2021中考数学三角形点 、线 、角

合集下载

2021中考数学专题复习 解直角三角形2

2021中考数学专题复习 解直角三角形2

αCBA2021中考数学专题复习:锐角三角函数一、知识网络⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=+⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧==+⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫∠∠=∠∠=∠∠=∠⇒测量应用定义)边角关系:(三角函数边边关系:角角关系:依据的过程。

已知元素求出未知元素定义:由直角三角形的解直角三角形系互余两锐角三角函数关同角三角函数关系的三角函数值、、的邻边的对边正切:斜边的邻边余弦:斜边的对边正弦:定义22202200090tan 1604530tan c b a B A Con Sin Con Sin A A A A A Cos A A Sin ααααα 二、根本知识点与典型题型 知识点1:锐角三角函数定义Rt △ABC 中,∠C=900,锐角A 的对边与斜边的比值叫∠A 的正弦,记作SinA=ca;锐角A 的邻边与斜边的比值叫∠A 的余弦,记作CosA=c b ; 锐角A 的对边与邻边的比值叫∠A 的正切,记作tanA=ba . 例1:〔1〕〔2021年贵州毕节〕在正方形网格中,ABC △的位置如下图,那么cos B ∠的值为〔 〕A .12B .22C .32D .33〔2〕〔2021 湖北孝感〕如图,△ABC 的三个顶点分别在正方形网格的格点上,那么A ∠tan 的值是 〔 〕A .56 B .65C .3102D .10103 〔3〕〔2021湖南常德〕在Rt△ABC 中,∠C=90°,假设AC=2BC,那么sin A 的值是( )A .12B .2C .55D .52〔4〕〔2021浙江金华〕“赵爽弦图〞是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,那么tan α的值等于 ▲ .〔5〕如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,那么以下结论正确的选项是〔 〕 A .3sin 2A =B .1tan 2A = C .3cos 2B = D .tan 3B =(6)在Rt △ABC 中,∠C=90°,a = 1 , c = 4 , 那么sinA 的值是 ( )锐角三角三角函数αA 、1515 B 、41 C 、31D 、415 知识点2:同角三角函数关系:〔1〕122=+ααCon Sin;〔2〕αααtan =Con Sin例2.〔1〕在A ABC 中,∠C=90°,sinB=53,那么cosA 的值是 ( ) A .43 B .34 C .53 D .54 〔2〕〔2021 黄冈〕在△ABC 中,∠C =90°,sinA =45,那么tanB = 〔 〕 A .43 B .34 C .35 D .45〔3〕〔2021湖南怀化〕在Rt△ABC 中,∠C=90°,sinA=54,那么cosB 的值等于〔 〕 A .53 B. 54 C. 43D. 55〔4〕〔2021黔东南州〕x 为锐角,且31cos =α,求αααsin 1cos tan ++的值。

