高等数学2-1

合集下载

高等数学一(1)完整答案

高等数学一(1)完整答案
原式=
(6)令 ,则
原式=
(7)令 ,则
原式=
(8)令 ,则
原式=
(9)原式=
(10)原式=
(11)原式=
(12)原式=
(13)原式=
(14)令 ,则 ,
原式=
(15)令 ,则
原式=
(16)原式=
(17)原式=
(18)原式=
2、(1)原式=
(2)原式=0(因为 在 上为奇函数)
(3)原式=0(因为 在 上为奇函数)
原式= 发散
,而事实上 矛盾
方程 只有正根。
5.解: 为一元三次方程, 为一元二次方程,
故只有两个实根。

由罗尔定理知,两实根区间分别为 。
习题3-2
1.(1)原式
(2)原式
(3)原式
(4)原式
(5)原式
(6)原式
(7)原式
(8)原式
(9)原式
(10)原式
(11)原式
(12)原式
2.解:
3.解:
若用洛必达法则,则无限循环,即
(4)原式=
3、(1)证明:令 ,则
所以
(2)证明:令 ,则 ,
所以
(3)证明:令 ,则 ,
所以
6、(1)原式=
(4)原式=
(6)原式=
(8)令 ,则原式=
(9)原式=
(10)原式=
习题5—4
1、(1)
(3) ,发散
2、(1) 为函数 的无穷间断点,所以原式= 发散
(3) 为函数 的无穷间断点,所以
故 ,
,得唯一驻点: 。
当 , 时,圆柱体积最大。
15.解:设生产 台,利润最大。
则目标函数为

高等数学(2-1)专科 复习题及答案32

高等数学(2-1)专科 复习题及答案32

《高等数学》复习题1一、判断题(每题3分,共15分) 1. f(x)=x 是偶函数 ( )2. f(x)=2x+1在x=0处连续。

( )3. u(x) 、v(x)可导,则v u v u v u '+'='+)( ( )4.⎰⎰+=vdu uv udv ( )5. x=0是函数y=cosx 的驻点 ( )。

二、选择题 (每题3分,共15分)1.=→xxx sin lim0( )①.1 ②.2 ③.21④. 0 2. f(x)=392+-x x 的间断点( )①.1 ②.2 ③.-3 ④. -43. 函数3x y =在x=0点的切线方程__________. ①.x=0 ②. y=0 ③. x=1 ④. y=1 4.⎰=dx x 2( )①.c x+22ln 1 ②.2x +c ③. x x ln 2+c ④. 2ln 2x 5. =+⎰-dx x xx 2224cos ( ) ①.0 ②.1 ③. 2 ④. 3三、填空题(每题3分,共15分)1. x y 2sin =是由函数2u y =与_____复合而成。

2. =+/)1(sin x __________ 3. d(tanx)=_____________. 4.⎰xdx =______________.5. 设f(x)连续,且F(x)是f(x)的一个原函数,则 (x)baf dx =⎰____________.四、(10分)叙述拉格朗日微分中值定理 五、综合计算(每题5分,共30分)1. 求极限(1)1231x 4lim 222-++→x x x (2)xx x3)11(lim +∞→2. 求下列函数的导数(1)y=x 2 -3x 4 +2 (2)y=sinx 23. 求积分(1)dx x x x)2sin 2(3⎰+-(2)⎰2cos πxdx x六、(15分)求函数y=19623-+-x x x 的单调区间、极值。

