2005年成考专升本高等数学

合集下载

2005年浙江省普通高校“专升本”联考《高等数学(一)》试卷参考答案

2005年浙江省普通高校“专升本”联考《高等数学(一)》试卷参考答案

高数(一)答案(A )卷一.填空题:(每空格5分,共40分)1.连续区间是),1()1,0()0,(+∞-∞ ,2.21, 3.(1)⎩⎨⎧==00z y 或者001zy x ==,或者0,0,===z y t x (其中t 是参数), (2)0=x4.1,0-==b a ,5.(1)y x r 2-, (2)xy23.三.计算题。

1.解 :令)1ln (ln 2+-=x x x y , (3分)则x x x x x x x x x y )1)](1ln(1)12([222'+-+-++--= (7分) 2.解:)43(432'-=-=x x x x y ,驻点为34,021==x x (2分)(法一) 46''-=x y ,04)0(''<-=y , 1)0(=y (极大值), (5分) 04)34(''>=y , 275)34(-=y (极小值). (7分)(5分)当0=x 时,1=y (极大值),当34=x 时,275-=y (极小值) (7分)3.解:利用莱布尼兹公式x nn e n n nx x dxfd )]1(2[2-++= (7分) 4.解: ⎰⎰⎰------=--=+-0101012]1121[)2)(1(1231dx x x dx x x dx x x (3分)=34ln12ln1=---x x (7分) 5.解:⎰+dx e x 211==+-+⎰dx ee e xxx 22211 (3分)++-=)1ln(212x e x C (其中C 是任意常数) (7分)6.解:⎰-+12)2(dx e x x x ==+--+⎰dx e x ex x x x 10102)12()2( (3分)=2-⎰+1)12(dx e x x=2-)13(-e +102x e==e e e -=-+-12233。

(7分)7.解:)cos()sin(y x xy y x z++-=∂∂ (3分))s i n ()c o s (s i n 2y x xy xy xy yx z+---=∂∂∂ . (7分) 8:解:=-+=+=]2111[2111x x y (2分)])21()1()21()21(211[2132 +--++---+--=n n x x x x =∑∞=+--012)1()1(n n n n x , (5分) 收敛区间为(-1, 3). (7分) 9.解:特征方程为0122=+-λλ,特征值为1=λ(二重根),齐次方程0222=+-y dx dydxy d 的通解是x e x c c y )(~21+=,其中21,c c 是任意常数. (3分)x y dx dy dxy d =+-222的特解是2+=*x y , (6分) 所以微分方程的通解是x e x c c x y y y )(2~21+++=+=*,其中21,c c 是任意常数 (7分) 10.解:2222b a b a -++==--+++)2()2()2()2(b a b a b a b a (3分)=26)(222=+b a . (7分)四.综合题:1.解:(法一)⎰++π0212sin 212sin xdx m xdx n =-dx x m n x m n ])cos()1([cos 21--++⎰π(4分) =⎪⎪⎩⎪⎪⎨⎧==-++-≠=---++++-⎰πππ00 ,21]1)1[cos(21 ,0])sin(1)1sin(11[21m n dx x m n m n x m n m n x m n m n (10分) (法二)当m n ≠时⎰++π212sin 212sin xdx m xdx n =-dx x m n x m n ])cos()1([cos 210--++⎰π( 4分)=0])sin(1)1sin(11[210=---++++-πx m n m n x m n m n (7分) 当m n =时 ⎰++π0212sin 212sin xdx m xdx n =⎰⎰=+-=+πππ000221])12cos(1[21212sin x dx x n xdx n =2π(10分) 2.证明:(1)考虑函数dx cx bx ax x F +++=234)(, (2分) )(x F 在[0,1]上连续,在(0,1)内可导,0)1()0(==F F ,由罗尔定理知,存在)1,0(∈ξ,使得0)('=ξF ,即0)()('==ξξf F ,就是=)(ξf 023423=+++d c b a ξξξ,所以函数)(x f 在(0,1)内至少有一个根. (7分) (2)c bx ax x F x f 2612)()(2'''++==因为ac b 832<,所以0)83(129636)2)(12(4)6(222<-=-=-ac b ac b c a b ,)('x f 保持定号,)(x f 函数)(x f 在(0,1)内只有一个根. (10分)。

2005年山东专升本(数学)真题试卷(题后含答案及解析)