【2021浙江中考数学】 全等三角形的常见模型含答案

【2021浙江中考数学】 全等三角形的常见模型含答案

全等三角形的常见模型利用“K型图”(也叫“一线三等角”模型)证明全等三角形.例1如图S8-1,等腰直角三角形ABC的直角顶点C在直线MN上,分别过点A,B 作MN的垂线,垂足分别为D,E.求证:△ACD≌△CBE.(图S8-1)解:证明∠CAD=∠BCE即可.(可将条件转化为∠ADC=∠ACB=∠BEC,结论仍成立)(1)等腰三角形的顶角顶点在直线上,向两腰外侧作两个三角形,如果这条直线上有三个相等的角,那么所作的两个三角形__全等__.1.如图S8-2,BD是正方形ABCD的对角线,E是边BC上一点,连结AE交BD于点P,过点P作PF⊥AE,交CB延长线于点F.求证:AP=FP.(图S8-2) (图DS8-1)解:如图DS8-1,过点P作MN⊥AD,交AD,BC于点M,N.利用正方形的性质证明AM=BN=NP,∠AMN=∠APF=∠FNP,∠P AM=∠FPN,∴△APM≌△PFN(ASA),∴AP=FP.2.如图S8-3,在正方形ABCD中,E,F分别是边BC,CD上两点,∠EAF=45°,FG⊥AE于点G,连结BG.求证:CF=2BG.(图S8-3)(图DS8-2)解:如图DS8-2,过点G 作MN ⊥AB ,交AB ,CD 于点M ,N . 证明△AGM ≌△GFN 可得MG =FN , 从而证明MB =12FC , ∴CF =2BG .利用“手拉手”模型证明全等三角形.例2 如图S8-4(1),在△ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,且AD =AE ,连结DE .现将△ADE 绕点A 按顺时针方向旋转,旋转角为α(0°<α<360°),如图S8-4(2),连结CE ,BD .当 0°<α<180°时,求证:CE =BD ,CE ⊥BD .(1)(2)(图S8-4)解:证明∠CAE =∠BAD 即可证△ACE ≌△ABD ,得CE =BD .延长CE ,利用三角形的内角和与对顶角可证垂直.(2)两个有公共顶角顶点的等腰三角形,将其中一个绕着公共顶点旋转,会产生一对__全等三角形__,并且还能由等腰三角形顶角的度数推得对应边夹角的度数.3.如图S8-5,△ABC ,△ADE 均为等腰三角形,∠BAC =∠DAE =90°.若点G 是CE 的中点,连结GB 并延长至点F ,使CF =CD .求证:∠EBG =∠F .(图S8-5)(图DS8-3)解:如图DS8-3,延长BG 至点M ,使MG =FG . 由基本图形可证BE =CD =CF , 由倍长中线可证△EGM ≌△CGF , ∴∠M =∠F ,EM =CF ,∴BE =ME ,∴∠EBG =∠M ,∴∠EBG =∠F .4.如图S8-6,在△ABC 中,∠ABC =90°,AB =BC ,点P 是三角形内一点,到点A ,B ,C 的距离分别为23,2,4.求△ABC 的面积.(图S8-6)(图DS8-4)解:如图DS8-4,作BM ⊥PB ,使BM =BP =2,连结CM . 由基本图形可证△ABP ≌△CBM (SAS), ∴PM =2,CM =23,∴△CPM 是直角三角形,∠CMP =90°, ∴∠APB =∠CMB =135°,A ,P ,M 三点共线, ∴△ABC 的面积为14AC 2=14(AM 2+CM 2)=7+2 3.发现隐藏在等边三角形中的全等三角形.例3如图S8-7,△ABD,△BCE均是等边三角形,点A,B,C在同一直线上,AE 与BD交于点M,C与BE交于点N,连结MN.求证:(图S8-7)(1)AE=CD;(2)△BMN是等边三角形.解:由例2模型可证△ABE≌△DBC,∴AE=CD,进一步证明△ABM≌△DBN,及∠MBN =60°,即证△BMN是等边三角形.(3)等边三角形的性质有很多,从边来看,__三条边相等__,从角来看,__三个角都等于60°__,牢记活用,全等三角形就隐藏在它们之间.5.如图S8-8,D是等边三角形ABC内一点,DA=DB,P,C两点在直线BD两侧,BP=AB,∠BPD=30°.求证:BD平分∠PBC.(图S8-8) (图DS8-5)解:如图DS8-5,连结CD.由BD=AD,AC=BC,易证CD平分∠BCA,结合BP=BC,BD公共边可证△BDP≌△BDC,∴BD平分∠PBC.6.如图S8-9,以△ABC的边AB,AC为边向外作等边三角形ABD,等边三角形ACE,连结BE,CD交于点P,连结AP.求证:∠APD=∠APE.(图S8-9)解:由基本图形可证△ACD≌△AEB,得CD=BE,故点A到CD,BE的距离相等,即点A到∠DPE两边的距离相等,∴P A是∠DPE的平分线,即∠DP A=∠EP A.将角平分线与垂直联系在一起,会产生全等三角形.例4如图S8-10,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C =50°.求∠CDE的度数.(图S8-10)解:易证△ABF≌△EBF,∴BD是AE的中垂线,∴∠BEA=72.5°,∠EAC=22.5°.∴∠CDE=2∠EAC=45°.(4)过角平分线上的点向角两边作垂线段,会产生一对全等三角形;过角平分线上的点作与角平分线垂直的直线,也会产生一对全等三角形.7.如图S8-12,在△ABC中,AC=BC,∠C=90°,∠CAB的平分线AD交BC于点E,BD⊥AD.求证:AE=2BD.(图S8-12) (图DS8-6)解:如图DS8-6,延长AC,BD交于点M,可证△ACE≌△BCM,∴AE=BM.∵BM=2BD,∴AE=2BD.8.如图S8-13,在△ABC中,DE是边BC的中垂线,AD平分∠BAC,DM⊥AB于点M,DN⊥AC于点N.求证:BM=CN.(图S8-13) (图DS8-7)解:如图DS8-7,连结BD,CD.由中垂线知BD=CD,由角平分线知DM=DN,∴△BDM≌△CDN(HL),∴BM=CN.