第九章界面现象

合集下载

界面现象

界面现象

第九章 界面现象讲解:日常生活和生产中,有很多现象和界面有关。

如:水在玻璃细管中会上升,这叫毛细现象;水可以在桌面上铺开,水银却成球状等。

通常把气液和气固界面成为表面。

第一节 表面张力和表面吉布斯函数一、表面现象及其本质 1.界面层的定义界面的5种类型:g-l,g-s,l-l,l-s,s-s. 其中g-l 和g-s 界面也叫表面。

界面分子和内部分子的区别:内部分子受力对称,界面分子受力不对称,不均匀。

液体自发使表面积缩小。

讲解:测定液体蒸气压,不能有空气存在,液体表面指纯液体与其纯蒸气之间的过渡层,只有几个分子厚。

日常生活中讲的液体表面,是指液体与空气之间的界面,其中空气被液体蒸气饱和。

2.系统的比表面(分散度)单位质量具有的表面积,或单位体积具有的表面积。

def defS S m V A AA A m V==质量表面积体积表面积例:一个边长为0.01米的立方体表面积是多少?把这个立方体分成10-9m 的小立方体,求其总面积。

解:边长为0.01米的立方体表面积 2-421=60.01=610m A ⨯⨯()321390.011010-=小立方体的个数为-92213226(10)10610m A =⨯⨯=⨯小立方体总面积物体被分散后的体积变化,请看358页表9.1。

二、表面张力、表面功、表面吉布斯函数 在等温等压条件下者3个概念是一回事。

讲解:吉布斯函数变就是等温等压条件下可逆过程得体积功。

:γ等温等压下可逆地增加单位表面积所需的功。

B,,S T p n G A γ⎛⎫∂=⎪∂⎝⎭ 表面张力就是表面功表面张力F:表面上,每米长度所受的收缩力,垂直于表面切线方向。

-2-2-1J m N m m N m⋅=⋅⋅=⋅单位: 表面功 表面张力2F l γ= 2Flγ= 影响表面张力的因素 (1)物质的本性()()s l γγ>一般相同聚集态时(γγγγ>>>金属键)(离子键)(极性共价键)(非极性共价键)讲解:可以看出键的极性越强,σ越大,因为非极性共价键组成的非极性分子之间只有色散力,极性分子间有色散力、取向力、诱导力。

物理化学界面现象知识点

物理化学界面现象知识点

物理化学界面现象知识点物理化学是一门研究物质与能量转化关系的学科,其中关于界面现象的研究成为其重要组成部分。

界面现象指的是两种或两种以上物质的交界处,这些物质可以是固体、液体或气体。

本文将介绍物理化学界面现象的几个重要知识点。

一、表面张力表面张力是指液体分子表面上分子间相互吸引的力所产生的效应。

液体分子在表面形成一个较为稳定的薄层,使得液体表面呈现收缩的趋势。

表面张力的大小与液体的性质有关,与温度、溶质浓度等因素也有关系。

表面张力有许多重要应用,如测定液体的粘度、浮力现象和昆虫在水面行走等。

二、润湿性润湿性是指液体在与固体接触时的扩展性和均匀性。

润湿性好的液体可以在固体表面均匀地展开,与固体取得较大的接触面积。

润湿性的研究对于表面活性剂、涂层材料等的开发具有重要意义。

润湿性与液体与固体之间的相互作用力有关,主要分为两种类型:强烈吸附型润湿和胶状薄膜型润湿。

三、界面电荷界面电荷是指存在于两相接触处的电荷分布。

在液体与固体、液体与气体的接触处,由于电离、化学吸附等作用,使得界面处出现电荷分布不均匀的现象。

界面电荷的存在对于溶液的稳定性、沉降速度以及电化学反应的进行产生重要影响。

四、界面传质界面传质是指物质在两相接触处的传输过程。

传质可以是从一个相向另一个相的扩散,也可以是通过界面传递。

界面传质是许多重要现象的基础,如大气污染、化工过程中的传质现象等。

界面传质与各相之间的浓度差、物质的扩散系数等因素相关。

五、胶束和微乳液胶束和微乳液是由表面活性剂分子在溶液中自组装形成的具有特殊性质的结构。

胶束是由表面活性剂分子聚集形成的球状结构,具有封闭的疏水核心和亲水外壳。

微乳液是由表面活性剂分子聚集形成的亲水和疏水两相共存的稳定结构。

胶束和微乳液的形成与溶液中表面活性剂浓度、温度等因素密切相关,对于药剂的输送、催化剂的设计等方面具有重要意义。

综上所述,物理化学界面现象是物质与能量转化过程中的重要组成部分。

表面张力、润湿性、界面电荷、界面传质以及胶束和微乳液等知识点对于理解和应用界面现象有着重要作用。

第九章 ( 界面现象)