2005年山东专升本(数学)真题试卷(题后含答案及解析)
6.
正确答案:A
解析:
7.
正确答案:A
解析:
8.
A.
B.
C.
D.
正确答案:D
解析:
单选题
9.
正确答案:
10.
正确答案:
11.
正确答案:
12.
正确答案:
计算题一
13.
正确答案:
14.
正确答案:
15.
正确答案:
16.
正确答案:
1正确答案:
19.
正确答案:
20.
正确答案:
综合题
21.
正确答案:
批注本地保存成功开通会员云端永久保存去开通
2005年山东专升本(数学)真题试卷(题后含答案及解析)
题型有:1.填空题2.单选题3.计算题一5.综合题
填空题
1.
正确答案:C
解析:
2.
正确答案:B
解析:
3.
正确答案:A
解析:
4.
正确答案:C
解析:
5.
正确答案:D
解析:本题中,直接分别对分子分母求导即可。
22.
正确答案:
23.
正确答案:

2005年河南省专升本高等数学真题答案及解析

2005年河南省专升本高等数学真题答案及解析

1河南省2005年普通高等学校 专科毕业生进入本科阶段学习考试高等数学 答案及解析一、单项选择题(每小题2分,共计60分) 1.答案:C【解析】:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.答案:D【解析】:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3.答案:B【解析】: ⇒-x e x~12~12x e x -,应选B.4.答案:B【解析】:2)1(2lim2)1(22121lim 21lim 21lim e n n n nn n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.答案:C【解析】:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C.6.答案:D 【解析】:41)1(21)1(22)1()21(lim 2)1()21(lim 020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.答案:A【解析】:对方程yx exy +=两边微分得)(dy dx eydx xdy yx +=++,即dy x e dx ey y x yx )()(-=-++,dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.答案:B 【解析】:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='=''⇒ΛΛ=)()(x f n 1)]([!+n x f n ,应选B.9.答案:A【解析】:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A. 10.答案:B【解析】:在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.211.答案:C 【解析】:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.答案:B【解析】:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22ta bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.答案:B【解析】:两边对x 求导 22111)()1()(xx f x e e x f xx-=⇒-⨯=,应选B. 14.答案:A【解析】:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A. 15.答案:C 【解析】:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.答案:A【解析】:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.答案:D 【解析】:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.答案:B 【解析】:x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.答案:A 【解析】:⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.答案:D【解析】:n s n s ρρρρ⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D. 21.答案:B 【解析】:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B. 22.答案:C 【解析】:dy y dx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C. 23.答案:B【解析】:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.答案:A325.答案:C【解析】:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.答案:B【解析】:L :,2⎩⎨⎧==x y xx x 从0变到1 , 1422210410310332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.答案:B【解析】:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n nn 是收敛的,但∑∞=1321n n是32=p 的级数发散的,从而级数∑∞=-1321)1(n nn条件收敛,应选B. 28. 