高中数学第三章圆锥曲线与方程3.4曲线与方程3.4.1曲线与方程课件北师大版选修2-1

合集下载

2019-2020版数学新学案北师大版选修2-1___第三章 圆锥曲线与方程3.4.2-3.4.3

2019-2020版数学新学案北师大版选修2-1___第三章 圆锥曲线与方程3.4.2-3.4.3
3.直线与抛物线只有一个交点是直线与抛物线相切的必要不充 分条件.
一 二 思考辨析
首页
X D 新知导学 INZHIDAOXUE
答疑解惑
AYIJIEHUO
D当堂检测 ANGTANGJIANCE
判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打
“×”.
(1)椭圆������������22
+
名师点拨两条曲线有交点的充要条件是由这两条曲线的方程所 组成的方程组有实数解.方程组有几个解,则两条曲线就有几个交 点.
一 二 思考辨析
首页
X D 新知导学 INZHIDAOXUE
答疑解惑
AYIJIEHUO
D当堂检测 ANGTANGJIANCE
【做一做2】 求曲线2y2+3x+3=0与曲线x2+y2-4x-5=0的公共点.

������ = ������������ + 1, ������2 = 2������,
消去y,整理,得k2x2+2(k-1)x+1=0.
∴当k=0时,y=1;
当k≠0时,Δ=0⇒k=
1 2
.
∴直线方程为x-2y+2=0.
∴直线方程有三条,分别为x=0,y=1,x-2y+2=0.
探究一
探究二
首页
则||������������������������||=e=12,∴|MN|=2|MF|,
即|AM|+2|MF|=|AM|+|MN|,
当A,M,N同时在垂直于右准线的一条直线上时,|AM|+2|MF|取得
最小值, 此时 yM=yA=√3,代入1������62 + 1������22=1,

高中数学 3.1第1课时椭圆及其标准方程课件 北师大版选修2-1

高中数学 3.1第1课时椭圆及其标准方程课件 北师大版选修2-1

① 解得①②得-3<a<-1 或 a>1.
当 a>1 时,③不成立.当-3<a<-1 时,得 a<-2. 综上可得:a 的取值范围是-3<a<-2.
最值问题
F1 是x92+y52=1 的左焦点,P 是椭圆上的动点,A(1,1) 为定点,则|PA|+|PF1|的最小值为________________.
[解析] (1)∵椭圆的焦点在 x 轴上,所以设它的标准方程为ax22 +by22=1(a>b>0).
∵2a= 5+32+0+ 5-32+0=10,2c=6. ∴a=5,c=3, ∴b2=a2-c2=52-32=16. ∴所求椭圆的方程为:2x52 +1y62 =1.
(2)∵椭圆的焦点在 y 轴上,所以设它的标准方程为:ay22+bx22= 1(a>b>0).
3.已知△ABC 的顶点 B、C 在椭圆x32+y2=1 上,顶点 A 是
椭圆的一个焦点,且椭圆的另外一个焦点在 BC 边上,则△ABC
的周长是( )
A.2 3
B.6
C.4 3
D.12
[答案] C
[解析] 设椭圆的另一个焦点为 F(如图),
则 △ ABC 的 周 长 为 (|AB| + |BF|) + (|CA| + |CF|) = 2a + 2a =
∴-2c≤|PF1|-|PF2|≤2c, ∴2a-2c≤2|PF1|≤2a+2c,即 a-c≤|PF1|≤a+c
∴|PF1|的最大值为 a+c,最小值为 a-C.
[总结反思] 椭圆上到某一焦点的最远点与最近点分别是长 轴的两个端点,应掌握这一性质.
[总结反思] 椭圆的焦点在哪个坐标轴上主要看标准方程 中x2和y2项分母的大小,如果x2项的分母大于y2项的分母,则椭 圆的焦点在x轴上;反之,焦点在y轴上.由于本题中x2和y2项 分母的大小不确定,因此需要进行分类讨论.

湘教版高中同步学案数学选择性必修第一册精品课件 第3章 圆锥曲线与方程 3.4 曲线与方程

湘教版高中同步学案数学选择性必修第一册精品课件 第3章 圆锥曲线与方程 3.4 曲线与方程
∵=2 ,∴(x0-x,y0-y)=2(2-x0,-y0),
4+
0 =
,
0 - = 4-20 ,
3