满足“SSA”的一对三角形可能全等.例5如图S8-14,在四边形ABCD中,AB=AD,∠B=∠D.问:△ABC与△ADC是否全等?(图S8-14) (图DS8-8)解:如图DS8-8,连结BD.由AD=AB知∠ABD=∠ADB,∴∠CBD=∠CDB,∴CB=CD,∴△ACD≌△ACB.(5)满足“SSA”的两个三角形可能全等,也可能不全等.若这两个三角形不全等,则它们一定相差一个__等腰__三角形,也可拼成一个__等腰__三角形.9.已知在△ABC与△A′B′C′中,AB=A′B′=8,BC=B′C′=5,∠A=∠A′=30°.若△ABC 与△A′B′C′不全等,求它们的面积之差、面积之和.解:如图DS8-9,将△ABC与△A′B′C′的∠A,∠A′重合,AB,A′B′重合,过点B作BD⊥AC,(图DS8-9)则两个三角形面积之差即为△BCC′的面积,S△BCC′=12BD·CC′=12,面积之和为△ABD面积的两倍,即为AD·BD=16 3.10.如图S8-15,E是线段CD的中点,点B在边AE上,AD=BC.求证:∠CBE=∠A.(图S8-15) (图DS8-10)解:如图DS8-10,延长BE至点F,使EF=BE,则△BCE≌△FDE,∴∠CBE=∠F,BC=DF,由AD=BC=DF得∠A=∠F,∴∠CBE=∠A.1.如图ZS8-1,将一个等腰直角三角形放置在距离是1的横格纸上,三个顶点都在横线上,则此三角形的斜边长为__10__.(图ZS8-1)2.如图ZS8-2,BD平分∠ABC,且∠ABC与∠ADC互补.若AD=3,AB=4,BC=5,则CD=__3__.(图ZS8-2)3.如图ZS8-3,已知在△ABC中,∠A=90°,AB=AC,D是BC的中点,点E,F在边AB,AC上,DE⊥DF.(1)求证:△DEF是等腰直角三角形.(2)若AB=4,求△DEF面积的最小值.(图ZS8-3) (图DT8-1)(1)证明:如图DT8-1,连结AD.由等腰直角三角形的性质可证△CDF≌△ADE,∴DF=DE.又∵∠EDF=90°,∴△DEF是等腰直角三角形.(2)解:由(1)知,S△DEF=12DE2,当DE=2时,S△DEF有最小值,最小值为2.4.如图ZS8-4,在△ABC中,∠ACB=45°,AD是△ABC的高,在AD上取点E,使得DE=DB,连结CE并延长,交边AB于点F,连结DF.(图Z S8-4)求证:(1)AB=CE;(2)BF+EF=2FD.证明:(1)由∠ACB=45°,AD⊥BC,得CD=AD.又∵DE=DB,∴△CDE≌△ADB(SAS),∴AB=CE.(2)如图DT8-2,在CE上取点M,使ME=BF,(图DT8-2)结合CE=AB,得CM=AF.由(1)知∠DCM=∠DAF,∴△CDM≌△ADF(SAS),∴DM=DF,∠CDM=∠ADF,∴∠MDF=90°,∴△MDF是等腰直角三角形,∴ME+EF=2FD,即BF+EF=2FD.5.如图ZS8-5,△ABD,△BCE是等边三角形,点A,B,C在同一直线上,连结CD,AE,点M,N在CD,AE上,且CM=EN.求证:△BMN是等边三角形.(图ZS8-5)证明:由基本图形可证△ABE≌△DBC,于是可得BM=BN,∠NBM=60°,∴△BMN是等边三角形.若设AE,CD交于点P,还可利用M,N,B,P四点共圆来证.6.如图ZS8-6,四边形ABCD内接于⊙O,连结AC,BD,若∠ABD=60°,AB=AC.求证:AB=BD+CD.(图ZS8-6) (图DT8-3)证明:如图DT8-3,过点A分别作CD,BD的垂线,垂足分别为F,E,∵∠ABD=60°,∴AB=2BE,∠ACD=60°,又∵AB=AC,∴△ABE≌△ACF,∴AE=AF,BE=CF,∴△ADE≌△ADF(HL),∴DE=DF,∴BE=CF=CD+DE(折弦定理),∴AB=2BE=BE+DE+CD=BD+CD.7.如图ZS8-7,在△ABC中,∠BAC=90°,BD是角平分线,AE⊥BC于点E,交BD 于点G,DF⊥BC于点F,连结FG.求证:四边形ADFG是菱形.(图ZS8-7)证明:由BD平分∠ABC,DA⊥AB,DF⊥BC,可证△ABD≌△FBD,∴AB=BF,∴△ABG≌△FBG,∴∠BFG=∠BAG,又∵∠C=∠BAG,∴∠C =∠BFG ,∴AC ∥FG ,∵AG ∥DF ,AD =DF ,∴四边形ADFG 是菱形.8.如图ZS8-8,在△ABC 中,P 是边BC 中垂线上的一点,∠PBC =12∠A ,连结BP ,CP 并延长,交AC ,AB 于点E ,D .求证:BD =CE .(图ZS8-8) (图DT8-4) 证明:如图DT8-4,过点B 作BM ⊥CD 于点M ,过点C 作CN ⊥BE 于点N . ∵点P 在BC 的中垂线上,∴BP =CP ,∴△BPM ≌△CPN ,∴BM =CN .∵∠BPD =2∠PBC =∠A ,∠BDM =∠ABE +∠BPD ,∠CEN =∠ABE +∠A ,∴∠BDM =∠CEN ,∴△BDM ≌△CEN (AAS),∴BD =CE .9.如图ZS8-9,P 是△ABC 外一点,AP 平分∠BAC ,PE 垂直平分BC ,作PD ⊥AB 于点D .求证:AC -AD =BD .(图ZS8-9) (图DT8-5) 证明:如图DT8-5,过点P 作PM ⊥AC 于点M ,连结BP ,CP .∵EP 垂直平分BC ,∴BP =CP .∵AP平分∠CAD,PM⊥AC,PD⊥AB,∴PM=PD,∴△APD≌△APM,△CMP≌△BDP,∴AM=AD,CM=BD,∴AC-AD=BD.10.用直尺和圆规作△ABC,使∠A=45°,AB=a,BC=b.若这样的三角形只能作一个,求a,b应满足的条件.解:由题意知,以B为圆心,BC为半径的弧与射线AC(不包括顶点)只有一个交点.如图DT8-6-1,AC=BC,则b=2 2a.(图DT8-6-1) (图DT8-6-2) 如图DT8-6-2,BC≥AB,则b≥a.综上所述,b=22a或b≥a.。

