ……………… 10分(Ⅲ)解:(20,22]s ∈. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为AE AF =,点G 是EF 的中点,所以 AG EF ⊥. ……………1分 又因为 //EF AD ,所以 AG AD ⊥. ……………2分因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,AG ⊂平面ADEF ,所以 AG ⊥平面ABCD . ……………4分 (Ⅱ)解:因为AG ⊥平面ABCD ,AB AD ⊥,所以,,AG AD AB 两两垂直. 以A 为原 点,以AB ,AD ,AG 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……5分则(0,0,0)A ,(4,0,0)B ,(4,4,0)C , 设(0)AG t t =>,则(0,1,)E t ,(0,1,)F t -,所以(4,1,)BF t =--,(4,4,0)AC =,(0,1,)AE t =. 设平面ACE 的法向量为(,,)n x y z =,由 0AC n ⋅=,0AE n ⋅=,得440,0,x y y tz +=+=⎧⎨⎩令 1z =, 得(,,1)n t t =-.……………7分因为BF 与平面ACE 9所以 6cos ,9||||BF n BF n BF n ⋅<>==⋅,……………8分即=, 解得21t =或2172t =.所以1AG =或2. ……………9分(Ⅲ)解:假设线段AC 上存在一点M ,使得MG //平面ABF ,设AM ACλ=,则 AM AC λ=,由 (4,4,0)AC =,得(4,4,0)AM λλ=, ……………10分 设 (0)AG t t =>,则(0,0,)AG t =,所以 (4,4,)MG AG AM t λλ=-=--. ……………11分设平面ABF 的法向量为111(,,)x y z m =, 因为 (0,1,)AF t -=,(4,0,0)AB =, 由 0AF m ⋅=,0AB m ⋅=,得1110,40,y tz x -+==⎧⎨⎩令 11z =, 得(0,,1)t m =, ……………12分 因为 MG //平面ABF ,所以 0MG m =⋅,即04t t λ+=-,解得 14λ=. 所以14AM AC =,此时13AM MC =, 所以当13AM MC =时, MG //平面ABF . ……………14分18.(本小题满分13分)(Ⅰ)证明:结论:函数()1y f x =-不存在零点. ……………1分 当1n =时,ln ()x f x x =,求导得21ln ()xf x x -'=, ……………2分 令()0f x '=,解得e x =. ……………3分 当x 变化时,()f x '与()f x 的变化如下表所示:所以函数()f x 在(0,e)上单调递增,在(e,)+∞上单调递减,则当e x =时,函数()f x 有最大值1(e)e f =. ……………4分 所以函数()1y f x =-的最大值为1(e)110ef -=-<,所以函数()1y f x =-不存在零点. ……………5分 (Ⅱ)解:由函数ln ()n x f x x =求导,得 11ln ()n n xf x x+-'=, 令()0f x '=,解得1e nx =.当x 变化时,()f x '与()f x 的变化如下表所示:……………7分 所以函数()f x 在1(0,e )n 上单调递增,在1(e ,)n+∞上单调递减, 则当1e nx =时,函数()f x 有最大值11(e )enf n =; ……………8分 由函数e ()x n g x x =,(0,)x ∈+∞求导,得 1e ()()x n x n g x x+-'=, ……………9分 令 ()0g x '=,解得x n =. 当x 变化时,()g x '与()g x 的变化如下表所示:所以函数()g x 在(0,)n 上单调递减,在(,)n +∞上单调递增,则当x n =时,函数()g x 有最小值e ()()ng n n=. ……………11分因为*n ∀∈N ,函数()f x 有最大值11(e )1enf n =<, 所以曲线ln n xy x =在直线1l y =:的下方,而曲线e x n y x=在直线1l y =:的上方,所以e ()1nn>, ……………12分解得e n <.所以n 的取值集合为{1,2}. ……………13分19.(本小题满分14分)(Ⅰ)解:由点)23,1(P 和1F 关于点)43,0(C 对称,得1(1,0)F -, ……………… 1分所以椭圆E 的焦点为)0,1(1-F ,)0,1(2F , ……………… 2分 由椭圆定义,得 122||||4a PF PF =+=.