2020年成人高考专升本高等数学复习资料

合集下载

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020年成人高考专升本高等数学二知识点复习第一章:极限与连续1-1、极限的运算1、极限的概念(1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于f(x)=A一个常数A,则称A为函数f(x)当x→x0时的极限,记作limx→x0(2)左极限、右极限;在某点极限存在,左右极限存在且唯一。

limf(x)=Ax→x0−f(x)=Alimx→x0+2、无穷小量与无穷大量无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则f(x)=0称在该变化过程中, f(x)为无穷小量,记作limx→x0无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越f(x)=∞大,则称在该变化过程中, f(x)为无穷大量,记作limx→x03、无穷小量与无穷大量的关系为无穷小量;在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1f(x)为无穷大量;在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1f(x)4、无穷小量的性质性质1:有限个无穷小量的代数和仍是无穷小量★性质2:无穷小量与有界函数的积仍是无穷小量5、无穷小量的比较与替换定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0=0,则称β是α比较高阶的无穷小量(1)如果limβα(2)如果limβα=∞,则称β是α比较低阶的无穷小量(3)如果lim βα=c ≠0,则称β是与α同阶的无穷小量(4)如果lim βα=1,则称β与α是等价的无穷小量★常见的等价无穷小量:当x →0时,x ~sin x ~tan x ~ arc sin x ~ arc tan x ~ e x −1 ~ ln (1+x) 1−cos x ~12x 2★★6、两个重要极限 (1)limx→0sin x x=1(2)lim x→∞(1+1x )x=e 或lim x→0(1+x)1x=e★★7、求极限的方法 (1)直接代入法:分母不为零 (2)分子分母消去为0公因子 (3)分子分母同除以最高次幂(4)利用等价代换法求极限(等价无穷小) (5)利用两个重要极限求极限 (6)洛必达求导法则(见第二章)1-2、函数的连续性1、函数在某一点上的连续性定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量∆x 趋近于0时,相应的函数改变量∆y 也趋近于0,即lim ∆x→0[f (x 0+∆x )−f (x 0)]=0,则称函数y =f(x)在x 0处连续。

成人高考(专升本)高等数学(一)知识点复习资料

成人高考(专升本)高等数学(一)知识点复习资料

它们是作为相应三角函数的反函数定义出来的,由于
[答]
.
,y=cosx在定义域内不单调,所以对于
2.初等函数
1.直线的倾角和斜率:

2.直线的斜截式方程: 3.两 直 线 的 平 行 与 垂 直 : 己 知 两 条 直 线
时,函数
的左极限是 A,记作

所谓初等函数是指由基本初等函数经过有限次的四则
,只考虑
母 y换成 x得
(1)各组函数中,两个函数相等的是
3)对分段函数求函数值时,不同点的函数值应代入相 结论:
应范围的公式中去求;
这就是
的反函数。
A.
4)分段函数的定义域是各段定义域的并集。
(1)直接函数
与它的反函数 y=

例 4.分段函数
图形,必定对称于直线 y=x(一般地,二者是不同的函
B.
数,其图形是不同的曲线);
(2)
是微积分中常用的指数函数。 4.对数函数
例如,匀速直线运动路程公式 示速度)
(其中 v表 内自变量 x的不同值,函数不能用一个统一的公式表示, 是 一 个 函 数 , 则 称 它 为 而是要用两个或两个以上的公式来表示。这类函数称为
的反函数,记为
自由落体运动
(其中 g为重力加速度)
“分段函数”。
3.了解函数
与其反函数
之间的关
系(定义域、值域、图像),会求单调函数的反函数。
4.熟练掌握函数的四则运算与复合运算。
5.掌握基本初等函数的性质及其图像。
6.了解初等函数的概念。
7.会建立简单实际问题的函数关系式。
(4)设
,则
例 5.函数的性质
它的定义域是