2021年中考数学第三轮:三角形的综合 解答题专题复习(含答案)

2021年中考数学第三轮:三角形的综合 解答题专题复习(含答案)

2021年中考数学第三轮:三角形的综合解答题专题复习1、已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.2、如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.3、如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.4、在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.5、如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.6、在△ABC中,P为边AB上一点.(1) 如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2) 若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.7、小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一段P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图①,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P',易知点P'与三个顶点连线的夹角不相等,可证明B、P'、D'、E'四点不共线,所以P'A+P'B+P'C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图②,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC的值最小;【拓展】(2)如图③,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P 到三个顶点的距离之和的最小值.8、如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;α,得到图②,AE与MP、BD分别(2)现将图①中的△CDE绕着点C顺时针旋转)︒α<90<0(︒交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=k AC,CD=k CE,如图③,写出PM与PN的数量关系,并加以证明.9、如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.10、(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“∠A=90°”,其它条件不变,则EBAD的值是多少?(直接写出结论,不要求写解答过程)11、问题引入:(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=____________(用α表示);如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=____________(用α表示). 拓展研究:(2)如图③,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,猜想∠BOC=____________(用α表示),并说明理由.(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,请猜想∠BOC=____________ .12、已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.13、在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.14、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).15、如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.16、尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO 的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.17、如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连接BD.⑴求证:BD=AC;⑵将△BHD绕点H旋转,得到△EHF(点B、D分别与点E、F对应),连接AE.i) 如图②,当点F落在AC上时(F不与C重合),若BC=4,tan C=3,求AE的长;ii)如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH.试探究线段GH与EF之间满足的等量关系,并说明理由.参考答案2021年中考数学第三轮:三角形的综合解答题专题复习1、已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.【解答】证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.2、如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠FAC=90°+∠B,∠CED=90°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△AFC≌△EDC,∴FA=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜边FD的中线,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;(2)AD+DE=2CH,理由是:如图b,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠FAC=120°+∠B,∠CED=120°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△FAC≌△DEC,∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,即:AD+DE=2CH.3、如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS),∴AD=AF;(2)证明:由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∵∠BAC=90°,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,,∴△AEF≌△ABD(SAS),∴BD=EF;(3)解:四边形ABNE是正方形;理由如下:∵CD=CB,∠BCD=90°,∴∠CBD=45°,由(2)知,∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.4、在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∴,∴,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.5、如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.6、在△ABC中,P为边AB上一点.(1) 如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2) 若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.【解析】(1)证明:∵∠ACP=∠B,∠BAC=∠CAP,∴△ACP∽△ABC,∴AC:AB=AP:AC,∴AC2=AP·AB;(2)①如图,作CQ∥BM交AB延长线于Q,设BP=x,则PQ=2x∵∠PBM=∠ACP,∠PAC=∠CAQ,∴△APC∽△ACQ,由AC2=AP·AQ得:22=(3-x)(3+x),∴x即BP②如图:作CQ ⊥AB 于点Q ,作CP 0=CP 交AB 于点P 0,∵AC =2,∴AQ =1,CQ =BQ ,设P 0Q =PQ =1-x ,BP -1+x ,∵∠BPM =∠CP 0A ,∠BMP =∠CAP 0,∴△AP 0C ∽△MPB ,∴00AP P CMP BP=,∴MP ∙ P0C =2012P C =AP 0∙BP =x -1+x ),解得x∴BP 1+1.7、小颖在学习“两点之间线段最短”查阅资料时发现:△ABC 内总存在一段P 与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图①,点P 为等边△ABC 的中心,将△ACP 绕点A 逆时针旋转60°得到△ADE ,从而有DE=PC ,连接PD 得到PD=PA ,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B 、P 、D 、E 四点共线,故PA+PB+PC=PD+PB+DE=BE .在△ABC 中,另取一点P',易知点P'与三个顶点连线的夹角不相等,可证明B 、P'、D'、E'四点不共线,所以P'A +P'B +P'C >PA+PB+PC ,即点P 到三个顶点距离之和最小.【探究】(1)如图②,P 为△ABC 内一点,∠APB=∠BPC=120°,证明PA+PB+PC 的值最小; 【拓展】(2)如图③,△ABC 中,AC=6,BC=8,∠ACB=30°,且点P 为△ABC 内一点,求点P 到三个顶点的距离之和的最小值.解:(1)将△APC 绕点A 逆时针旋转60°得到△ADE ,从而有DE=PC ,连接PD 得到PD=PA ,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B 、P 、D 、E 四点共线,故PA+PB+PC=PD+PB+DE=BE .在△ABC 中,另取一点P',易知点P'与三个顶点连线的夹角不相等,可证明B 、P'、D'、E'四点不共线,所以P'A +P'B +P'C >PA+PB+PC ,即点P 到三个顶点距离之和最小.(2)将△ACP 绕点A 逆时针旋转60°得到△ADE ,从而有DE=PC ,连接PD 得到PD=PA ,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B 、P 、D 、E 四点共线,故PA+PB+PC=PD+PB+DE=BE .此时点P 到三个顶点距离之和最小.连接CE ,∵∠CAE=60°,AC=AE , ∴△ACE 为等边三角形, ∴CE=AC=6,∠ACE=60°, ∵∠ACB=30°, ∴∠BCE=90°, ∵BC=8,∴10682222=+=+=CE BC BE ,即点P 到三个顶点的距离之和的最小值为10.8、如图①,△ABC 与△CDE 是等腰直角三角形,直角边AC 、CD 在同一条直线上,点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点,连接AE 、BD . (1)猜想PM 与PN 的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE 绕着点C 顺时针旋转)900(︒<<︒αα,得到图②,AE 与MP 、BD 分别交于点G 、H .请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由; (3)若图②中的等腰直角三角形变成直角三角形,使BC =k AC ,CD =k CE ,如图③,写出PM 与PN 的数量关系,并加以证明.解:(1)PM =PN ,PM ⊥PN .(2) ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC=CD ,∠ACB =∠ECD =90°.∴∠ACB +∠BCE =∠ECD +∠BCE . ∴∠ACE =∠BCD . ∴△ACE ≌△BCD .