答案:C 【解析】:正项级数∑∞=1n nu与∑∞=1n nv收敛⇒∑∞=12n nu与∑∞=12n nv收敛,而)(2)(222nnn n v u v u +≤+,所以级数21)(n n nv u+∑∞=收敛 ,应选C.29. 答案:D【解析】:注意对所给的方程两边求导进行验证,可得通解应为222C y xy x =+-,应选D. 30.答案:A【解析】:微分方程的特征方程为0βλ22=+,有两个复特征根i βλ±=,所以方程的通解为t C t C x βsin βcos 21+=,应选A.二、填空题(每小题2分,共30分) 1.答案:116)2(2+-=-x x x f【解析】:⇒+-=⇒++-+=+32)(3)1(2)1()1(22x x x f x x x f116)2(2+-=-x x x f .2.答案:1=a【解析】:因10)6(lim 0)2(lim 222=⇒=-+⇒=-→→a ax x x x x .3.答案:02π12=+--y x 【解析】:2111121=+='===x x x y k ,则切线方程为)1(214π-=-x y , 即02π12=+--y x 02π12=+--y x .44.答案:dx x xe x dy xx]1ln 1[21+-= 【解析】:dx x x e x x x x d edy ey x x x xxx xx]1ln 1[)ln (21ln ln +-=+=⇒=++ .5.答案:),21(∞+ 或),21[∞+【解析】:⇒>⇒⎪⎩⎪⎨⎧>>-⇒-='21001414x x xx x x y ),21(∞+ 或),21[∞+. 6.答案:),1(e【解析】:104)1(21=⇒=-=''⇒⨯='x xx x e y xe y x x,得拐点为),1(e .7.答案:271【解析】:等式x dt t f x ⎰=3)(两边求导有13)(23=x x f ,取3=x 有271)27(=f . 8.答案:45 【解析】:⎰⎰⎰'-'='=''10101012)2(41)2(21)2(21)2(x d x f x f x x f xd dx x f x 45)0(41)2(41)2(21)2(41)2(2110=+-'=-'=f f f x f f . 9.答案:0 【解析】:0)0(00=⇒=⇒=='-f x xey x.10.答案:C x x ++|cos |ln【解析】:⎰⎰++=++=+-C x x xx x x d dx x x x |cos |ln cos )cos (cos sin 1.11. 答案:6【解析】: 6||2210101=⨯=⇒+-=-=⨯b a S k j i k j i b a ρρρρρρρρρρ .12.答案:)()(z x y z y z ++【解析】:令y z z xy z z x F ln ln ln +-=-= ,则221,1,1zz x z z x F y F z F z y x +-=--='='='.)(;2z x y z F F y z z x z F F x z z y z x +=''-=∂∂+=''-=∂∂ ,所以)()(z x y z y z y z x z ++=∂∂+∂∂ .513.答案:821π- 【解析】:积分区域在极坐标系下表示为}10,4πθ0|)θ,{(≤≤≤≤=r r D ,则 ⎰⎰⎰⎰⎰⎰-=⎪⎭⎫ ⎝⎛=104π021024π02θ)1θ(sec θcos θsin θ)(rdr d rdr d dxdy x y D8π21)θθ(tan 21θ)1θ(sec 214π024π02-=-=-=⎰d .14.答案:)11(,21)1()2(21)()(0100<<-⎥⎦⎤⎢⎣⎡+-=+-=∑∑∑∞=+∞=∞=x x x x x f n n n nn n n n【解析】:21121112111)2)(1(323)(2x x x x x x xx x f -++=-++=-+=-+=, 所以)11(,21)1()2(21)()(0100<<-⎥⎦⎤⎢⎣⎡+-=+-=∑∑∑∞=+∞=∞=x x x x x f n n n nn n n n .15.答案:xe B Ax x 22)(+【解析】:2是特征方程04λ4λ2=+-的二重根,且)12(+x 是一次多项式,特解应设为 xe B Ax x 22)(+.三、计算题(每小题5分,共40分)1.xx x x x cos sin 1lim2-+→.【解析】:x x x x x x x xx x x x x cos sin 1)cos sin 1(limcos sin 1lim 2020-+++=-+→→ )cos sin 1(lim cos sin 1lim20x x x x x x x x x ++⨯-+=→→ xx x xx x x x x x cos sin 22lim 2cos sin 1lim 20020+=-+=→→34314sin cos 31lim4000=⨯=-=→x x x x .2.已知2arctan )(,2523x x f x x y ='⎪⎭⎫ ⎝⎛+-=,求0=x dx dy . 【解析】:令u x x =+-2523,则)(u f y = , 22)25(162523arctan 2523)(+⨯⎪⎭⎫ ⎝⎛+-='⎪⎭⎫ ⎝⎛+-'=⨯=x x x x x u f dx du du dy dx dy ,3.求不定积分⎰+dx xx 231.【解析】:⎰⎰⎰+=+=+222223111x d x dx x x x dx x x)1(11)(1122222222x d x x x x d x x x ++-+=+-+=⎰⎰C x x x ++-+=23222)1(321.4.设⎪⎩⎪⎨⎧<+≥+=0,210),1ln()(x xx x x f ,求⎰-20)1(dx x f .