第九章 ( 界面现象)
把作用于单位边界线上的这种力称为表面张
力(surface tension),用 或 表示。 表面张力的单位是: N m1
如果在金属线框中间系一线圈,
一起浸入肥皂液中,然后取出,上
面形成一液膜。
(a)
由于以线圈为边界的两边表面张
力大小相等方向相反,所以线圈成 任意形状可在液膜上移动,见(a)图。
当 90, cos 0, h 0 液体不能润湿管壁,
形成凸液面,管内液体将下降。
1、毛细管插入到水银液面中,则毛细管内呈现水 银面下降,为什么?
2、为什么地里的土要经常松动? 3、为什么棉毛巾更容易吸收汗水? 4、受潮的平板玻璃为什么很难被分开?
1.已知水在两块玻璃间形成凹液面,而在两块 石蜡板间形成凸液面。试解释 为什么两块玻 璃间放一点水后很难拉开,而两块石蜡板间放 一点水后很容易拉开?
第九章
第九章 界面现象
§9.1 表面和界面 §9.2 表面张力与表面热力学 §9.3 弯曲表面的特性 §9.4 液-固界面-润湿作用
§9.1 表面和界面 表面和界面(surface and interface)
界面是指两相接触的约几个分子厚度的过渡 区,若其中一相为气体,这种界面通常称为表面。
严格讲表面应是液体和固体与其饱和蒸气之 间的界面,但习惯上把液体或固体与空气的界面称 为液体或固体的表面。
p 4
r
自由液滴或气泡通常为何都呈球形 ?
1、假若液滴具有不规则的形状,则在表面上 的不同部位曲面弯曲方向及其曲率不同,所具的 附加压力的方向和大小也不同,这种不平衡的力, 必将迫使液滴呈现球形,这时各处的附加压力相 等,液滴和气泡才会稳定存在。
2、相同体积的物质,球形的表面积最小, 则表面总的Gibbs自由能最低,所以变成球状就 最稳定

物化9-界面现象

物化9-界面现象

●例:20℃时,将0.001 kg的球形水滴分散成直径2 nm的小水滴。

1)求分散前后水滴的表面积和比表面积并进行比较;2)系统Gibbs函数增大多少?已知20℃时水的 为72.75×10-3J·m-2。

●解:[复习: 球的表面积A=4 r2,体积V= 4 r3/3,比表面积Asp =A/V总,1 nm=1×10-9m]●1)20℃时水的密度为1000 kg·m-3,故0.001 kg水滴的体积V=0.001 kg/1000 kg·m-3=1×10-6m3先计算大滴半径r:4 r3/3= 1×10-6,r= 0.62×10-2(m)表面积:A=4 r2=……=4.83×10-4(m2)比表面积:Asp=A/V=4.83×10-4/(1×10-6)=4.83×102(m-1)●将0.001 kg水滴分散成直径为2 nm的小水滴,个数为0.001 kg/[4 (1×10-9)3 /3]=……=2.39×1020个表面积:A=4 (1×10-9)2×2.39×1020=…=3.01×103(m2)比表面积:Asp=A/V=3.01×103/(1×10-6)=3.01×109(m-1)d G=d( A)= d A+A d总●1、当 一定,改变A时,d G= d A,因 >0,所以只有d A<0,才能有d G<0。

即恒温、恒压下,缩小表面积是系统G 的过程(自发过程),使系统处于稳定状态。

如:●常见水面上的小气泡自动合并成大气泡;●熔融金属中也存在小气泡自动合并成大气泡的过程;●固体小晶粒自动合并成大晶粒●太空航天员喝球形果汁等,都是使表面积减小的过程●2、当A一定(分散度不变)时,d G=A d ,欲使d G<0,必然d<0,即表面张力减小的过程是自发过程。