0 - = -20 ,
0 = 3 .
又点 Q 在双曲线上,∴02 − 02 =2,
4+ 2 2
∴( 3 ) -(3 ) =2,整理得点
P 的轨迹方程为(x+4)2-y2=18.
去掉三点共线的条件;涉及斜率时,分母不能为0等).
变式训练2 已知平面上两定点M(0,-2),N(0,2),P为一动点,满足
·=||·|| ,求动点P的轨迹方程.
解 设点 P 的坐标为(x,y).
由已知=(x,y+2),=(0,4),=(-x,2-y),得 ·
=4y+8,||·||=4
重难探究•能力素养全提升
探究点一 点与曲线位置关系的理解
【例 1】判断点 A(-4,3),B(-3√2,-4),C(√5,2√5)是否在方程 x2+y2=25(x≤0)所表
示的曲线上.
分析 由曲线与方程的关系知,只要点M的坐标适合曲线的方程,则点M就在
方程所表示的曲线上;而若点M为曲线上的点,则点M的坐标一定适合曲线
(不包含长轴的两个端点),焦距为4,短半轴长为2√3 ,所以点E的轨迹
2
方程为
16
+
2
12
=1(y≠0).
规律方法
定义法求轨迹方程
分析题设几何条件,根据圆锥曲线的定义或特征,判断轨迹是何种类型的曲
线(如圆、椭圆、双曲线、抛物线等),再求出该曲线的相关参量,从而得到
轨迹方程.
[提醒]求轨迹方程时不要忘记建立坐标系

圆锥曲线课件

圆锥曲线课件

标准方程:x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0)
1. 范围:双曲线在x轴上的范围是[±a, ±∞],在y轴上 的范围是[0, b]。
3. 渐近线:双曲线有两条渐近线,斜率分别为y=±b/a 。
抛物线
定义:抛物线是指由平面内 与一个固定点F和一条直线l
的距离相等的点的轨迹。
极坐标系的基本概念
01
极坐标系是平面坐标系的一种形式,由极点、极轴和极径等构
成。
圆锥曲线在极坐标系中的表示
02
将圆锥曲线置于极坐标系中,探究其在极坐标系中的形式及其
性质。
极坐标与直角坐标的转换
03
掌握极坐标与直角坐标的转换公式,能够将极坐标方程转化为
直角坐标方程。
圆锥曲线在实际问题中的优化方案
实际问题的数学建模
折射定律
折射定律也是光学原理中的重要内容之一,它描述了 光线在不同介质之间传播时的偏转规律。在一些复杂 的光学系统中,如望远镜、显微镜等,需要对多个曲 面进行精确的设计和加工,而这些曲面常常是按照圆 锥曲线的形状进行设计和加工的。通过对这些曲面的 精确设计和加工,我们可以更好地控制光线的折射方 向和强度,从而制造出更好的光学器材和设备。
计算坐标
根据圆锥曲线的方程,计算出各个点的坐标 。
确定圆锥曲线的形状和大小
根据圆锥曲线的性质和特点,确定形状和大 小,选择合适的参数。
绘制图形
使用绘图软件或手绘,根据计算出的坐标绘 制圆锥曲线。
焦点半径法
01
02
03
确定焦点
根据圆锥曲线的类型和方 程,确定焦点位置。
计算半径
根据圆锥曲线的方程和焦 点的位置,计算出曲线的 半径。

2022年秋高中数学第三章圆锥曲线的方程3.3抛物线3.3.1抛物线及其标准方程课件新人教A版选择性

2022年秋高中数学第三章圆锥曲线的方程3.3抛物线3.3.1抛物线及其标准方程课件新人教A版选择性
2
探究点三 利用抛物线的定义解决轨迹问题
【例3】 已知动点M(x,y)满足5 (-1)2 + 2=|3x-4y+2|,则动点M的轨迹是
(
)
A.椭圆 B.双曲线
C.直线 D.抛物线
答案 D
2
解析 方程 5 (-1) +
2
(-1) +
2 表示点
2 =|3x-4y+2|可化为
2
(-1) +
规律方法 定义法解决轨迹问题
根据动点坐标满足的方程判断其轨迹时,要注意结合两点间的距离公式以
及点到直线的距离公式,对所给方程进行适当变形,分析其几何意义,然后
结合有关曲线的定义作出判定.
变式训练2
一个动圆经过点A(2,0),并且和直线l:x=-2相切,则动圆圆心M的轨迹方程是
.
答案 y2=8
解析 设动圆的半径为R.因为动圆经过点A(2,0),所以|MA|=R.又因为动圆和
离之和最小,最小值为|AF|= √5 .
图①
(2)同理,|PF|与点P到准线x=-1的距离相等.
如图②所示,
过点B作BQ垂直于准线交准线于点Q,交抛物
线于点P1.
由题意知|P1Q|=|P1F|,
所以|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.
所以|PB|+|PF|的最小值为4.
图②
规律方法 求圆锥曲线上到两定点的距离之和最小的点的位置时,通常有
面宽为 2√6 米.
本节要点归纳
2
1
p=6;
若抛物线的标准方程为 x =-2py(p>0),则由(-3) =-2p×(-1),解得