【解析】:令t x =-1 ,则⎰⎰-=-112)()1(dt t f dx x f⎰⎰⎰⎰+++=+=--10011001)1ln(21)()(dt t dt t dt t f dt t f ⎰+-+++=-1010011)1ln()2ln(dt tt t t t⎰+--+=10)111(2ln 2ln dt t12ln 3)1ln(2ln 21010-=++-=t t .5.设),sin (22y x y e f z x += ,其中),(v u f 可微,求yz x z ∂∂∂∂,. 【解析】:令v y x u y e x=+=22,sin ,则),(v u f z =,复合关系结构如图05-1所示,x vv z x u u z x z ∂∂⨯∂∂+∂∂⨯∂∂=∂∂),(2),(sin v u f x v u f y e v u x'+'=,yvv z y u u z y z ∂∂⨯∂∂+∂∂⨯∂∂=∂∂ ),(2),(cos v u f y v u f y e v u x'+'=.6.求⎰⎰D dxdy y x 22,其中D 是由2,1===x x y xy 及所围成的闭区域.【解析】:积分区域如图05-2所示,曲线x y xy ==,1在第一象限内的交点为(1,1),积分区域可表示为:x y xx ≤≤≤≤1,21.则⎰⎰⎰⎰⎰-==21121222122)1(dx y x dy y x dx dxdy y x x xx x D z vu x xy y 图05-1xx 图05-27⎰⎰-=⎥⎦⎤⎢⎣⎡-=213212)(1dx x x dx x x x49242124=⎪⎪⎭⎫ ⎝⎛-=x x . 7.求幂级数12012)1(+∞=∑+-n n n x n 的收敛域(考虑区间端点).【解析】: 这是缺项的标准的幂级数,因为 221232113212lim )1(1232)1(lim lim ρx n n x x n n x u u n n n n n n nn n =++=-+⋅+-==∞→+++∞→+∞→, 当1ρ<,即11<<-x 时,幂级数绝对收敛; 当1ρ>,即1>x 或1-<x 时,幂级数发散; 当1ρ=,即1±=x 时,若1=x 时,幂级数化为∑∞=+-012)1(n nn 是交错级数,满足来布尼兹定理的条件,是收敛的,若1-=x 时,幂级数化为∑∞=++-0112)1(n n n 也是交错级数,也满足来布尼兹定理的条件,是收敛的.故幂级数的收敛域为[-1,1].8.求微分方程 0cos 2)1(2=-+'+x xy y x 通解. 【解析】:微分方程可化为 1cos 1222+=++'x xy x x y ,这是一阶线性非齐次微分方程,它对应的齐次线性微分方程0122=++'y x x y 的通解为12+=x Cy . 设非齐次线性微分方程的通解为1)(2+=x x C y ,则222)1()(21)(+-+'='x x xC x x C y ,代入方程得x x C cos )(=',所以C x x C +=sin )(.故原微分方程的通解为1sin 2++=x Cx y (C 为任意常数).四、应用题(每小题7分,共计14分)1. 一房地产公司有50套公寓要出租,当月租金定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会多一套公寓租不出去,而租出去的公寓每月需花费200元的维修费.试问租金定为多少可获得最大收入?最大收入是多少? 【解析】:设每套公寓租金为x 元时,所获收入为y 元,则 )2000(),200](100200050[>---=x x x y , 整理得 ),14000007200(10012-+-=x x y )72002(1001+-='x y 均有意义,8令0='y 得唯一可能的极值点3600=x ,而此时0501<-=''y ,所以3600=x 是使y 达到极大值的点,即为最大值的点.最大收入为115600340034)2003600](1002000360050[=⨯=---=y (元).故 租金定为每套3600元时,获得的收入最大,最大收入为115600元. 2.平面图形由抛物线x y 22=与该曲线在点)1,21(处法线所围成,试求: (1)该平面图形的面积;(2)该平面图形绕x 轴旋转所成的旋转体的体积.【解析】:平面图形如图05-3所示,切点)1,21(A 处的切线斜率为21='=x y k ,由x y 22=得yy 1=',故A 点处的切线斜率 1121='='===y x y y k ,从而A 点处的法线斜率为-1, 法线方程为023=-+y x . 联立方程组⎪⎩⎪⎨⎧=-+=02322y x xy 得另一交点)3,29(-B(1) 把该平面图形看作Y 型区域,其面积为316)6223(2)23(1332132=--=⎥⎦⎤⎢⎣⎡--=--⎰y y y dy y y S ;(2) 根据抛物线的对称性知,该平面图形绕x 轴旋转所成的旋转体的体积等于平面图形OBC 绕x 轴旋转所成旋转体的体积,有故 ⎰⎰+--=--=292329233229022290)312349(ππ)23(π2πx x x xdx x xdx V xπ445]9481[π=-=. 五、证明题(6分)试证:当0>x 时,有xx x x 11ln 11<+<+. 【证明】:构造函数x x f ln )(=,它在)0(∞+,内连续, 当0>x 时,函数在区间]1,[x x +上连续,且xx f 1)(='. 故)(x f 在]1,[x x +上满足Lagrange 中值定理,存在)1,(ξ+∈x x , 使得)ξ()()1(f x f x f '=-+,)1ξ(+<<x x .x图05-3023=-y9而x f x 1ξ1)ξ(11<='<+,故有xx x x 1ln )1ln(11<-+<+, 即0>x 时,xx x x 11ln 11<+<+成立.。