∴AE =BD ,∠CAE =∠CBD . 又∵∠AOC =∠BOE , ∠CAE =∠CBD ,∴∠BHO =∠ACO =90°. ∵点P 、M 、N 分别为AD 、AB 、DE 的中点,∴PM =21BD , PM ∥BD ;PN =21AE , PN ∥AE .∴PM =PN . ∴∠MGE+∠BHA =180°. ∴∠MGE=90°. ∴∠MPN=90°. ∴PM ⊥PN .(3) PM = kPN∵△ACB 和△ECD 是直角三角形, ∴∠ACB =∠ECD =90°.∴∠ACB +∠BCE =∠ECD +∠BCE . ∴∠ACE =∠BCD . ∵BC =kAC ,CD =kCE , ∴k CECDAC BC ==. ∴△BCD ∽△ACE . ∴BD = kAE .∵点P 、M 、N 分别为AD 、AB 、DE 的中点,∴PM =21BD ,PN =21AE .∴PM = kPN .9、如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.【解答】解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在RT△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在RT△EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.10、(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;的值是多少?(3)若将(1)中的“若∠A=60°”改为“∠A=90°”,其它条件不变,则EBAD(直接写出结论,不要求写解答过程)证明:(1)过D点作BC的平行线交AC于点F.∵△ABC是等腰三角形,∠A=60°∴△ABC是等边三角形.∴∠ABC=60 °∵DF∥BC,∴∠ADF=∠ABC=60 °,∴△ADF是等边三角形.∴AD=DF,∠AFD=60 °.∴∠DFC=180°-60 °=120°,∵∠DBE=180°-60 °=120°,∴∠DFC=∠DBE.又∵∠FDC=∠DCE,∠DCE=∠DEC,∴∠FDC=∠DEC,ED=CD.∴△DBE≌△CFD(AAS),∴BE=DF,∴BE=AD.(2)BE=AD成立.理由如下:过D点作BC的平行线交AC的延长线于点F.同(1)可证△ADF是等边三角形,∴AD=DF,∠AFD=60 °.∵∠DBE=∠ABC=60 °,∴∠DBE=∠AFD.∵∠FDC=∠DCE,∠DCE=∠DEC,∴∠FDC=∠DEC,ED=CD.∴△DBE≌△CFD(AAS),∴BE=DF,∴BE=AD.(3)EBAD过D点作BC的平行线交AC于点G,∵△ABC是等腰三角形,∠A=90°∴∠ABC=∠ACB=45°,∴∠DBE=180°-45°=135°.∵DG∥BC,∴∠GDC=∠DCE,∠DGC=180°-45°=135°,∴∠DBE=∠DGC,∵∠DCE=∠DEC,∴ED=CD,∠DEC=∠GDC.∴△DBE≌△CGD(AAS),∴BE=GD.∵∠ADG=∠ABC=45°,∠A=90°,∴△ADG是等腰直角三角形.∴DG,∴BE,∴EBAD11、问题引入:(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=____________(用α表示);如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=____________(用α表示). 拓展研究:(2)如图③,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,猜想∠BOC=____________(用α表示),并说明理由.(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,请猜想∠BOC=____________ .解:(1)如图①,在△ABC中,∵点O是∠ABC和∠ACB平分线的交点,∴∠CBO=12∠ABC,∠BCO=12∠ACB.∵∠A=α,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=180°-12(180°-∠α)=180°-90°+12∠α=90°+12∠α.如图②,∵∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,∴∠BOC=180°-13(∠ABC+∠ACB)=180°-13(180°-∠A)=180°-13(180°-∠α)=180°-60°+13∠α=120°+13∠α.故答案为90°+12∠α,120°+13∠α.(2)如图③,∵∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,∴∠BOC=180°-13(∠DBC+∠ECB)=180°-13[360°-(∠ABC+∠ACB)]=180°-13[360°-(180°-∠A)]=180°-13(180°+∠α)=180°-60°-13∠α=120°-13∠α.故答案为120°-13∠α.(3)∵∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,∴∠BOC=180°-1n(∠DBC+∠ECB)=180°-1n[360°-(∠ABC+∠ACB)]=180°-1n[360°-(180°-∠A)]=180°-1n(180°+∠α)=1nn-×180°-1n∠α.=1180-nnα-⋅∠()故答案为1180-nnα-⋅∠().12、已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【解答】解:(1)如图1中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵△CEF是由△CAD旋转逆时针α得到,α=90°,∴CB与CE重合,∴∠CBE=∠A=45°,∴∠ABF=∠ABC+∠CBF=90°,∵BG=AD=BF,∴∠BGF=∠BFG=45°,∴∠A=∠BGF=45°,∴GF∥AC.(2)①如图2中,∵CA=CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠CDF,∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==.∴当α从90°变化到180°时,点M运动的路径长为.13、在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【解答】解:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.14、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).【解答】证明:(1)如图2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案为AAS(2)如图3,连接AD,作CG⊥AF,在Rt△ABC中,AB=AC,点D是BC中点,∴AD=CD,∵点E是DC中点,∴DE=CD=AD,∴tan∠DAE===,∵AB=AC,∠BAC=90°,点D为BC中点,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;(3)如图4,过点D作DG⊥BC,设DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AH⊥BC,在Rt△ABH中,∠B=30°.∴BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=2a(k+1),∴CG=BC﹣BG=a(2k+1),过D作DN⊥AC交CA延长线与N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GDC.∴,∴,∴NE=3ak(2k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),∴=.15、如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.【解答】解:(1)如图①,在△ABC中,∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,又∵D是AB的中点,∴AD=1,,又∵EF是△ACD的中位线,∴,在△ACD中,AD=CD,∠A=60°,∴∠ADC=60°,在△FGD中,GF=DF•sin60°=,∴矩形EFGH的面积;(2)如图②,设矩形移动的距离为x,则,当矩形与△CBD重叠部分为三角形时,则,,∴.(舍去),当矩形与△CBD重叠部分为直角梯形时,则,重叠部分的面积S=,∴,即矩形移动的距离为时,矩形与△CBD重叠部分的面积是;(3)如图③,作H2Q⊥AB于Q,设DQ=m,则,又,.在Rt△H2QG1中,,解之得(负的舍去).∴.16、尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO 的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.【解答】解:(1)设PF=m,PE=n,连结EF,如图1,∵AF,BE是△ABC的中线,∴EF为△ABC的中位线,AE=b,BF=a,∴EF∥AB,EF=c,∴△EFP∽△BPA,∴,即==,∴PB=2n,PA=2m,在Rt△AEP中,∵PE2+PA2=AE2,∴n2+4m2=b2①,在Rt△AEP中,∵PF2+PB2=BF2,∴m2+4n2=a2②,①+②得5(n2+m2)=(a2+b2),在Rt△EFP中,∵PE2+PF2=EF2,∴n2+m2=EF2=c2,∴5•c2=(a2+b2),∴a2+b2=5c2;(2)∵四边形ABCD为菱形,∴BD⊥AC,∵E,F分别为线段AO,DO的中点,由(1)的结论得MB2+MC2=5BC2=5×32=45,∵AG∥BC,∴△AEG∽△CEB,∴==,∴AG=1,同理可得DH=1,∴GH=1,∴GH∥BC,∴===,∴MB=3GM,MC=3MH,∴9MG2+9MH2=45,∴MG2+MH2=5.17、如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连接BD.⑴求证:BD=AC;⑵将△BHD绕点H旋转,得到△EHF(点B、D分别与点E、F对应),连接AE.i) 如图②,当点F落在AC上时(F不与C重合),若BC=4,tan C=3,求AE的长;ii)如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH.试探究线段GH与EF之间满足的等量关系,并说明理由.解:⑴∵AH ⊥BC ,∴∠BHD =∠AHC =90°,∵∠ABC =45°,∴∠ABH =∠BAH =45°,∴BH =AH ,又∵DH =CH ,∴△BDH ≌△ACH ,∴BD =AC ;⑵i)过点H 作HG ⊥AC 于点G ,由题意可知△EHF ≌△AHC ,∴∠EHF =∠AHC =90°,EH =AH ,HF =CH ,∴∠AHE =∠FHC ,EH AH HF CH =,∴△AEH ∽△CFH ,∴AE AH CF CH =,在Rt △AHC 中,tan C =AH CH=3,∴BH =AH =3CH ,∵BC =BH +CH =4,∴AH =3,CH =1,∴AC∵S △AHC =12AH HC ⋅=12AC HG ⋅,∴HG =AH HC AC ⋅CG=,∴CF =2CG,∴AE =CF AH CH⋅=351ii) 设CG 、AH 交于点Q ,由题意可知EH =AH ,HF =CH ,∠AHE =∠FHC =90°+30°=120°,∴∠HAE =∠HEA=1802AHE ︒-∠,∠FCH =∠CFH =1802FHC ︒-∠=30°,又∵∠AQG =∠CQH ,∴△AQG ∽△CQH ,∴AQ GQ CQ HQ =,又∵∠AQC =∠GQH ,∴△AQC ∽△GQH ,∴GH QH AC CQ ==sin30°,∵AC =EF ,∴12GH EF =.。