物理化学界面第9章 表面现象总结

物理化学界面第9章 表面现象总结

第9章表面现象和胶体化学1 基本概念1.1界面和表面不同物质或同种物质的密切接触的两个相之间的过渡区叫界面,如液态水和冰的接触面,水蒸气和玻璃的接触面等等。

表面是指固体对真空或固体和液体物质与其自身的蒸气相接触的面。

显然,表面包括在界面的概念之内,但通常并没严格区别两者,“表面”和“界面”互相通用。

1.2 表面能、表面函数和表面功表面上的物质微粒比他们处于体相内部时多出的能量叫表面能或总表面能。

由于表面的变化通常在等温等压条件下进行,因此这时的表面能实际上就是表面吉布斯函数。

在等温等压下且组成不变的条件下以可逆方式增加体系的表面积时所做的非体积功叫表面功,它在量值上等于表面吉布斯函数。

1.03 表面张力(比表面能)简单的说,表面张力就是单位面积上的表面能量,即比表面能,因为它与力有相同的量纲,故叫表面张力。

实际上,表面张力是表面层的分子垂直作用在单位长度的线段或边界上且与表面平行或相切的收缩力。

1.04 附加压力弯曲液面下的附加压力是指液面内部承受的压力与外界压力之差,其方向指向曲面球心。

1.5 铺展和铺展系数某一种液滴在另一种不相溶的液体表面上自行展开形成一层液膜的现象叫铺展,也叫展开。

铺展系数就是某液滴B在液体A的表面上铺展时比表面吉布斯函数的变化值,常用符号为S B/A1.6 湿润凡是液体沾湿在固体表面上的现象都叫润湿,其中又分为铺展润湿(液体在固体表面上完全展开),沾湿湿润(液体在固体表面形成平凹透镜)和浸没湿润(固体完全浸渍在液体中),三种湿润程度的差别是:浸没湿润〉铺展湿润〉沾湿湿润1.7 沾湿功和湿润功在定温定压下,将单位面积的固-液界面分开时外界所做的可逆功叫沾湿功。