数学北师大选修2-1课件:第三章 圆锥曲线与方程 习题课1

数学北师大选修2-1课件:第三章 圆锥曲线与方程 习题课1

A.1������62 + ���9���2=1 B.1������62 + ���1���22=1
C.���4���2 + ���3���2=1
D.���3���2
+
������2 4
=1
解析:因为|F1F2|是|PF1|与|PF2|的等差中项,所以
|PF1|+|PF2|=2|F1F2|=4>|F1F2|,点P的轨迹是以F1,F2为焦点的椭圆,
反思感悟解决直线与椭圆的位置关系问题,一般采用代数法,即 将直线方程与椭圆方程联立,通过判别式Δ的符号决定位置关系.同 时涉及弦长问题时,往往采用设而不求的办法,即设出弦端点的坐 标,利用一元二次方程根与系数的关系,结合弦长公式进行求解.
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
直线与椭圆的位置关系问题 【例2】 已知椭圆4x2+y2=1及直线y=x+m. (1)当直线和椭圆有公共点时,求实数m的取值范围; (2)求被椭圆截得的最长弦所在的直线方程. 思维点拨:(1)将直线方程与椭圆方程联立,根据判别式Δ的符号,建 立关于m的不等式求解;(2)利用弦长公式建立关于m的函数关系式, 通过函数的最值求得m的值,从而得到直线方程.
圆方程
������2 ������2
+
������������22=1
(a>b>0)联立,消去y(或x),得到关于x(或y)的一元二
次方程,记该方程的判别式为Δ.那么:若Δ>0,则直线与椭圆相交;若
Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.

北师大版高中数学选修2-1第三章《圆锥曲线与方程》曲线与方程

北师大版高中数学选修2-1第三章《圆锥曲线与方程》曲线与方程
6
例1 :判断下列命题是否正确 (1)过点A(3,0)且垂直于x轴的直线的方程 为︱x︱=3 (2)到x轴距离等于1的点组成的直线方程为y=1 (3)到两坐标轴的距离之积等于1的点的轨迹方 程为︱xy︱=1 (4) △ABC的顶点A(0,-3),B(1,0),C(-1,0), D为BC中点,则中线AD的方程x=0
2
思考?
坐标系中,平分第一、三象限的直线方程是x-y=0
第一、三象限角平分线
l
点的横坐标与纵坐标相等 条件
曲线
y
x=y(或x- y=0)方程

l
0
x-y=0
x
含有关系:
(1)
l 上点的坐标都是方程x-y=0的解
(2)以方程x-y=0的解为坐标的点都 在 l 上
∴说直线 l 的方程是 x y 0 ,又说方程 x y 0 的直线是 l .
北师大版高中数学选修2-1 第三章《圆锥曲线与方程》
1
Ⅰ、曲线与方程
复习回顾:
我们研究了直线和圆的方程. 1.经过点P(0,b)和斜率为k的直线l的方程为 y kx ____________ b 2.在直角坐标系中,平分第一、三象限的直线 x-y=0 方程是______________ 3.圆心为C(a,b) ,半径为r的圆C的方程为 2 2 2 _______________________. ( x a) ( y b) r
18
由上面的例子可以看出,求曲线(图形)的方 程,一般有下面几个步骤: (1)建系设点:建立适当的坐标系,用有序实数 对(x,y)表示曲线上任意一点M的坐标; (2)列式:写出适合条件p的点M集合P={M|p(M)} (3)代换:用坐标表示条件p(M),列出方程f(x,y)=0; (4)化简:化方程f(x,y)=0为最简形式; (5)审查:说明以化简后的方程的解为坐标的点 都在曲线上. 说明:一般情况下,化简前后方程的解集是相 同的,步骤(5)可以省略不写,如有特殊情况, 可适当予以说明.另外,根据情况,也可以省略 19 步骤(2),直接列出曲线方程.

新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)(2)