2021年九年级数学中考复习分类专题:三角形中位线定理(二)

2021年九年级数学中考复习分类专题:三角形中位线定理(二)

2021年九年级数学中考复习分类专题:三角形中位线定理(二)一.选择题1.如图,屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8m,∠A=30°,则BC和DE的长分别等于()A.2m,2m B.4m,2m C.2m,4m D.4m,4m2.如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.3 B.4 C.5 D.63.如图,在四边形ABCD中,E、F分别是AB、AD中点,若EF=2,BC=5,CD=3,则tan C 等于()A.B.C.D.4.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,D、E分别为AB、AC边上的中点,则DE的长为()A.2 B.3 C.2D.45.如图,△ABC的周长为30,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.B.5 C.3 D.46.如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形……,如此操作下去,那么,第6个三角形的直角顶点坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)7.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.188.如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC的中点,CF 平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为()A.4 B.5 C.5.5 D.69.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.6 C.4 D.510.如图,以任意△ABC的边AB和AC向形外作等腰Rt△ABD和等腰Rt△ACE,F、G分别是线段BD和CE的中点,则的值等于()A.B.C.D.二.填空题11.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB=.12.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D是AC边上的一点,且AD=2,以AD为直角边作等腰直角三角形ADE,连接BE并取BE的中点F,连接CF,则CF的长为.13.如图,在△ABC中,AD平分∠BAC,BD⊥AD,点E是BC的中点,连结DE,且AB=6,AC =10,则DE=.14.如图,∠MAN=90°,点C在边AM上,AC=2,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在的直线对称,点D,E分别为AB,BC的中点,连接DE并延长交A′C所在直线于点F,连接A′E,当△A′EF为直角三角形时,AB的长为.15.在△ABC中,CD⊥AB于点D,E,F分别为BC,AC的中点,连接DF、DE、EF,若△ABC 周长为6,则△DEF周长为.16.如图,四边形ABCD中,∠BMF+∠CNF=90°,E、F分别是AD、BC的中点,AB=5,CD =12,则EF=.三.解答题17.在Rt△ABC中,∠ACB=90°,中线AE与中线CD交于点O,AB=6.(1)求证:AO:OE=2:1;(2)求OC的长.18.如图,在△ABC中,AB=BC=12cm,∠ABC=80°,BD是∠ABC的平分线,DE∥BC.(1)求∠EDB的度数;(2)求DE的长.19.在△ABC中,∠BAC=90°,延长BA到D,使AD=AB,点E、F分别为边BC、AC的中点.(1)求证:DF=BE;(2)若CF=2,CE=.求tan∠ADF.20.如图,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=BE.21.如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B 重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)∠A在什么范围内变化时,四边形ACFE是梯形,并说明理由;(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件DG=DA,并说明理由.22.如图1,已知E、F、G、H分别为四边形ABCD的边AB、BC、CD、DA的中点,连接EF、FG、GH、HE.(1)求证:四边形EFGH是平行四边形(提示:可连接AC或BD);(2)在电脑上用适当的应用程序画出图1,然后用鼠标拖动点D,当点D在原四边形ABCD的内部,在原四边形ABCD的外部时,图1依次变为图2、图3.图2、图3中四边形EFGH 还是平行四边形吗?选择其中之一说明理由.23.已知两个等腰Rt△ABC,Rt△CEF有公共顶点C,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.参考答案一.选择题1.解:∵BC⊥AF,∠A=30°,∴BC=AB=4m,∵BC、DE垂直于横梁AC,∴DE∥BC,又D是AB的中点,∴DE=BC=2m,即:BC=4m,DE=2m.故选:B.2.解:∵D,E分别是BC,AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF平分∠ABC,∴∠DBF=∠ABF,∴∠BFD=∠DBF,∴DF=DB=BC=3,故选:A.3.解:连接BD,∵E、F分别是AB、AD中点,∴BD=2EF=4,∵BD2+CD2=25,BC2=25,∴BD2+CD2=BC2,∴∠BDC=90°,∴tan C==,故选:A.4.解:∵AB=8,∠C=90°,∠A=30°,∴BC=4,∵D、E分别为AB、AC边上的中点,∴DE=BC=2,故选:A.5.解:∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=26﹣BC=30﹣12=18,∴DE=BE+CD﹣BC=6,∴PQ=DE=3.故选:C.6.解:由题意:第1个三角形的直角顶点坐标:(﹣2,2);第2个三角形的直角顶点坐标:(﹣1,1);第3个三角形的第1个三角形的直角顶点坐标:(﹣,);第4个三角形的直角顶点坐标:(﹣,);第5个三角形的直角顶点坐标:(﹣,);第6个三角形的直角顶点坐标:(﹣,);故选:A.7.解:延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选:B.8.解:∵∠B=90°,BC=3,AB=4,∴AC==5,∵D,E分别是AB,AC的中点,∴DE=BC=,EC=AC=,DE∥BC,∴∠FCM=∠EFC,∵CF平分Rt△ABC的一个外角∠ACM,∴∠FCM=∠FCE,∴∠EFC=∠FCE,∴EF=EC=,∴DF=DE+EF=4,故选:A.9.解:如图,连结DN,∵DE=EM,FN=FM,∴EF=DN,当点N与点B重合时,DN的值最大即EF最大,在Rt△ABD中,∵∠A=90°,AD=6,AB=8,∴BD==10,∴EF的最大值=BD=5.故选:D.10.解:如图,取BC的中点H,连接BE、FH、GH,∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠BAE=∠DAC,在△ABE和△ADC中,,∴△ABE≌△ADC(SAS),∴BE=CD,∠ABE=∠ADC,∴∠BDC+∠DBE=∠BDA+∠ABD=90°,∴BE⊥CD,又∵F、G分别是线段BD和CE的中点,∴FH、GH分别是△BCD和△BCE的中位线,∴FH∥CD且FH=CD,GH∥BE且GH=BE,∴△HFG是等腰直角三角形,∴=,∴=.故选:B.二.填空题(共6小题)11.解:∵E、F分别为MB、BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,∴AB=2CM=4,故答案为:4.12.解:延长AE、BC交于点H,∵△ADE是等腰直角三角形,∴∠HAC=45°,AE=AD=2,∴CH=AC=BC,AH=AC=6,∴EH=AH﹣AE=4,∵BC=CH,BF=FE,∴FC=EH=2,故答案为:2.13.解:延长BD交AC于F,在△ADB和△ADF中,,∴△ADB≌△ADF(ASA)∴AF=AB=6,BD=DF,∴FC=AC﹣AF=4,∵BD=DF,BE=EC,∴DE=FC=2,故答案为:2.14.解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=2,∠ACB=∠A'CB,∵点D,E分别为AB,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠BDE=∠MAN=90°,∴∠BDE=∠A'EF,∴AB∥A'E,∴∠ABC=∠A'EB,∴∠A'BC=∠A'EB,∴A'B=A'E,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E,由勾股定理得:AB2=BC2﹣AC2,∴AE′=,∴AB=;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFC=90°,∴∠ACF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=2;综上所述,AB的长为或2;故答案为:或2.15.解:∵在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,∴DE=BC=4.5,DF=AC,EF=AB,∴△DEF的周长=(AB+BC+AC)=×6=3.故答案为:3.16.解:连接BD,取BD的中点H,连接EH,HF,∵E、F分别是AD、BC的中点,∴EH∥AB,EH=AB=,HF∥CD,HF=CD=6,∴∠HEF=∠BMF,∠HFE=∠CNF,∵∠BMF+∠CNF=90°,∴∠HEF+∠HFE=90°,∴∠EHF=90°,∴EF===,故答案为:.三.解答题(共7小题)17.(1)证明:连接DE则DE是△ABC的中位线,DE∥AC,DE=AC∴∠OAC=∠OED,∠OCA=∠ODE∴△OAC∽△OED∴AO:OE=OC:OD=AC:DE=2:1(2)解:CD是Rt△ABC斜边AB上的中线,AB=6 ∴CD=AB=3由(1)可知,OC:OD=2:1∴OC=CD=2.18.解:(1)∵BD是∠ABC的平分线,∴∠ABD=∠CBD=∠ABC,∵DE∥BC,∴∠EDB=∠DBC=∠ABC=40°.(2)∵AB=BC,BD是∠ABC的平分线,∴D为AC的中点,∵DE∥BC,∴E为AB的中点,∴DE=AB=6cm.19.(1)证明:∵F,E是AC,BC的中点,∴FE=AB(中位线定理);∵AD=AB,∴AD=FE,∵点F是AC中点,∴AF=FC,又∠DAF=∠CFE=90°,∴△DAF≌△FEC,∴DF=EC,∴DF=BE;(2)解:∵CF=2,CE=,∴EF=1,∴tan∠ADF=tan∠CEF=2.20.证明:(1)∵BD=CD,∴∠BCD=∠1;∵∠1=∠2,∴∠BCD=∠2;∴CD∥AB.(2)∵CD∥AB,∴∠CDA=∠3.∵∠BCD=∠2=∠3,∴BE=AE.且∠CDA=∠BCD,∴DE=CE.在△BDE和△ACE中,∵.∴△BDE≌△ACE(SAS);(3)∵△BDE≌△ACE,∴∠4=∠1,∠ACE=∠BDE=90°∴∠ACH=90°﹣∠BCH;又∵CH⊥AB,∴∠2=90°﹣∠BCH;∴∠ACH=∠2=∠1=∠4,∴AF=CF;∵∠AEC=90°﹣∠4,∠ECF=90°﹣∠ACH,又∵∠ACH=∠4,∴∠AEC=∠ECF;∴CF=EF;∴EF=AF;∵O为AB中点,∴OF为△ABE的中位线;∴OF=BE.21.(1)证明:在Rt△AEB中,∵AC=BC,∴CE=AB,∴CB=CE,∴∠CEB=∠CBE.∵∠CEF=∠CBF=90°,∴∠BEF=∠EBF,∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,∴∠FED=∠EDF.∴BF=FD;(2)解:由(1)BF=FD,而BC=CA,∴CF∥AD,即AE∥CF.若AC∥EF,则AC=EF,∴BC=BF.∴BA=BD,∠A=45°.∴0°<∠A<90°且∠A≠45°时,四边形ACFE为梯形;(3)解:作GH⊥BD,垂足为H,则GH∥AB.∵DG=DA,∴DH=DB.又F为BD中点,∴H为DF的中点.∴GH为DF的中垂线.∴∠GDF=∠GFD.∵点G在ED上,∴∠EFD≥∠GFD.∵∠EFD+∠FDE+∠DEF=180°,∴∠GFD+∠FDE+∠DEF≤180度.∴3∠EDF≤180度.∴∠EDF≤60度.又∠A+∠EDF=90°,∴30°≤∠A<90°.∴当30°≤∠A<90°时,DE上存在点G,满足条件DG=DA.22.(1)证明:如图1,连接AC,∵E、F、G、H分别为四边形ABCD的边AB、BC、CD、DA的中点,∴EF是△ABC的中位线,GH是△DAC的中位线,∴EF∥AC,;HG∥AC,.∴EF GH,∴四边形EFGH是平行四边形;(2)解:四边形EFGH均为平行四边形.证明(以图2为例):连接AC.在△BAC中,∵E、F分别为AB、BC的中点,∴EF∥AC,;在△DAC中,∵G、H分别为AD、CD的中点,∴HG∥AC,.∴EF平行且等于GH.∴四边形EFGH是平行四边形;23.(1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;(2)解法一:如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=CD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.解法二:如答图1b.∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;(3)证法一:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.证法二:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=FM,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.。