这一概念对完全不相溶的两种液体间的界面也适用。

结合功是指定温定压下,将单位面积的液柱拉开时外界所做的可逆功,又叫内聚功。

它是同种分子相互吸引能力的量度。

1.08 接触角液体在固体表面达到平衡时,过三相接触点的切线与固-液界面所夹的最大角叫平衡接触角或润湿角,常用符号θ。

物理化学中的界面现象

物理化学中的界面现象

物理化学中的界面现象物理化学作为研究物质和能量相互作用的学科,广泛关注物质的界面现象。

界面现象是指不同相(例如气相、液相、固相)之间的交界处所表现出的一系列特殊性质和现象。

本文将对物理化学中的界面现象进行探讨,包括界面张力、胶溶体和表面活性剂等方面。

首先,我们来讨论界面张力。

界面张力是界面上单位长度所具有的能量。

液体的界面张力是由分子间吸引力和排斥力所引起的。

分子间吸引力导致液体分子之间靠近,而分子间排斥力使液体分子远离界面。

这种分子间的不均匀排布导致了界面张力的存在。

界面张力使得水滴在平面上形成球状,也使得液体能够在毛细管中上升。

接下来,我们将讨论胶溶体。

胶溶体是由固体分散在液体中形成的混合物。

在胶溶体中,固体颗粒通过与液体分子的相互作用形成一个三维网络结构。

这种网络结构赋予了胶溶体特殊的物理性质,如黏度的增加和凝胶的形成。

在生活中,我们可以看到许多胶溶体的运用,比如胶水、果冻和凝胶电池等。

最后,我们来探讨表面活性剂。

表面活性剂是一类具有亲水性头部和疏水性尾部的分子。

在液体表面,表面活性剂的头部与水分子相互作用,而尾部则与空气或其他非极性物质相互作用。

这种分子的不均匀性导致表面活性剂在液体表面形成一个稳定的单分子层,称为胶束。

表面活性剂的存在使液体的表面张力减小,也可以使油与水相溶。

这种特性使得表面活性剂广泛应用于洗涤剂、乳化剂和泡沫剂等领域。

总而言之,物理化学中的界面现象涵盖了界面张力、胶溶体和表面活性剂等方面。

这些现象的研究不仅可以深化我们对物质相互作用的理解,也为许多实际应用提供了基础。

通过进一步研究和探索界面现象,我们可以更好地理解和应用物理化学的知识。

界面现象

界面现象

太原理工大学物理化学第八章界面现象界面是指相互接触的两相的交界面。

自然界中的物质一般以三种聚集状态存在,三种相态相互接触可 以形成五种界面:液-气、固-气、液-固、液-液和固-固界面。

习惯上将液-气和固-气界面称为表面;而其余 的相界面都称为界面。

由于历史的原因, “表面”和“界面”这两个词经常混用。

界面并不是一个几何平 面,它是从一个相到另一个相的过渡层,有一定的厚度,通常称为界面相或界面层,与界面层相邻的两相 称为体相。

界面现象就是在相界面上所发生的物理化学现象。

许多自然现象、生理现象、工农业生产以至日常生 活上的许多问题都与界面现象有密切的关系,如:液滴呈球形、活性炭能脱色、粉尘容易爆炸等都与界面 现象有关。

产生界面现象的根本原因是由于界面相中的分子与体相中的分子所处的力场不同,因此界面相 的性质和两个体相的性质就会不一样。

在一般情况下,系统所具有的比表面积相当小,表面上的物质、能 量都比体相小得多, 故表面的特殊性质可不考虑。

但当系统的表面积很大时,表面分子所占的比例就很大, 它的特殊性质就成为矛盾的主要方面而表现出各种界面现象。

为了便于比较不同物质的表面性质,提出了比表面积的概念。

比表面积(as)是指单位质量或单位体 积的物质所具有的表面积,用公式表示为: as = As / m 或 as = As / V通常用比表面积来表示物质的分散程度,即分散度。

比表面积越大,分散度越高,表面效应就越明显, 这必然对系统的物理化学性质产生影响,此时就必须考虑界面的特殊性。

这种特殊性反映出的宏观现象就 是人们观察到的界面现象,其具体体现就是界面张力。

§ 8.11.液体的表面吉布斯函数和表面功界面张力界面现象产生的根本原因是由于两相界面上的分子与体相分子所 处环境不同引起的,以液-气界面为例说明之。

如图 8.1.1 所示,处于液 体内部的分子,受周围各分子对它的作用力是对称的,可以相互抵消, 这些分子在液体内部运动时无须对它做功。

第九章界面现象

第九章界面现象

第九章界面现象一、本章小结1.表面张力、表面功及表面吉布斯函数表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m1。

表面功:δWr'/dA,使系统增加单位表面所需的可逆功,单位为J·m2。

表面吉布斯函数:(G/A)T,p,nB(),恒温恒压下系统增加单位表面时所增加的吉布斯函数,单位为J·m2。

表面吉布斯函数的广义定义:UHAG)S,V,nB()()S,p,nB()()T,V,nB()()T,p,nB()AAAA(Wr'dAdGT,pdA 表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是从能量角度和热力学角度描述系统表面的某一性质。

三者虽为不同的物理量,但它们的数值及量纲等同的,均可化为N·m1。

在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数:GiAii2.弯曲液面的附加压力、拉普拉斯方程附加压力:Δp=p内p外拉普拉斯方程:p2r规定弯曲液面凹面一侧压力位p内,凸面一侧压力位p外;γ为表面张力;r为弯曲液面的曲率半径,△p一律取正值;附加压力方向总指向凹面曲率半径中心。

3.毛细现象毛细管内液体上升或下降的高度h2corg式中:γ为表面张力;ρ为液体密度;g为重力加速度;θ为接触角;r为毛细管半径。

当液体不能润湿管壁,θ>90°即co0时,h为负值,表示管内凸液体下降的深度。

279物理化学解题指导4.微小液滴的饱和蒸汽压——开尔文公式RTlnpr2M2Vmprrr为弯曲液面的曲率半径,无论凸凹液面,均取正值;pr为气泡的饱和蒸汽压;p为平液面的饱和蒸汽压;ρ为液体密度,M为液体的摩尔质量,γ为液体的表面张力。