2020年最新成人高考高升专数学资料

2020年最新成人高考高升专数学资料

概率和初步统计1、平均数和方差(1)平均数,假设三个数字1,2,3,平均数是所有数字相加除以数字个数,(2)方差,假设三个数字1,2,3,平均数是所有相加除以数字个数,,方差是用每一个数字减去平均数得到的差的平方相加,再除以数字个数,。

这部分需要先计算平均数,再根据平均数计算得出方差。

应试指导:每年都会出一道平均数或方差的填空题4分,平均数简单而容易理解,而且出题概率最高,同学们要尽量认真仔细计算核对,要用计算器验算两遍答案都相同才可以,确保拿到这4分。

2、概率(1)等可能事件的概率:抛硬币哪一面朝上的概率是一样的,我们又把这样的两个事件叫做等可能事件。

等可能事件概率的公式就是基本事件个数/基本事件总数。

如:抛硬币,要么字面朝上,要么花面朝上,这有两种可能,而每种可能的都是相同的1/2;掷骰子,只有6个数字,每种可能都是相同的1/6.(2)互斥事件概率:两件事不能同时发生,我们叫互斥事件,相互排斥不会同时发生,互斥事件概率我们用两个事件的自己发生概率相加计算。

如:掷骰子得到5点的概率是1/6,得到6点的概率也是1/6,那么得到5点或者6点的概率就是1/6+1/6=1/3.(3)独立事件:事件A概率的发生对事件B概率的发生没有影响。

独立事件概率我们用两个事件的自己发生概率相乘计算。

如:我们第一次掷骰子5点的概率是1/6,第二次5点的概率也是1/6,那么两次掷骰子都是5点的概率就是1/36。

(4)条件事件(非独立):在发生事件B的条件下发生事件A的概率称为事件A关于事件B的条件概率。

如:一个箱子里面有3个红球和2个黑球,我们要知道先抓到1红球,在抓到1黑球的概率,在先抓到一个红球的前提下再抓到一个黑球就是条件事件,先抓到红球是2个球中抓到一个红球,概率是3/5,我们再抓黑球的时候要减去已经发生的部分,5个球抓走了一个红球还有4个球,那么再抓到一个黑球的概率就是2/4(4个球中2个黑球),所以先抓到1红球,在抓到1黑球的概率,是3/5×2/4=3/10.应试指导:每年至少出一道概率的选择题,2016年出了两道,每题五分,相当于5-10分,这个部分也比较简单,等可能事件概率出题率最高,其次是独立事件,只要能理解,计算都是简单的计算,选择题还有选项可以参考,还是很容易拿分的,同学们一定要好好把握。

专升本资料成人高考(专科起点升本科)《高等数学(一)》

专升本资料成人高考(专科起点升本科)《高等数学(一)》

2020年全国各类成人高考(专科起点升本科)《高等数学(一)》考点精讲及典型题(含历年真题)详解
完整版>精研学习䋞>免费试用20%资料
全国547所院校视频及题库资料
考研全套>视频资料>课后答案>往年真题>职称考试
目录
第1章极限与连续
1.1考点精讲
1.2典型题(含历年真题)详解
第2章一元函数微分学
2.1考点精讲
2.2典型题(含历年真题)详解
第3章一元函数积分学
3.1考点精讲
3.2典型题(含历年真题)详解第4章空间解析几何
4.1考点精讲
4.2典型题(含历年真题)详解第5章多元函数微积分学
5.1考点精讲
5.2典型题(含历年真题)详解第6章无穷级数
6.1考点精讲
6.2典型题(含历年真题)详解第7章常微分方程
7.1考点精讲
7.2典型题(含历年真题)详解。

2020年成人高等学校招生全国统一考试专升本 高等数学(一)

2020年成人高等学校招生全国统一考试专升本 高等数学(一)