2021年中考数学提优专题一:三角形中线段长度的计算

2021年中考数学提优专题一:三角形中线段长度的计算

中考提优专题一:三角形中线段长度的计算概述:计算三角形中有关线段的长度,主要工具是勾股定理、相似三角形和锐角三角函数.在具体问题中,条件可能是分散的或隐性的,这就需要设法把分散的条件集中起来或把隐性的条件显化.常见的处理方法如下.1.借助已知的等角(或等边)直接构造相似(或全等)三角形.2.涉及中点条件,通常可以倍长中线构造“X”型全等、构造三角形中位线或构造直角三角形斜边上的中线.3.涉及角平分线、垂线(高)、二倍角等条件,可以通过对称变换解决问题.4.借助旋转(全等或相似)变换将分散的条件集中起来.类型1:运用对称变换集中条件例1:如图1,在△ABC中,AD平分∠BAC,∠B=2∠ADB,AB=3,CD=3,则AC= .例2:如图,在△ABC中,∠BAC=90°,AB=3,AC=4,D是BC的中点,将△ABC沿AD 翻折得到△AED,连接CE,则CE的长为.例3:如图,∠B=90°,∠A=45°.D为AB上一点,且AD=11,G为BC上一点,且BG=8.连接CD,过点G作CD的垂线交CD于点F,交AC于点E,连接DE,恰好有∠ADE=∠BDC.求BD的长.类型2:运用旋转变换集中条件例4:如图,P为正△ABC内一点,且满足PA=2,PB=32,PC=4.求AB的长.例5:如图,点D在△ABC内,∠BDC=90°,∠BCD=∠DAC=30°,AD=3,AC=8,求AB的长.例6:如图,在△ABC中,∠ACB=45°,D是AB的中点,点E在BC上,点F在AC上,DE⊥DF,连接EF.若BE=1,EF=5,则线段AF的长为.例7:在△ABC中,BD=CD,DAC∠tansin.若AB=3,AC=1,求BC的长.=BAC∠例8:在△ABC中,BD是AC边上的中线,CE是AB边上的中线,且BD⊥CE,垂足为O.若OD=2,OE=4,求OA的长.例9:如图,△ABC中,∠A=120°,∠ABC=2∠ACD,AD=5,BC=14,求AC的长.例10:在△ABC中,AD⊥BC于点D,BM=CM,且AB=10.若∠B=2∠C,求DM的长.例11:如图,在△ABC中,∠C=90°,∠B=22.5°,AC=4,若D为BC上一点,且∠DAB=45°,求BD的长.类型5:隐性条件与分类思想例12:如图,在△ABC 中,∠ACB=90°,AB=10,53sin B ,O 是AB 的中点,∠MON=∠A.点M ,N 在线段BC 上,字母顺序为C ,M ,N ,B.若△OMN 为等腰三角形,求CM 的长.例13:如图,在△ABC 中,∠ACB=90°,连接AC=6,BC=8,CD ⊥AB 于点D.E 为BC 上的动点,连接AE ,交CD 于点F.当CE 为何值时,△CEF 是等腰三角形?例14:如图,在△ABC 中,∠ACB=90°,CD 为AB 边上的中线,AE ⊥CD 于点F ,交BC 于点E.若CD=3,AE=4,求AC 的长.。

三角形的概念和性质核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮(全国通用)(原卷版)

三角形的概念和性质核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮(全国通用)(原卷版)

专题15三角形的核心知识点精讲1.理解三角形有关的中线、角平分线、高线,并会作三角形的中线、角平分线、高线;2.理解并掌握三角形的中位线的性质;3.理解三角形的三边关系,并能确定三角形第三边的取值范围;4.掌握三角形的内角和定理,并会证明三角形的内角和定理;5.能利用三角形的外角进行角的有关计算与证明。