在一定温度下,液滴越小,饱和蒸气压越大;凹液面的曲率半径越小,饱和蒸气压越小。

5.弗罗因德利希等温吸附经验式Vakpn;k和n是两个经验常数,是温度的函数。

6.朗缪尔吸附等温式bp;1bpθ为覆盖率;b为吸附作用的平衡常数,又称吸附系数;p为吸附平衡时的气液平衡压力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学电子教案—第九章
上一内容
下一内容
回主目录
返回
2014-3-4
第十一章
界面现象
12.1 表面吉布斯自由能和表面张力 12.2 弯曲表面下的附加压力和蒸气压 12.3 液体界面的性质 12.4 不溶性表面膜 12.5 液-固界面现象
12.6 表面活性剂及其作用
12.7 固体表面的吸附
B B B B
由此可得:
F G H U ( ) S ,V ,nB ( ) S , P ,n ( )T ,V ,nB ( )T , P ,nB A A A A
B
上一内容
下一内容
回主目录
返回
2014-3-4
表面自由能(surface free energy)
上一内容 下一内容 回主目录
返回
2014-3-4
界面张力与温度的关系
温度升高,界面张力下降,当达到临界温度Tc时, 界面张力趋向于零。这可用热力学公式说明: 因为
运用全微分的性质,可得:
S ( )T , P ,nB ( ) A, P ,nB A T
等式左方为正值,因为表面积增加,熵总是增加 的。所以 随T的增加而下降。
(3)压力的影响 表面张力一般随压力的增加而下降。因为压力增 加,气相密度增加,表面分子受力不均匀性略有好转。 另外,若是气相中有别的物质,则压力增加,促使表 面吸附增加,气体溶解度增加,也使表面张力下降。
上一内容 下一内容 回主目录
返回
2014-3-4
9.2 弯曲表面下的附加压力与蒸气压
上一内容 下一内容
立方体数 1 103 109 1015 1021
回主目录
比表面Av /(m2/m3) 6 ×102 6 ×103 6 ×105 6 ×107 6 ×109
返回
2014-3-4
分散度与比表面
从表上可以看出,当将边长为10-2m的立方体分 割成10-9m的小立方体时,比表面增长了一千万倍。
剖 面 图
po为大气压力, ps为附加压力。
上一内容 下一内容 回主目录
附加压力示意图
返回
2014Hale Waihona Puke 3-4弯曲表面下的附加压力
(3)在凹面上: 研究以AB为弦长的一个球形 凹面上的环作为边界。由于环上 每点两边的表面张力都与凹形的 液面相切,大小相等,但不在同 一平面上,所以会产生一个向上 的合力。 所有的点产生的合力和为ps , 称为附加压力。凹面上向下的总 压力为:po- ps ,所以凹面上所受 的压力比平面上小。
返回
2014-3-4
表面和界面(surface and interface)
3.液-液界面
H2O
Hg
液- 液 界面
上一内容
下一内容
回主目录
返回
2014-3-4
表面和界面(surface and interface)
4.液-固界面 液-固界面
Hg
H2O
玻璃板
上一内容
下一内容
回主目录
l 是滑动边的长度,因膜有两个 面,所以边界总长度为2l, 就是作 用于单位边界上的表面张力。
上一内容 下一内容 回主目录
W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W W 2 W2
2
返回
2014-3-4
表面张力(surface tension)
在两相(特别是气-液)界面上,处处存在着一种
返回
2014-3-4
表面功(surface work)
由于表面层分子的受力情况与本体中不同,因此 如果要把分子从内部移到界面,或可逆的增加表面积, 就必须克服体系内部分子之间的作用力,对体系做功。
温度、压力和组成恒定时,可逆使表面积增加dA 所需要对体系作的功,称为表面功。用公式表示为:
W dA
上一内容 下一内容 回主目录
返回
2014-3-4
界面现象的本质
上一内容
下一内容
回主目录
返回
2014-3-4
比表面(specific surface area)
比表面通常用来表示物质分散的程度,有两 种常用的表示方法:一种是单位质量的固体所具 有的表面积;另一种是单位体积固体所具有的表 面积。即:
上一内容 下一内容 回主目录
返回
2014-3-4
界面现象的本质
最简单的例子是液体及其蒸气组成的表面。
液体内部分子所受的力可以 彼此抵销,但表面分子受到体相 分子的拉力大,受到气相分子的 拉力小(因为气相密度低),所 以表面分子受到被拉入体相的作 用力。
这种作用力使表面有自动收缩到最小的趋势,并 使表面层显示出一些独特性质,如表面张力、表面吸 附、毛细现象、过饱和状态等。
界面是指两相接触的约几个分子厚度的过渡区,
若其中一相为气体,这种界面通常称为表面。
严格讲表面应是液体和固体与其饱和蒸气之间
的界面,但习惯上把液体或固体与空气的界面称为
液体或固体的表面。 常见的界面有:气-液界面,气-固界面,液-液 界面,液-固界面,固-固界面。
上一内容 下一内容 回主目录
返回
广义的表面自由能定义:
U ( ) S ,V ,nB ( H ) S , P ,nB A A
F G ( )T ,V ,nB ( )T , P ,nB A A
保持相应的特征变量不变,每增加单位表面积 时,相应热力学函数的增值。
上一内容
下一内容
回主目录
返回
2014-3-4
2014-3-4
表面和界面(surface and interface)
常见的界面有: 1.气-液界面
空气 气-液 界面
CuSO4 溶液
上一内容
下一内容
回主目录
返回
2014-3-4
表面和界面(surface and interface)
2.气-固界面
气-固界面
上一内容
下一内容
回主目录
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
返回
2014-3-4
9.1 表面吉布斯自由能和表面张力
表面和界面
界面现象的本质
比表面 分散度与比表面 表面功 表面自由能 表面张力 界面张力与温度的关系 影响表面张力的因素
上一内容 下一内容 回主目录
返回
2014-3-4
表面和界面(surface and interface)
表面自由能(surface free energy)
狭义的表面自由能定义:
G ( ) p ,T ,nB A
单位: J· m-2
保持温度、压力和组成不变,每增加单位表面
积时,Gibbs自由能的增加值称为表面Gibbs自由
能,或简称表面自由能或表面能,用符号 表示。
上一内容 下一内容 回主目录
返回
2014-3-4
表面和界面(surface and interface)
5.固-固界面
Cr镀层 铁管
固-固界面
上一内容
下一内容
回主目录
返回
2014-3-4
界面现象的本质
表面层分子与内部分子相比,它们所处的环境不同。
体相内部分子所受四周邻近相同分子的作用力是对 称的,各个方向的力彼此抵销;
但是处在界面层的分子,一方面受到体相内相同 物质分子的作用,另一方面受到性质不同的另一相中 物质分子的作用,其作用力未必能相互抵销,因此, 界面层会显示出一些独特的性质。 对于单组分体系,这种特性主要来自于同一物质 在不同相中的密度不同;对于多组分体系,则特性来 自于界面层的组成与任一相的组成均不相同。
1.在平面上
弯曲表面下的附加压力
2.在凸面上
3.在凹面上
Young-Laplace 公式
Klvin 公式
上一内容 下一内容 回主目录
返回
2014-3-4
弯曲表面下的附加压力
1.在平面上
研究以AB为直径的一个环作 为边界,由于环上每点的两边都 存在表面张力,大小相等,方向 相反,所以没有附加压力。