6.设函数y =x +2s i n x ,则d y =( )A .(1+c o s x )dx B .(1+2c o s x )dx C .(1-c o s x )dx D .(1-2c o s x )d x 7.设函数z =x 2-4y 2,则d z =( )A .x d x -4y d yB .x d x -y d yC .2x d x -4y d yD .2x d x -8y d y8.方程x 2+y 2-z 2=0表示的二次曲面是( )A .圆锥面B .球面C .旋转抛物面D .柱面9.l i m x ң1x 2+x +1x 2-x +2=( )A .2B .1C .32D .1210.微分方程y '+y =0的通解为y =( )A .C x e xB .C x e -x C .C exD .C e-x 第Ⅱ卷(非选择题,共110分)得分评卷人二、填空题(11~20小题,每小题4分,共40分)11.ʏ1-ɕe xd x =.12.设函数y =e 2x,则d y =.13.l i m x ң0s i n x2x2=.14.ʏ(3x +2s i n x )dx =.15.曲线y =a r c t a n (3x +1)在点0,π4处切线的斜率为.16.若函数f (x )x 2-2,x ɤ0,a +s i n x ,x >0在x =0处连续,则a =.17.过点(-1,2,3)且与直线x -12=y +23=z -24垂直的平面方程为.18.函数f (x )=x 3-6x 的单调递减区间为.19.区域D ={(x ,y )|1ɤx ɤ2,1ɤy ɤx 2}的面积为.20.方程y 3+l n y -x 2=0在点(1,1)的某邻域确定隐函数y =y (x ),则d y d xx =1=.得分评卷人三、解答题(21~28题,共70分.解答应写出推理㊁演算步骤) 21.(本题满分8分)计算ʏx s i n x d x .22.(本题满分8分)已知函数f (x )=e xc o s x ,求f ᵡπ2.23.(本题满分8分)计算l i m x ң01-c o s x -x 22s i n 2x.24.(本题满分8分)计算ʏ1031+x dx.参考答案一㊁选择题1.ʌ答案ʏʌ解析ɔʏ1-ɕex d x =ex1-ɕ=e -0=e.12.ʌ答案ɔ2e 2xdx ʌ解析ɔy '=(e 2x )'=2e 2x ,故d y =y'd x =2e 2xd x .13.ʌ答案ɔ1ʌ解析ɔx ң0时,x 2ң0,故有l i m x ң0s i n x 2x2=1.14.ʌ答案ɔ32x 2-2c o s x +C ʌ解析ɔʏ(3x +2s i n x )dx =32x 2-2c o s x +C .15.ʌ答案ɔ32ʌ解析ɔy '=[a r c t a n (3x +1)]'=31+(3x +1)2,故曲线在点0,π4处的切线斜率为y'x =031+(3x +1)2x =0=32.16.ʌ答案ɔ-2ʌ解析ɔ由于f (x )在x =0处连续,故有l i m x ң0-f (x )=l i m x ң0+f (x )=f (0),而f (0)=-2,l i m x ң0-f (x )=l i m x ң0-(x 2-2)=-2,l i m x ң0+f (x )=l i m x ң0+(a +s i n x )=a ,因此a =-2.17.ʌ答案ɔ2x +3y +4z =16ʌ解析ɔ已知直线与所求平面垂直,故所求平面的法向量为n =(2,3,4),因此所求平面的方程为2(x +1)+3(y -2)+4(z -3)=0,即2x +3y +4z =16.18.ʌ答案ɔ(-2,2)ʌ解析ɔ易知f '(x )=3x 2-6,令f '(x )<0,则有-2<x <2,故f (x )的单调递减区间为(-2,2).19.ʌ答案ɔ43ʌ解析ɔ区城D 的面积为ʏ21(x 2-1)d x =13x 3-x21=43.20.ʌ答案ɔ12ʌ解析ɔ方程两边对x 求导,得3y 2㊃d y d x +1y ㊃d y d x -2x =0,即d y d x =2x y 3y 3+1,故有d y d x x =1=2x y 3y 3+1x =1=2ˑ1ˑ13ˑ13+1=12.三、解答题21.ʏxs i n x d x =-ʏx d (c o s x )=-(x c o s x -ʏc o s xd x )=-xc o s x +ʏc o s xd x =-xc o s x +s i n x +C .22.f'(x )=e x c o s x +e x ㊃(c o s x )'=e xco s x -e xs i n x =e x(c o s x -s i n x ),fᵡ(x )=e x (c o s x -s i n x )+e x (c o s x -s i n x )'=e x(c o s x -s i n x )+e x(-s i n x -c o s x )=-2e xs i n x ,故有f ᵡπ2=-2e π2s i n π2=-2e π2.23.l i m x ң01-c o s x -x 22s i n 2x =l i m x ң01-c o s x 2s i n 2x -l i m x ң0x 22s i n 2x=l i m x ң012x 22x 2-12l i m x ң0x 2x 2=14-12=-14.24.ʏ1031+x d x =ʏ10(1+x )13d (x +1)=11+13(1+x )13+110=34(1+x )4310=34(243-1).25.原方程对应的特征方程为r 2-r -2=0,。