新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)(2)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =3.若圆锥曲线C :221x my +=的离心率为2,则m =( ) A .3B 3C .13-D .134.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,23M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .235.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( ) A .(2,)+∞B .2)C .(3,)+∞D .3)6.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .9167.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,P Q 两点,且30FP FQ +=,则(OPQ O △为坐标原点)的面积S 等于( )A 3B .23C 23D 438.设1F ,2F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120F PF ∠=︒,则点P 到x 轴的距离为( )A .2121B .22121C .42121D 219.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||3||QF PF ≥,则离心率的取值范围为( ) A .61⎛- ⎝⎦B .62]C .231⎤⎥⎝⎦D .31]10.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C .(625)π-D .54π 11.设椭圆2222:1(0)x y C a b a b+=>> 的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0,||||2||FA FB FB FA FB ⋅=≤≤,则椭圆C 的离心率的取值范围是( ) A .25[B .5[C .2[31] D .[31,1)12.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B .32C .13D .233二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.15.过椭圆2222:1x y C a b+=(0)a b >>的左焦点F 作斜率为12的直线l 与C 交于A ,B 两点,若||||OF OA =,则椭圆C 的离心率为________.16.如图,直线3y x =-与抛物线24y x =交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为________.17.已知抛物线24x y =的焦点为F ,双曲线()2222:10,0x y C a b a b-=>>的右焦点为1F ,过点F 和1F 的直线l 与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线3y x =-垂直,当3a b 取最大值时,双曲线C 的方程为________.18.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足21230MF MF MP ++=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.19.已知椭圆2222:1(0)x y C a b a b +=>>上有一点22(,)22M ,F 为右焦点,B 为上顶点,O 为坐标原点,且2BFO BFMS S∆=,则椭圆C 的离心率为________20.双曲线221916x y -=的左焦点到渐近线的距离为________.三、解答题21.已知抛物线2:2(0)C x py p =>上一点(,9)M m 到其焦点的距离为10. (Ⅰ)求抛物线C 的方程;(Ⅱ)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,①设()11,A x y ,求点P 的横坐标; ②求||||AP BQ ⋅的取值范围.22.如图,直线:l x ty n =+与抛物线2:C y x =交于A ,B 两点,且l 与圆22:1O x y +=相切于点()00,P x y .(Ⅰ)证明:00ny t +=; (Ⅱ)求||||PA PB ⋅(用n 表示)23.在直角坐标系xOy 中,已知一动圆经过点()3,0,且在y 轴上截得的弦长为6,设动圆圆心的轨迹为曲线C . (1)求曲线C 的方程;(2)过点3(,0)2作相互垂直的两条直线1l ,2l ,直线1l 与曲线C 相交于A ,B 两点,直线2l 与曲线C 相交于E ,F 两点,线段AB ,EF 的中点分别为M 、N ,求证:直线MN 恒过定点,并求出该定点的坐标.24.在平面直角坐标系中,动点M 到点(2,0)F 的距离和它到直线52x =的距离的比是常25(1)求动点M 的轨迹方程;(2)若过点F 作与坐标轴不垂直的直线l 交动点M 的轨迹于,A B 两点,设点A 关于x 轴的对称点为P ,当直线l 绕着点F 转动时,试探究:是否存在定点Q ,使得,,B P Q 三点共线?若存在,求出点Q 的坐标;若不存在,请说明理由. 25.已知双曲线C 过点(3,且渐近线方程为12y x =±,直线l 与曲线C 交于点M 、N 两点.(1)求双曲线C 的方程;(2)若直线l 过点()1,0,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.26.如图,过抛物线24y x =的焦点F 任作直线l ,与抛物线交于A ,B 两点,AB 与x 轴不垂直,且点A 位于x 轴上方.AB 的垂直平分线与x 轴交于D 点.(1)若2,AF FB =求AB 所在的直线方程; (2)求证:||||AB DF 为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由3c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯.∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.B解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.3.C解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-, 11()123m m +-=⇒=-, 故选C.4.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则334y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B.【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.5.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立0034122x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.7.D解析:D 【分析】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程整理后应用韦达定理得1212,y y y y +,由30FP FQ +=得123y y =-,从而可求得k ,12,y y ,再由面积公式1212S OF y y =-得结论. 【详解】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,将1x ky =+代入24y x =,消去x 可得2440yky --=,所以124y y k +=,124y y =-.因为3FP QF =,所以123y y =-,所以2234y y k -+=,则22y k =-,16y k =,所以264k k -⋅=-,所以3||3k =, 又||1OF =,所以OPQ △的面积S =121143||||18||223OF y y k ⋅-=⨯⨯=. 故选:D . 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是应用韦达定理.即设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程后整理,应用韦达定理得1212,y y y y +,再结合已知求出12,,y y k ,然后求出三角形面积.8.C解析:C 【分析】如图,设1=PF m ,2=PF n ,由双曲线定义知=23m n -,平方得:22212m n mn +-=,在12F PF △中利用余弦定理可得:2228m n mn ++=,即可得到163mn =,再利用等面积法即可求得PD 【详解】由题意,双曲线22134x y -=中,2223,4,7a b c === 如图,设1=PF m ,2=PF n ,由双曲线定义知=223m n a -= 两边平方得:22212m n mn +-=在12F PF △中,由余弦定理可得:2222cos120428m n mn c +-==,即2228m n mn ++=两式相减得:316mn =,即163mn = 利用等面积法可知:11sin120222mn c PD =⨯⨯,即1632732PD ⨯=⨯ 解得42121PD = 故选:C.【点睛】关键点睛:本题考查双曲线的定义及焦点三角形的几何性质,解题的关键是熟悉焦点三角形的面积公式推导,也可以直接记住结论:(1)设1F ,2F 分别为椭圆22221x y a b+=的左,右焦点,点P 为椭圆上的一点,且12F PF θ∠=,则椭圆焦点三角形面积122tan2F PF Sb θ=(2)设1F ,2F 分别为双曲线22221x y a b-=的左,右焦点,点P 为双曲线上的一点,且12F PF θ∠=,则双曲线焦点三角形面积122tan2F PF b Sθ=9.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m =+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由11QF PF ≥,可得13mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()2224232c a c <≤-,所以,()22222a c c a c -<≤-,所以,()222113e e e -<≤-,所以,2142e <≤-解得12e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为11225O l d -==,圆C 面积的最小值为245ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.A解析:A 【分析】设椭圆的左焦点'F ,由椭圆的对称性结合0FA FB ⋅=,得到四边形'AFBF 为矩形,设'AF n =,AF m =,在直角ABF 中,利用椭圆的定义和勾股定理化简得到222m n c n m b+=,再根据2FB FA FB ≤≤,得到m n 的范围,然后利用双勾函数的值域得到22b a 的范围,然后由c e a ==. 【详解】 如图所示:设椭圆的左焦点'F ,由椭圆的对称性可知,四边形'AFBF 为平行四边形, 又0FA FB ⋅=,即FA FB ⊥, 所以平行四边形'AFBF 为矩形, 所以'2AB FF c ==, 设'AF n =,AF m =,在直角ABF 中,2m n a +=,2224m n c +=,得22mn b =,所以222m n c n m b +=,令m t n =,得2212t c t b+=, 又由2FB FA FB ≤≤,得[]1,2mt n=∈, 所以221252,2c t t b ⎡⎤+=∈⎢⎥⎣⎦,所以 2251,4c b ⎡⎤∈⎢⎥⎣⎦ ,即2241,92b a ⎡⎤∈⎢⎥⎣⎦,所以2225123c b e a a ==-⎣⎦,所以离心率的取值范围是25⎣⎦, 故选:A. 【点睛】本题主要考查椭圆的定义,对称性,离心率的范围的求法以及函数值域的应用,还考查了转化求解问题的能力,属于中档题.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b --+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解.