考点1:三角形边角关系(1)三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

(2)三角形内角和定理:三角形三个内角的和等于180度。

(3)三角形的一个外角等于与它不相邻的两个内角和;三角形的一个外角大于与它不相邻的任何一个角。

考点2:三角形的重要线段考点3:三角形的内角和定理及推论①三角形内角和定理:三角形三个内角的和等于180度。

②推论:三角形的一个外角等于与它不相邻的两个内角和;三角形的一个外角大于与它不相邻的任何一个角。

③直角三角形的两个锐角互余。

【题型1:三角形的三边关系】【典例1】(2023•宿迁)以下列每组数为长度(单位:cm)的三根小木棒,其中能搭成三角形的是()A.2,2,4B.1,2,3C.3,4,5D.3,4,81.(2023•长沙)下列长度的三条线段,能组成三角形的是()A.1,3,4B.2,2,7C.4,5,7D.3,3,62.(2023•福建)若某三角形的三边长分别为3,4,m,则m的值可以是()A.1B.5C.7D.93.(2023•金华)在下列长度的四条线段中,能与长6cm,8cm的两条线段围成一个三角形的是()A.1cm B.2cm C.13cm D.14cm【题型2:三角形内角和定理及推论】【典例2】(2021•辽宁)一副三角板如图所示摆放,若∠1=80°,则∠2的度数是()A.80°B.95°C.100°D.110°1.(2023•遂宁)若三角形三个内角的比为1:2:3,则这个三角形是三角形.2.(2023•徐州)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C=°.3.(2021•毕节市)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.70°B.75°C.80°D.85°【题型3:三角形中的重要线段】【典例3】(2022•哈尔滨)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是度.1.(2021•雅安)如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC=3:1.S△ADG=16.则S△CEG的值为()A.2B.4C.6D.82.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交AC于点E,则∠EBC=.3.(2022•陕西)如图,AD是△ABC的中线,AB=4,AC=3.若△ACD的周长为8,则△ABD的周长为.一.选择题(共11小题)1.如图,在△ABC中,∠ACB=90°,∠B=50°,DF∥EB.若∠D=70°,则∠ACD的度数为()A.30°B.35°C.40°D.45°2.如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.74°B.32°C.22°D.16°3.AD是∠CAE的平分线,∠B=35°,∠DAE=60°,则∠ACD=()A.25°B.60°C.85°D.95°4.若一个三角形的两边长分别为2cm,7cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm5.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=58°,∠2=24°,则∠B的度数为()A.56°B.34°C.36°D.24°6.如图所示在△ABC中,AB边上的高线画法正确的是()A.B.C.D.7.如图,一副三角板拼成如图所示图形,则∠BAC的度数为()A.75°B.60°C.105°D.120°8.下列图形中,是直角三角形的是()A.B.C.D.9.如图,在△ABC中,∠A=30°,∠B=50°,CD为∠ACB的平分线,CE⊥AB于点E,则∠ECD度数为()A.5°B.8°C.10°D.12°10.一副直角三角板按如图所示方式摆放,图中∠α的度数为()A.65°B.67.5°C.75°D.80°11.一副三角板按如图方式摆放,且∠1的度数比∠2的度数小20°,则∠2的度数为()A.35°B.40°C.45°D.55°二.填空题(共3小题)12.如图,AD是△ABC的中线,若AB=6,AC=5,则△ABD与△ACD的周长之差为1.13.将一副三角板如图所示放置,使点D在BC上,DC∥AE,则∠EFB的度数为.14.一块板材如图所示,测得∠B=90°,∠A=20°,∠C=35°,根据需要∠ADC为140°,师傅说板材不符合要求且只能改动∠A,则可将∠A(选填“增加”或“减少”).三.解答题(共2小题)15.如图,在△ABC中,CD平分∠ACB,CD交边AB于点E,在边AE上取点F,连结DF,使∠1=∠D.(1)求证:DF∥BC;(2)当∠A=40°,∠DFE=36°时,求∠2的度数.16.如图所示,在△ABC中,AD是角平分线,∠B=50°,∠C=70°.(1)求∠ADB的度数;(2)若DE⊥AC,求∠EDC的度数.一.选择题(共4小题)1.如图,在△ABC中,以点B为圆心,AB为半径画弧交BC于点D,以点C为圆心,AC为半径画弧交B C于点E,连接AE,AD.设∠EAD=α,∠ACB=β,则∠B的度数为()A.α﹣B.2α﹣βC.α+D.3α﹣β2.如图,在△ABC中,∠B+∠Cα按图进行翻折,使B'D∥C'G∥BC,B'E∥FG,则∠C'FE的度数是()A.B.90°﹣C.α﹣90°D.2α﹣180°3.如图所示,将含角45°的直角三角板与含60°角的直角三角板叠放在一起,若∠1=70°,则∠2的度数为()A.85°B.60°C.50°D.95°4.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BO C=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④二.填空题(共3小题)5.若△ABC三条边长为a,b,c,化简:|a﹣b﹣c|﹣|a+c﹣b|=.6.如图,在△ABC中,BE,CD分别是∠ABC和∠ACB的角平分线,且BE,CD相交于一点P,若∠A=5 0°,则∠BPC=.7.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=70°,∠D=10°,则∠P的度数为.三.解答题(共2小题)8.如图所示,在△ABC中,BO、CO是角平分线.(1)∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.(3)若∠A=n°,求∠BOC的度数.9.如图,在△ABC中,BD,CD分别是∠ABC,∠ACB的平分线,BP,CP分别是∠EBC,∠FCB的平分线.(1)当∠ABC=64°,∠ACB=66°时,∠D=°,∠P=°;(2)∠A=56°,求∠D,∠P的度数;(3)请你猜想,当∠A的大小变化时,∠D+∠P的值是否变化?请说明理由.1.(2022•淮安)下列长度的三条线段能组成三角形的是()A.3,3,6B.3,5,10C.4,6,9D.4,5,92.(2022•玉林)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7C.1.5cm D.2cm3.(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则()A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线4.(2023•十堰)一副三角板按如图所示放置,点A在DE上,点F在BC上,若∠EAB=35°,则∠DFC =.5.(2022•常州)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是.。

中考数学三角形知识点总结

中考数学三角形知识点总结

中考数学三角形知识点总结初中数学三角形知识点总结一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成等边对等角)。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成等腰三角形的三线合一)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

三、直角三角形和勾股定理有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。

勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

21年中考数学第三轮冲刺:三角形的综合 专题复习(含答案)

21年中考数学第三轮冲刺:三角形的综合 专题复习(含答案)

2021年中考数学第三轮冲刺:三角形的综合 专题复习练习1、如图,在等边三角形ABC 中,6BC cm =,射线AG BC ∥,点E 从点A 出发沿射线AG 以1/cm s 的速度运动,同时点F 从点B 出发沿射线BC 以2/cm s 的速度运动,设运动时间为()t s(1)连接EF ,当EF 经过AC 边的中点D 时,求证:ADE CDF ≅ (2)填空:①当t 为 s 时,四边形ACFE 是菱形;②当t 为 s 时,以,,,A F C E 为顶点的四边形是直角梯形。

2、在Rt △ABC 中,∠ACB =90°,AB =,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A ′B ′C (点A ,B 的对应点分别为A ',B ′),射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求∠ACA ′的度数;(2)如图2,设A ′B ′与BC 的交点为M ,当M 为A ′B ′的中点时,求线段PQ 的长;(3)在旋转过程中,当点P ,Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA 'B ′Q 的面积是否存在最小值.若存在,求出四边形PA ′B ′Q 的最小面积;若不存在,请说明理由.3、阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF 于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.4、(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE 填空:(1)∠AEB的度数为;(2)线段BE之间的数量关系是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)对顶角相等(2)同角或等角的余角相等(3)同角或等角的补角相等。
三、相交线
1、斜线2、两条直线互相垂直3、垂线,垂足
4、垂线的性质
(l)过一点有且只有一条直线与己知直线垂直。
(2)垂线段最短。
四、距离
1、两点的距离
点到直线的距离
2、从直线外一点到这条直线的垂线段的长度叫做。
两条平行线的距离。
3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做
2021中考数学三角形点、直线2、射线3、线段
二、角
1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。
另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
2.角的平分线
3、角的度量:度量角的大小,可用度作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4.角的分类:(1)锐角(2)直角(3)钝角(4)平角(5)周角
5.相关的角:
(1)对顶角(2)互为补角(3)互为余角
6、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
7、角的性质
五、平行线
1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
3、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.
5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角互补.
相关文档
最新文档