2005年江苏省普通高校“专转本”统一考试高等数学参考答案

2005年江苏省普通高校“专转本”统一考试高等数学参考答案

ex 因为 y (1) = e , e = e + C ,所以 C = 0 ,故特解为 y = . x
21 、 证 明 : 令 f ( x ) = x 3 − 3 x + 1 , x ∈ [− 1,1] , 且 f ( −1) = 3 > 0 , f (1) = −1 < 0 ,
f (−1) ⋅ f (1) < 0 ,
∫∫ f ( x)dσ = ∫ dx ∫
1 D
u
x
1
f ( x)dy = ∫ ( x − 1) f ( x)dx ;
1
u
(2) F ' (u ) = (u − 1) f (u ) , F ' (2) = ( 2 − 1) f (2) = f ( 2) = 1 .
所求函数为: y = x 3 − 6 x 2 + 9 x + 2 . 23、 (1) S =

1 2 0
1 2 1 y dy = y 3 0 2 6
1
1 0
=
1 6
(2) V x = π

1 π (12 − 2 x)dx = π ( x − x 2 ) 2 = 0 4
24、解:积分区域 D 为: 1 ≤ y ≤ u , y ≤ x ≤ u (1) F (u ) =
1
=
π π
1 − ln(1 + x 2 ) 1 0 4 2 1 − ln 2 4 2
=
17、
∂z ∂2z '' '' = cos x ⋅ f 1' , = cos x( f 12 ⋅ 2 y ) = 2 y cos xf12 ∂x ∂x∂y
1 18、 l = {5,2,1} , B = {4,−3,0} , AB = { ,−4,2}

2005年浙江省普通高校“专升本”联考《高等数学(一)》试卷答案解析

2005年浙江省普通高校“专升本”联考《高等数学(一)》试卷答案解析

y
1 1 2 1 x 1
1 2
(1)n
n0
x 1n
2
(1)n
n0
(x 1)n 2n1
,因为
2
1
x 1 1 2
x 1,3,故
y
(1)n
n0
(x 1)n 2n1
,收敛域为: x 1,3
19.
解:微分方程
d2y dx 2
2
dy dx
y
x
对应的特征方程为:
r2
2r
1
0
特征根为: r1 r2 1,对应的齐次方程的通解为: y C1x C2 ex
dy d
dx d
2r3 cos 2 2r2 sin 2
r cot 2
(2) 3 r tan 2 2
解析: 当 是常数, r 是参数时, dy 3r2 sin 2 dr
dx dr
2r cos 2
,所以 dy dx
dy dr
dx dr
3r2 sin 2 2r cos 2
3 r tan 2 2
二、选择题: 本大题共 5 小题,每小题 4 分,共 20 分。
2. 1 解析: lim
1
lim x x2 4 lim x lim x2 4 1 1 1
2
x x(x x2 4) x 4x
x 4x x 4x 4 4 2
x t
3. (1)
y z
0 或者 0
x 1
y 0
z 0
或者
y
z
0 0
(t
为参数)
解析: 直线的方向向量为: s (1,0,0) ,且过原点,所以直线方程为: x y z ,然后 100

2005年河北专接本高等数学答案02

2005年河北专接本高等数学答案02

河北省2005年试卷数学(二)(财经类)参考答案 一、选择题 1.B解 设任意21,x x [)+∞∈,0,且21x x <,则f(x)由在[)+∞,0内严格单调增得)()(21x f x f <,于是再有)(x f 是()+∞∞-,上的奇函数,得12x x -<-,且)()(12x f x f -<-=0)()(21<+-x f x f ,即)(x f 在[)+∞,0上严格单增,故)(x f 在()+∞∞-,内严格单调增。