【详解】设()()1122,,,A x y B x y ,则22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b--+=, 因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以c e a ===, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB方程为3)34y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π 【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.15.【分析】作出示意图记右焦点根据长度和位置关系计算出的长度再根据的形状列出对应的等式即可求解出离心率的值【详解】如图所示的中点为右焦点为连接所以因为所以所以又因为所以且所以又因为所以所以所以故答案为:【分析】作出示意图,记右焦点2F ,根据长度和位置关系计算出2,AF AF 的长度,再根据2AFF 的形状列出对应的等式,即可求解出离心率e 的值. 【详解】如图所示,AF 的中点为M ,右焦点为2F ,连接2,MO AF ,所以2//MO AF , 因为OA OF=,所以OM AF ⊥,所以2AFAF ⊥,又因为12AF k =,所以212AF AF =且22AF AF a +=,所以242,33a aAF AF ==,又因为22222AF AF FF +=,所以222164499a a c +=,所以2259c a =,所以e =故答案为:53.【点睛】本题考查椭圆离心率的求解,难度一般.(1)涉及到利用图形求解椭圆的离心率时,注意借助几何图形的性质完成求解;(2)已知,,a b c 任意两个量之间的倍数关系即可求解出椭圆的离心率.16.【分析】设点将直线的方程与抛物线的方程联立求得点的坐标进而可得出的坐标由此可计算得出梯形的面积【详解】设点并设点在第一象限由图象可知联立消去得解得或所以点因此梯形的面积为故答案为:【点睛】本题考查抛 解析:48【分析】设点()11,A x y 、()22,B x y ,将直线AB 的方程与抛物线的方程联立,求得点A 、B 的坐标,进而可得出P 、Q 的坐标,由此可计算得出梯形APQB 的面积. 【详解】设点()11,A x y 、()22,B x y ,并设点A 在第一象限,由图象可知12x x >,联立234y x y x =-⎧⎨=⎩消去y ,得21090x x -+=,解得19x =,21x =,1196x y =⎧∴⎨=⎩或2212x y =⎧⎨=-⎩, 所以点()9,6A 、()1,2B -、()1,6P -、()1,2Q --,10AP ∴=,2BQ =,8PQ =,因此,梯形APQB 的面积为()()10284822AP BQ PQ S +⋅+⨯===.故答案为:48. 【点睛】本题考查抛物线中梯形面积的计算,解题的关键就是求出直线与抛物线的交点坐标,考查计算能力,属于中等题.17.【分析】设点的坐标为则利用导数的几何意义结合已知条件求得点的坐标可求得直线的方程并求得点的坐标可得出利用三角换元思想求得的最大值及其对应的的值由此可求得双曲线的标准方程【详解】设点的坐标为则对于二次解析:2213944x y -= 【分析】设点M 的坐标为()00,x y ,则00x >,利用导数的几何意义结合已知条件求得点M 的坐标,可求得直线l 的方程,并求得点1F 的坐标,可得出223a b +=,利用三角换元思想求得a 的最大值及其对应的a 、b 的值,由此可求得双曲线的标准方程. 【详解】设点M 的坐标为()00,x y ,则00x >,对于二次函数24x y =,求导得2x y '=,由于抛物线24x y =在点M处的切线与直线y =垂直,则(012x ⨯=-,解得0x =,则200143x y ==,所以,点M的坐标为13⎫⎪⎪⎝⎭, 抛物线24x y =的焦点为()0,1F ,直线MF的斜率为11MFk -==所以,直线l的方程为13y x =-+,该直线交x轴于点)1F ,223a b ∴+=,可设a θ=,b θ=,其中02θπ≤<,3sin 6a πθθθ⎛⎫=+=+ ⎪⎝⎭,02θπ≤<,13666πππθ∴≤+<, 当62ππθ+=时,即当3πθ=时,a取得最大值此时,32a π==,332b π==, 因此,双曲线的标准方程为2213944x y -=. 故答案为:2213944x y -=. 【点睛】本题考查双曲线方程的求解,同时也考查了利用导数求解二次函数的切线方程,以及利用三角换元思想求代数式的最值,考查计算能力,属于中等题.18.【分析】先根据题意得再根据向量关系得再算出代入化简整理得解方程即可求解【详解】由图像可知点则由则则则则由则则点由点在直线上则则由则故答案为:【点睛】本题考查双曲线的离心率的求解是中档题【分析】先根据题意得2,b P c a ⎛⎫⎪⎝⎭,再根据向量关系得1212::1:2:3MPF MPF MF F SSS=,再算出2,32c b M a ⎛⎫⎪⎝⎭,代入2y x =,化简整理得23430e e --=,解方程即可求解. 【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cS a=,由21230MF MF MP ++=, 则1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3M c x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b cb ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.【点睛】本题考查双曲线的离心率的求解,是中档题.19.【分析】由题意可得直线的方程求出到直线的距离且求出的值求出的面积及的面积再由题意可得的关系进而求出椭圆的离心率【详解】由题意可得直线的方程为:即所以到直线的距离因为所以而因为所以整理可得:整理可得解解析:22【分析】由题意可得直线BF 的方程,求出M 到直线BF 的距离,且求出|BF |的值,求出BFM 的面积及BFO 的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率. 