高等数学2

高等数学2

高等数学2
高等数学2是为大学生准备的一门学科,也是一门非常重要的基础课程。

它涉及到各种数学技术,如计算机科学、微积分、线性代数、概率论和统计方法。

高等数学2的课程内容不仅涉及到微积分的基础理论,还包括各种复杂的函数、积分计算、区域计算以及曲线分析等方面的内容。

学习高等数学2时,首先要明白各种数学技术的基本思想,建立起对各种术语的正确理解和数学概念之间的关系。

同时,还要学习数学公式和证明,以及数学计算的基本方法。

此外,还要掌握基本的计算机语言、软件技术和计算机编程,以及基本的数据分析技术,为今后的工作做好准备。

学完高等数学2学生还要掌握基本的统计理论和方法,以及概率论的基本思想和设计及数据处理的基本原理。

学生还要学习如何用计算机来解决数学问题,包括数学建模、分析和解决实际问题等。

最后,学习完高等数学2学生还要有一定的研究能力,掌握数学技术,熟悉数据分析和统计技术,进行数学模型分析,解决实际问题。

总之,高等数学2不仅涉及到微积分的基本理论,还与计算机科学、数据分析和统计技术有关。

学习高等数学2不仅要学习数学理论,还要有利用理论解决实际问题的能力。

通过艰苦的学习,学生们将能够掌握高等数学2中的基本知识,深入了解各种数学技术,为将来的学习和工作做好充分的准备。

- 1 -。

高等数学2-1

高等数学2-1

∆x
回章目 上一页
下一页
回首页
即 类似有
(sin x )′ = cos x (cos x )′ = − sin x
正弦余弦 求导公式
例 7 求 f(x) = loga x (a > 0,a ≠1)的导数。 , )的导数。 解
log a ( x + ∆ x ) − log a x ∆y f ′( x ) = lim = lim ∆ x→0 ∆ x ∆ x→0 ∆x
单 侧 导 数
f (x0 + ∆x) − f (x0 ) = lim 0 ∆x→ + ∆x
判断函数在某一点可导的充分必要条件: 判断函数在某一点可导的充分必要条件:
′ ′ 数 函 f (x)在x0 点 导 ⇔ f−(x0) = f+(x0)。 可
回章目 上一页 下一页 回首页
处的可导性。 例 3 讨论函数 f (x) = | x | 在 x = 0 处的可导性。
回章目 上一页 下一页 回首页
则比值
∆y y − y0 f (x) − f (x0) = = x − x0 ∆x x− x0 就是割线 MN 的斜率 tanϕ 。当∆x → 0(即 x → x0) 即
沿曲线C 趋于点M 时,N 沿曲线 趋于点 ,从而可以得到切线的 斜率为
f (x) − f (x0) ∆y k = tanα = lim = lim x→x 0 ∆x→ ∆x x − x0
由此可见,前面两个引例说明, 由此可见,前面两个引例说明,曲线 y = f(x) 在点 (x0 , f(x0)) 处切线的斜率就是函数 f(x) 在点 x0 处的导数,即 处的导数,
k = f ′( x 0 )
而直线运动 s = s(t) 在时刻 t0 的瞬时速度就是 的导数, 函数 s(t) 在点 t0 的导数,即

高等数学 第二章 极限和导数2-1导数的概念

高等数学 第二章 极限和导数2-1导数的概念

2. 曲线的切线问题 曲线 点处的切线 在 M 点处的切线 割线 M N 的极限位置 M T (当 当 时) 割线 M N 的斜率 f ( x ) − f ( x0 ) ta n ϕ = x − x0 切线 MT 的斜率
= lim ta n ϕ = lim
ϕ→ α
x → x0
f ( x ) − f ( x0 ) x − x0
(1)
存在, 存在 则称函数 f ( x ) 在点 x0 处可导 并称此极限 可导, 处的导数 导数, 值为 y = f (x)在点 x0 处的导数,记作 在
f ( x0 + ∆ x ) − f ( x0 ) ∆x
f ′ ( x 0 ) = lim
∆ x→ 0
也可记作: 也可记作
y′
x = x0
;
处的导数为无穷大 此时,导数不存在; 在点 x0 处的导数为无穷大 . 此时,导数不存在; 2°在 一 点 的 导 数 是 因 变 量在 点 x 处 的 变 化 率 , ° 0
它 反 映 了 因 变 量 随 自 变 量 的 变 化而 变 化 的 快 慢 程 度.
时刻的瞬时速度 运动质点的位置函数 运动质点的位置函数 s = f ( t ) 在 t 0 时刻的瞬时速度
LLL
二、导数的概念 内 1. 定义 定义2.1 设函数 y = f (x) 在 x0 的某邻域 U(x0)内
有定义. 有定义

x0 + ∆x ∈ U ( x0 )
∆ y = f ( x0 + ∆ x ) − f ( x0 ) ∆y lim = lim f ( x 0 + ∆ x ) − f ( x 0 ) ∆ x → 0 ∆ x ∆x→ 0 ∆x
dy d f (x) ; d x x = x0 d x x = x0

2_1_4 反函数和隐函数的导数 高等数学 微积分 考研数学

2_1_4 反函数和隐函数的导数 高等数学 微积分 考研数学
dx Page 5
例2. 求由方程 y5 2 y x 3x7 0 确定的隐函数
y
y(x)

x
=
0
处的导数
dy dx
x
0
.
解: 方程两边对 x 求导
d dx
(
y
5
2
y
x
3x
7
)
0

5y4 d y 2 d y 1 21x6 0
dx dx
dy 1 21x6 dx 5y4 2
因x=0时y=0,
(a x ) a x ln a
(ex ) ex
(loga
x)
1 x ln a
(arcsin x) 1
1 x2
(ln x) 1
x
(arccos x) 1
1 x2
(arctan
x)
ห้องสมุดไป่ตู้1 1 x2
(arc cot
x)
1
1 x
2
Page
11
2. 有限次四则运算的求导法则
(u v) u v
(Cu) Cu ( C为常数 )
(arctan x)
1 1 x2
,
利用 arccos x
arcsin
x
2
(arccot
x)
1 1 x2
Page 3
2) 设 y a x (a 0 , a 1) , 则 x loga y , y ( 0 , )
(a x )
1 (loga
y)
1
1
y ln a a x ln a
y ln a
Page 16
4.