2014-3-4
返回
表面张力(surface tension)
将一含有一个活动边框的金 属线框架放在肥皂液中,然后取 出悬挂,活动边在下面。 由于金属框上的肥皂膜的表 面张力作用,可滑动的边会被向 上拉,直至顶部。
2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 2 l l 2 l 2 l 2 l 2 l 2 l 2 l 2 l
设向下的大气压力为po,向 上的反作用力也为po ,附加压 力ps等于零。
剖面图
ps p0 p0 0
上一内容 下一内容 回主目录
液面正面图
返回
2014-3-4
弯曲表面下的附加压力
(2)在凸面上: 研究以AB为弦长的一个球面 上的环作为边界。由于环上每点 两边的表面张力都与液面相切, 大小相等,但不在同一平面上, 所以会产生一个向下的合力。 所有的点产生的合力和为 ps ,称为附加压力。凸面上受 的总压力为:po+ ps
'
式中 为比例系数,它在数值上等于当T,p 及组 成恒定的条件下,增加单位表面积时所必须对体系 做的可逆非膨胀功。
上一内容 下一内容 回主目录
返回
2014-3-4
表面自由能(surface free energy)
考虑了 表面功,热 力学基本公 式中应相应 增加 dA一 项,即:
dU TdS PdV dA B dnB dH TdS VdP dA B dnB dF SdT PdV dA B dnB dG SdT VdP dA B dnB
相关文档
最新文档