【详解】由题意可得直线BF 的方程为:1x yc b+=,即0bx cy cb +-=, 所以M 到直线BF 的距离2222||12|(21)|222ab bc bc b a c d ab c +---==+,因为22||BF b c a =+=, 所以12||[(21)]24BFMS BF d b a c ==--, 而12BFOSbc =, 因为2BFOBFMSS=,所以122[(21)]24bc b a c =--, 整理可得:[(21)]c a c =--, 整理可得2a c =,解得22e =, 故答案为:22【点睛】本题主要考查椭圆的简单几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.20.4【分析】首先根据题中所给的双曲线方程求出其左焦点坐标和渐近线方程之后利用点到直线的距离公式求得结果【详解】根据题意双曲线的方程为其中所以所以其左焦点的坐标为渐近线方程为即则左焦点到其渐近线的距离为解析:4【分析】首先根据题中所给的双曲线方程,求出其左焦点坐标和渐近线方程,之后利用点到直线的距离公式求得结果. 【详解】根据题意,双曲线的方程为221916x y -=,其中3,4a b ==,所以5c =,所以其左焦点的坐标为(5,0)-,渐近线方程为43y x =±,即430x y ±=,则左焦点到其渐近线的距离为2045d ===, 故答案为:4. 【点睛】该题考查的是有关双曲线的问题,涉及到的知识点有根据双曲线的方程求其焦点坐标以及渐近线方程,点到直线的距离公式,属于简单题目.三、解答题21.(1)24x y =;(2)①112x ;②[2,)+∞. 【分析】(1)可得抛物线的准线为2py =-,∴9102p +=,解得2p =,即可得抛物线的方程; (2)①设:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,可得21111:()42x PA y x x x -=-,令0y =即得解;②||AP =||BQ =||||AP BQ ⋅的取值范围.【详解】(1)已知(9,)M m 到焦点F 的距离为10,则点M 到其准线的距离为10. 抛物线的准线为2py =-,∴9102p +=, 解得2p =,∴抛物线的方程为24x y =.(2)①由已知可判断直线l 的斜率存在,设斜率为k ,因为(0,1)F ,则:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,由214y kx x y =+⎧⎨=⎩消去y 得,2440x kx --=, 124x x k ∴+=,124x x =-.由于抛物线C 也是函数214y x =的图象,且12y x '=,则21111:()42x PA y x x x -=-.令0y =,解得112x x =,11(,0)2P x ∴,②||AP.同理可得,||BQ∴||||AP BQ ⋅=20k ,||||AP BQ ∴⋅的取值范围为[2,)+∞.【点睛】方法点睛:解析几何里的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.22.(Ⅰ)证明见解析;(Ⅱ)||||PA PB ⋅21n n =--,1n ≤-或1n ≥.【分析】(Ⅰ)利用圆心到直线的距离为半径可得221n t =+,结合00x ty n =+以及点P 在圆上可得01nx =,在00x nt y -=消去n 后可得所求证的关系式. (Ⅱ)设()11,A x y ,()22,B x y ,则||||PA PB ⋅可用前者的纵坐标表示,联立直线方程和抛物线方程,消去x 后利用韦达定理化简||||PA PB ⋅,则可得其表达式. 【详解】解:(Ⅰ)若00y =,则直线l 垂直于x 轴,此时0t =,故00ny t +=成立, 若00y ≠,因为直线:l x ty n =+1=,整理得到:221n t =+,又00x ty n =+,故()222022121x n nx n n y y --+=+=, 整理得到2200120nx n x -+=即01nx =,而2000000000011x x x n x x y t ny y y y x ---====-=-即00ny t +=. (Ⅱ)设()11,A x y ,()22,B x y .联立2x ty ny x=+⎧⎨=⎩,得20y ty n --=,∴12y y t +=,12y y n =-.由(Ⅰ)可得221n t =+,故1n ≤-或1n ≥,而240t n ∆=+>,故2410n n +->即2n <-2n >- 故1n ≤-或1n ≥.而1020||||PA PB y y ⋅=--()()221201201t y y y y y y =+-++()22222220021t t t t t n ty y n n t n n n n n n--⎛⎫=+--+=--⨯+=-++ ⎪⎝⎭222211n n n n n n--=-++21n n =--,其中1n ≤-或1n ≥. 【点睛】思路点睛:对于直线与抛物线、圆的位置关系的问题,前者可设而不求(即韦达定理)来处理,后者利用几何方法来处理,计算过程中注意判别式的隐含要求以及代数式非负对应范围的影响.23.(1)26y x =;(2)证明见解析,9(,0)2. 【分析】(1)设圆心(),C x y ,然后根据条件建立方程求解即可;(2)设直线1l 的方程为3()2y k x =-,然后算出22363(,)2k M k k +,236(,3)2k N k +-,然后表示出直线MN 的方程即可. 【详解】(1)设圆心(),C x y ,由题意得2229(3)x x y =-++,即26y x = 所以曲线C 的方程为26y x =(2)由题意可知,直线12,l l 的斜率均存在,设直线1l 的方程为3()2y k x =-,()11,A x y ,()22,B x y联立方程组2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得22224(1224)90k x k x k -++=, 所以212236k x x k ++=,12126(3)y y k x x k +=+-= 因为点M 是线段AB 的中点,所以22363(,)2k M k k +同理,将k 换成1k -得236(,3)2k N k +-,当222363622k k k ++≠,即1k ≠±时2222333636122MNkk k k k k k k +-==++--所以直线MN 的方程为22363()12k k y k x k -++=--即29()12k y x k -=--, 所以直线MN 恒过定点9(,0)2当1k =±时,直线MN 的方程为92x =,也过点9(,0)2所以直线MN 恒过定点9(,0)2【点睛】方法点睛:定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.24.(1)2215x y +=;(2)存在定点5,02Q ⎛⎫ ⎪⎝⎭,使得,,P B Q 三点共线.