所以 2a =,b ……………… 4分故椭圆E 的方程为13422=+y x . ……………… 5分 (II )解:结论:存在直线l ,使得四边形PABQ 的对角线互相平分. ……………… 6分 理由如下:由题可知直线l ,直线PQ 的斜率存在,设直线l 的方程为)1(-=x k y ,直线PQ 的方程为3(1)2y k x -=-. …………… 7分 由 221,43(1),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 得2222(34)84120k x k x k +-+-=, ……………… 8分 由题意,可知0∆> ,设11(,)A x y ,22(,)B x y ,则2221438kk x x +=+,212241234k x x k -=+, ……………… 9分 由221,433(1),2x y y k x ⎧+=⎪⎪⎨⎪-=-⎪⎩消去y , 得2222(34)(812)41230k x k k x k k +--+--=, 由0∆>,可知12k ≠-,设),(33y x Q ,又)23,1(P ,则223431281k k k x +-=+,2234331241kk k x +--=⋅. ……………… 10分 若四边形PABQ 的对角线互相平分,则PB 与AQ 的中点重合, 所以212231+=+x x x ,即3211x x x -=-, ……………… 11分 故2212123()4(1)x x x x x +-=-. ……………… 12分所以 2222222284124123()4(1)343434k k k k k k k----⋅=-+++. 解得 34k =. 所以直线l 为3430x y --=时, 四边形PABQ 的对角线互相平分. ……… 14分 (注:利用四边形PABQ 为平行四边形,则有||||PQ AB =,也可解决问题)20.(本小题满分13分)(Ⅰ)解:符合条件的点列为1234(1,1),(1,2),(2,2),(3,2)T P P P P :;或1234(1,1),(2,1),(2,2),(3,2)T P P P P :;或1234(1,1),(2,1),(3,1),(3,2)T P P P P :.……… 3分 (Ⅱ)证明:由已知,得111i i i i x y x y --+=++,所以数列{}i i x y +是公差为1的等差数列. 由112x y +=,得1i i x y i +=+(1,2,,i k =). ……………… 3分故11kki i i i x y ==+∑∑1()ki i i x y ==+∑23(1)k =++++1(3)2k k =+. ……………… 5分 若存在点列T ,使得112k kki i i i x y ==+=∑∑,则1(3)22k k k +=,即1(3)2k k k ++=. 因为整数k 和3k +总是一个为奇数,一个为偶数,且2k ≥, 而整数12k +中不含有大于1的奇因子,所以对于任意正整数k (2)k ≥,任意点列均不能满足112kkk i i i i x y ==+=∑∑. ………… 8分(Ⅲ)解:由(Ⅱ)可知,1(1,2,,21)i i y i x i n =+-=-,所以1221122111()(232)kki i n n i i x y x x x x x n x --==⨯=+++-+-++-∑∑12211221()[(232)()]n n x x x n x x x --=++++++-+++,令1221n t x x x -=+++,则11[(1)(21)]kki i i i x y t n n t ==⨯=+--∑∑. ……………… 10分考察关于t 的二次函数()[(1)(21)]f t t n n t =+--. (1)当n 为奇数时,可得1(1)(21)2n n +-是正整数,可构造数列{}i x :1111,2,,(1),,(1),(1)1,,222n n n n n ++++项,对应数列{}i y :1,1,,1,2,,,,n n n 项.(由此构造的点列符合已知条件) 而且此时,1221(1)11112(1)(1)(1)222n n x x x n n n n --+++=++++++++++个112(1)(1)2n n n =+++++-1(1)(21)2n n =+-,所以当1(1)(21)2t n n =+-时, 11k ki i i i x y ==⨯∑∑有最大值221(1)(21)4n n +-.……………12分(2)当n 为偶数时,1(1)(21)2n n +-不是正整数,而11(1)(21)22n n +--是离其最近的正整数,可构造数列{}i x :(221,2,,,,,(1),,(1),2,,22222nn n n n n nn ++++1)项项,对应数列{}i y :221,1,,1,2,,1,1,2,,,,22222nn n n n n nn ++++(+1)项项,(由此构造的点列符合已知条件)而且此时,1221(1)2212(1)(1)2222n n nn n nn x x x n --+++=+++++++++++个个12(1)(1)2222n n n n n =++++⨯++⨯-11(1)(21)22n n =+--,所以当11(1)(21)22t n n =+--时, 11k ki i i i x y ==⨯∑∑有最大值2211(1)(21)44n n +--.……………… 13分。

相关文档
最新文档