说明:原题为“)(x f 在[)+∞,0内严格单调增”。

如果不将左端点取成闭的,则本题无可选答案。

2.A这是第一个重要极限,注意趋向。

3、D解 因为a t f xf xg t x x )(lim )1(lim )(lim 0∞→→→==由)(x g 在0=x 连续当且仅当)0()(lim 0g x g x =→知,需且仅需a=0,所以选D4、D解 记 1)(-==x x f y 因为 [])1()1(lim lim 0f x f y x x -∆+=∆→∆→∆= )1111(lim 0---∆+→∆x x=x x ∆→∆0lim=0不存在,即f '不存在,故选c 5、A由判定极值的第二充分条件即得。

)(0'x f =0处为驻点, 0)(0''>x f 时在处取得极小值 0)(0''<x f 时在处取得极大值由题0)(0'≠x f 处不知正负,但可知在此处一定取得极值。

6、C解 因为被积函数为奇函数,故为0。

若)(x f 在[]a a ,-上连续且为偶函数,则有dx x f dx x f aaa⎰⎰=-0)(2)(若在上连续且为奇函数,则 有0)(=⎰-dx x f a a故有有0sin cos =⎰-dx x x n ππ7、B解 考察P 级数,当1>P 时收敛,当)10(11<<∑∞=p nn p时发散,当1=P 时为调和级数,发散。

2005年普通专升本高等数学真题

2005年普通专升本高等数学真题

2005年普通高等学校选拔 优秀专科生进入本科阶段考试试题高等数学一、单项选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。

不选、错选或多选者,该题不得分。

1.函数xx y --=5)1ln(的定义域为( )。

A.x>1B.x<5C.1<x<5D.1<x ≤5 2.下列函数中,图形关于y 轴对称的是( )。

A.y=xcosx B.13++=x x y C.222xxy --=D. 222xxy -+=3.当x →0时,12-xe等价的无穷小量是 ( )。

A.x B.x 2 C.2x D.2x 2 4.∞→n lim 1)21(++n n=( )。

A.eB.e 2C.e 3D.e 45.设函数f(x)=⎪⎩⎪⎨⎧=≠--0,0,11x a x xx在x=0处连续,则a=( )。

A. 1 B. -1 C. 21 D. 21-6.设函数f(x)在点x=1出可导,则21)1()21(lim =--∞→hf h f h ,则=)1('f ( )。

A. 21B. 21-C.41 D. 41-7.由方程y x e xy +=确定的隐函数x(y)的导数dxdy 为( )A.)1()1(x y y x -- B.)1()1(y x x y -- C.)1()1(-+y x x y D.)1()1(-+x y y x8.设函数f(x)具有任意阶导数,且()()[]x f x f n =)('=( )。

A.()[]1+n x f n B.()[]1!+n x f n C.()[]1)1(++n x f n D.()[]1)!1(++n x f n9.下列函数在给定区间上满足罗尔定理条件的是( )。

A.[]1,1,1)(2--=x x f B.[]1,1,)(-=-xxe x fC.[]1,1,11)(2--=xx f D. []1,1,)(-=x x f10.设)12)(1()('+-=x x x f ,),(+∞-∞∈x ,则在(21,1)内,f(x)单调( )。