【分析】(1)设(,)M x y=化简可得结果;(2)联立直线l 与椭圆方程,根据韦达定理得1212,x x x x +,椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上,设(,0)Q t ,根据//PB PQ 列式,结合1212,x x x x +可求出52t =. 【详解】(1)设(,)M x y=,化简得2215x y +=故动点M 的轨迹方程为2215x y +=.(2)由题知(2,0)F 且直线l 斜率存在,设为k ,则直线l 方程为(2)y k x =- 由22(2)15y k x x y =-⎧⎪⎨+=⎪⎩得2222(51)202050k x k x k +-+-=设1122(,),(,)A x y B x y ,则2212122220205,5151k k x x x x k k -+==++, 由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上故假设存在定点(,0)Q t ,使得,,P B Q 三点共线,则//PB PQ 且11(,)P x y - 又212111(,),(,).PB x x y y PQ t x y =-+=-211211()()()x x y y y t x ∴-=+-,即211121()(2)(4)()x x k x k x x t x --=+-- 化简得12122(2)()40x x t x x t -+++=将2212122220205,5151k k x x x x k k -+==++式代入上式得2222205202(2)405151k k t t k k -⨯-+⨯+=++ 化简得52t =故存在定点5(,0)2Q ,使得,,P B Q 三点共线. 【点睛】关键点点睛:由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上是解题关键.25.(1)2214x y -=;(2)存在;23(,0)8Q ;27364QM QN ⋅=. 【分析】(1)由渐近线方程和点的坐标列出关于,a b 的方程组,解之可得;(2)设直线l 的方程为1x my =+,设定点(,0)Q t ,设()11,M x y ,()22,N x y ,直线方程代入双曲线方程得应用韦达定理得12y y +,12y y ,计算QM QN ⋅,并代入12y y +,12y y ,利用此式与m 无关可得t (如果得不出t 值,说明不存在).【详解】(1)∵双曲线C过点,且渐近线方程为12y x =±, ∴22163112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得221,4b a ==, ∴双曲线的方程为2214x y -=;(2)设直线l 的方程为1x my =+,设定点(,0)Q t联立方程组22141x y x my ⎧-=⎪⎨⎪=+⎩,消x 可得()224230m y my -+-=,∴240m -≠,且()2241240m m ∆=+->,解得23m >且24m ≠, 设()11,M x y ,()22,N x y , ∴12122223,44m y y y y m m +=-=---, ∴()2121222282244m x x m y y m m -+=++=-+=--, ()()()22221212121222232441111444m m m x x my my m y y m y y m m m +=++=+++=--+=---- 22044m =--- ∴()()()()11221212,,QM QN x t y x t y x t x t y y ⋅=--=--+()22212121222222083823444444t x x t x x t y y t t t m m m m -=-+++=--+⋅-+=-++----为常数,与m 无关. ∴8230t -=, 解得238t =.即23(,0)8Q ,此时27364QM QN ⋅=.【点睛】方法点睛:本题考查求双曲线的标准方程,考查直线民双曲线相交中定点问题.解题方法是设而不求的思想方法:即设直线方程,设交点坐标,直线方程与双曲线方程联立消元后应用韦达定理,然后计算QM QN ⋅(要求定值的量),利用它是关于参数m 的恒等式,求出定点坐标.26.(1)0y --=;(2)证明见解析. 【分析】(1)由于直线l 斜率不为0,(1,0)F ,所以设直线:1l x ty =+,设()()1122,,,A x y B x y ,由题意可得120,0y y ><,然后直线方程和抛物线方程联立,消去x ,再利用韦达定理结合2,AF FB =可求出t 的值,从而可得AB 所在的直线方程;(2)设AB 中点为(),N N N x y ,则由(1)可得2122,212N N y y y t x t +===+,从而可得AB 中垂线()2:221l y t t x t -=---',求出点()223,0D t +,进而可求出DF 的长,再利用两点间的距离公式可求出AB 的长,从而可求得||||AB DF 的值【详解】解:(1)直线l 斜率不为0,(1,0)F ,设直线:1l x ty =+, 设()()1122,,,A x y B x y ,因为A 点在x 轴上方,所以120,0y y ><由214x ty y x =+⎧⎨=⎩,得2440y ty --= 12124,4y y t y y ∴+==-()()11221221,21,2AF FB x y x y y y =⇒-=-∴-=由1211224824y y t y ty y y t ⎧+==⎧⎪⇒⎨⎨-==-⎪⎩⎩代入124y y =-因10y >,所以0t >,解得t =所以AB所在直线方程为0y --= (2)设AB 中点为(),N N N x y()22122,2121,22N N y y y t x t N t t +∴===+∴+ 所以AB 中垂线()()22:22123,0l y t t x t D t -=---+'∴22||23122DF t t ∴=+-=+(||AB ====244t =+22||442||22AB t DF t +∴==+(定值) 【点睛】关键点点睛:此题考查直线与抛物线的位置关系,考查韦达定理的应用,解题的关键是利用设而不求的方法,设出直线方程和交点坐标,然后将直线方程和抛物线的方程联立,消元,再利用韦达定理,然后结已知条件求解即可,考查计算能力,属于中档题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档