y (sin x)tan x y1

高等数学(同济大学)课件上第2_1导数的概念

高等数学(同济大学)课件上第2_1导数的概念

说明:
对一般幂函数 y x ( 为常数)
(x ) x1
(以后将证明)
例如,(
1
x ) (x 2 )
1
x
1 2
2
1 2x
1 x
(x1)
x11
1 x2
(
1
3
) (x 4 )
3
x
7 4
xx
4
机动 目录 上页 下页 返回 结束
例3. 求函数
的导数.
解:

lim f (x h) f (x) lim sin(x h) sin x
第二章
导数思想最早由法国
导数与微分 数学家 Ferma 在研究 极值问题中提出.
微积分学的创始人: 英国数学家 Newton 德国数学家 Leibniz
导数 微分学 微分
描述函数变化快慢 描述函数变化程度
都是描述物质运动的工具 (从微观上研究函数)
第一节
第二章
导数的概念
一、引例 二、导数的定义 三、导数的几何意义 四、函数的可导性与连续性的关系 五、单侧导数
曲线 C : y f (x) 在 M 点处的切线斜率
y y f (x) N
f (x0 )
CM
T

说明: 在经济学中, 边际成本率, o x0 x x
边际劳动生产率和边际税率等从数学角度看就是导数.
机动 目录 上页 下页 返回 结束
y f (x) f (x0) x x x0
若上述极限不存在 , 就说函数 在点 x0不可导.
若 lim y , 也称 x0 x
在 的导数为无穷大 .
若函数在开区间 I 内每点都可导, 就称函数在 I 内可导.

2014年9月份考试高等数学(II-1)第二次作业

2014年9月份考试高等数学(II-1)第二次作业
解题方案: 无直接的大小关系

20. 设,则与相同.
(本题分数:2 分,本题得分:0 分。)
A、正确 B、错误
题目信息
难度: 2
正确答案: B
解题方案: 定义域不同

难度: 4
正确答案: B
解题方案: 分别求一阶导数和二阶导数,然后根据这些信息解题
选B
13. 函数在[-2,2]上的最大值为( )
(本题分数:3 分,本题得分:0 分。)
A、 0
B、 1
C、 2
D、 -2
题目信息
难度: 4
正确答案: C
解题方案: 先求极值,再求端点的函数值,将极值和端点的函数值进行比较,大的为最大值,小的为最小值
选C
14. 满足的x的取值范围是( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
题目信息
难度: 4
正确答案: D
解题方案: 利用反三角函数定义解题
B、
C、
D、
题目信息
难度: 4
正确答案: C
解题方案: 无穷大的倒数是无穷小
选 C
12. 曲线( )
(本题分数:3 分,本题得分:0 分。)
A、有四个极值
B、有两个极值
C、有三个拐点
D、对称原点
题目信息
难度: 5
正确答案: D
解题方案:
19. 函数的反函数是( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 极限
定义 设函数
f (x)在点 x0 的右(左)侧某个区间内有定义. 如果存在常数A
,当 x 从 x0 的右(左)边趋近于 x0 时,即
x x0 ( x x0 )时,函数 f (x) 的值无限接近于一个确定的常数 A
,则称常数
A 为函数 f (x) 当 x x0 时的右(左)极限,记作
lim tan x x
2
lim arc cot x
x
lim ln x
x0
lim arc cot x
x
2.1 极限
1. 数列极限的概念 如果当项数 n 时,数列 an 的通项 an 无限接近于一个确定的常数 A
,则称常数 A 为数列 an 的极限,也称数列 an 收敛于 A
,否则,称数列an 发散。 记作
lim
n
an

A
an A(n )

2.1 极限
2. 函数极限 自变量 x 趋于无穷大时函数的极限
2.1 极限
自变量 x 趋于确定值 x0 时函数的极限
定义
设函数 f (x) 在点 x0 附近( x0 点可除外)有定义,当x x0 时,函数 f (x) 的值无限接近于一个确定的常数A ,则称常数 A 为函数 f (x)

x x0 时的极限,记作
lim f (x) A
xx0
或 f (x) A (x x0 )
定理
lim f (x) A
x x0
.
lim f (x) A
xx0
的充要条件是
lim f (x) lim f (x) A
x x0
x x0
2.1 极限
作业 判断下列函数极限是否存在,若极限存在,则求Hale Waihona Puke 其极限.lim (x2 1)
x
lim tan x
x 4
定义 设函数 f (x) 定义在 [a, ) 上,当 x 时,函数 f (x)
的值无限地接近于一个确定的常数 A ,则称常数
为A函数 f (x) 当 x 时的极限,记作
lim f (x) A 或
x
f (x) A (x )
类似的可以给出自变量 x 和 x 时函数极限的定义:
相关文档
最新文档