2005年陕西高校专升本招生高等数学试题

2005年陕西高校专升本招生高等数学试题

2005年陕西高校专升本招生高等数学试题一. 单选题 (每题5分,共25 分)1. 设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f ,则0=x 是( ) A. 可去间断点 B. 跳跃间断点 C. 第二类间断点 D. 连续点 2.⎰='dx x f )3(( )A. c x f +)3(B.c x f +)3(31 C. c x f +)(3 D.c x f +)(313. 设由方程0),(=++bz y az x F 确定隐函数),(y x z z =,则yzb x z a ∂∂+∂∂= ( ) A. a B. b C. 1- D. 1 4. 下列级数为绝对收敛的是( ) A.n n n1)1(1∑∞=- B. ∑∞=-12)1(n nn C. ∑∞=-12)1(n nnD.nn n )23()1(0∑∞=- 5.=⎰⎰-dx e dy yx112( ) A.)11(21e - B. )11(21-e C. )11(2e - D. )11(2-e二. 填空题 (每题5分,共25 分)6. 已知)(x f 的定义域为[0,2], 则)21()21(-++x f x f 的定义域为__________. 7. 设e xm xx =+∞→3)1(lim ,则=m __________. 8. 设23)(23+-=x x x f ,则曲线)(x f y =的拐点是__________.9.dx x x x)1sin (1122⎰--+=___________.10. 设)cos(y x ez xy-+=,则=)1,1(|dz __________.三. 计算题 (每题9分.共81分)11. 计算.sin )1ln(lim2202xx dtt x x ⎰+→12. 已知参数方程 ⎩⎨⎧+-==)1ln(1arctan 2t y t x ,求.,|221dx yd dx dy t = 13. 求不定积分.1arctan 22dx xxx ⎰+ 14. 已知)(x f 是可导函数,且0)1(=f ,,311)(=⎰dx ex f 求dx x f xe x f )(1)('⎰.15. 已知xy v y x u v u f z =+==,),,(,f 具有二阶连续的偏导数,求.2y x z∂∂∂16. 已知曲线方程⎩⎨⎧==21x y xyz ,求在点(1,1,1)处曲线的切线方程和法平面方程. 17. 求曲线积分,22⎰+-Lyx xdyydx 其中L 为)0(222>=+a a y x 取逆时针方向. 18. 将函数24xxy +=展开为麦克劳林级数,并确定其定义域. 19. 求微分方程xxe y y y 244=+'-''的通解. 四. 应用与证明题 (20题11分,21题8分)20. 设抛物线,2bx ax y +=当0,10≥≤≤y x 时,已知它与直线1,0==x y 所围成的图形的面积为31.求b a ,的值,使此图形绕X 轴旋转一周而成的旋转体的体积最小. 21. 证明:若)(),(x g x f 在],[b a 上连续,在),(b a 内可导,,0)(,0)()(≠==x g b f a f 则至少存在一点),(b a ∈ξ,使.0)()(2)()(='+'ξξξξf g g f2005年陕西高校专升本招生高等数学试题答案一. 单选题1. D2. B3. C4. B5. A 二. 填空题6. ]23,21[ 7. 31 8. )0,1( 9. 2π10. )(dy dx e + 三. 计算题11. 21 12. 2|)2(|11-=-===t t t dx dy . )1(2112)2()(2222t t dt dx t dt ddx dy dx d dxy d +-=+-=-== 13. C x x x x +++-22)(arctan 21)1ln(21arctan14.dx x f xex f )(10)('⎰=32311|)(1)(1)(1)(=-=-=⎰⎰dx e xeexd x f x f x f 15. 2222112112)(f y x f f x f f yx z +⋅++⋅+=∂∂∂16. ⎪⎪⎩⎪⎪⎨⎧+-==⇒⎪⎪⎩⎪⎪⎨⎧=-=+⇒⎪⎩⎪⎨⎧==y x xz dx dz x dx dyx dx dy x dx dz y dx dy z x y x yz 222122211,在(1,1,1)处 3,2)1,1,1()1,1,1(-==dx dz dx dy, 切向量)3,2,1(-=T 切线为312111--=-=-z y x 法平面为0)1(3)1(2)1(1=---+-⋅z y x 即032=-+z y x 17. 不能用格林公式. L:π20,sin ,cos ≤≤==t t a y t a x 有.2cos sin 202222222⎰⎰-=--=+-Ldt a ta t a yx xdy ydx ππ 18. )2,2(,2)1()2()1(4)2(1144112022-∈-=-⋅=+⋅=+=+∞=+∞=∑∑x x x x x xx x y n n n n n nn 19. 特征根221==r r ,齐次方程通解为x xxe C e C Y 2221+=.设非齐次方程的特解形式为xeb ax x y 22)(+=*,代入非齐次方程比较系数得:0,61==b a .故非齐次方程的通 解为x xxe x xeC e C y 2322216++= 四. 应用题与证明题20. 有3123)(102=+=+⎰b a dx bx ax ,)325()(22122b ab a dx bx ax V ++=+=⎰ππ 因)1(32a b -=,故)94954514(2+-=a a V π,令0='V ,得2825=a ,又 04528)2825(>=''V ,于是141,2825==b a 时旋转体的体积最小. 21. 令)()()(2x g x f x F =,则)(x F 在],[b a 上连续,在),(b a 内可导.0)()(==b F a F ,由 罗尔定理知,至少存在),(b a ∈ξ使0)(='ξF , 0)()()(2)()(2='+'ξξξξξf g g g f即.0)()(2)()(='+'ξξξξf g g f。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档