2020成人高考专升本高数一复习题

2020成人高考专升本高数一复习题

2020年成人高考专升本高等数学一复习试卷构成分析一、题型分布:试卷分选择、填空、解答三部分,分别占40分、40分、70分二、内容分布难点:隐函数求导、全微分、多元函数极值、常微分方程复习方法:1、结合自身情况定目标2、分章节重点突破,多做题,做真题第一部分 极限与连续题型一:求极限方法一:直接代入法(代入后分母不为0都可以用) 练习:1. 2limπ→x xx sin 12-=_______ 2. x x x sin lim 1→=______方法二:约去为零公因子法练习1. 12lim 221--+→x x x x =______ 练习2、lim x→1x 4−1x 3−1=练习3. lim x→1√5x−4−√xx−1 =方法三:分子分母同时除以最高次项(∞∞) 练习1. ∞→x lim1132-+x x =_______ 2. 112lim 55-+-∞→x x x x =______ 练习3.lim x→+∞(√x 2+2x −√x 2−1)方法四:等价代换法(x →0时,sinx~x tanx~x arcsinx~x arctanx~x ln(1+x)~x 1−cos x~12x 2)(等价代换只能用于乘除,不能用于加减)练习1. 1lim →x 1)1sin(2--x x =练习2. 0lim →x x x x sin cos 1-=___ ____ 3. 1)1arcsin(lim 31--→x x x =______方法五:洛必达法则(分子分母求导)(∞∞)型 或(00)型 或 其他变形形式练习1. ∞→x lim 353-+x x =_______ 2. 112lim 22-+-∞→n n n n =______练习:3. 1lim →x 1ln --+x e e x x =_______ 4. 12lim 221--+→x x x x =______两个重要极限(背2个重要极限)练习1.1lim→x 22)22sin(--x x =__ ____ 2. xxx 42sin lim 0→=____ __练习3.0lim →x x x 4sin 2sin =__ _ 4. xxx 2tan lim 0→=____ __(练习1-4也可以用等价无穷小法)练习5.∞→x lim x x 2)11(+=__ ____ 6.∞→x lim x x )211(+=__ ____练习7.∞→x lim x x )231(+=__ ____ 8. ∞→x lim x x3)211(-=__ ____练习9.0lim →x xx 1)21(+ =__ ____ 10. 0lim →x xx 21)1(-=__ ____无穷小量乘以有界函数 = 无穷小量 练习1. 0lim →x xsinx1=________ 2. ∞→x lim x 1sinx=________(什么是无穷小量?高阶无穷小,低阶无穷小,等阶无穷小,等价无穷小?)题型二:连续性问题(可导/练习1. 函数⎩⎨⎧<+≥+=1,1,1ln )(2x x ax x x x f 在x=1处连续,则a=______练习2. 函数⎪⎩⎪⎨⎧<+≥+=0,0,)1()(1x x a x x x f x 在x=0处有极限,则a=______练习3. 函数⎩⎨⎧<+≥+=2,2,1)(2x x b x ax x f 在x=2处可导,则a=______, b=______第二部分 一元函数微分学题型一:求导(背导数公式、导数的四则运算,复合函数求导公式)(y’=f’(x)=dxdy这三种是一个意思, 如果求微分dy ,就是dy= y’dx) 练习1. f(x)=sinx+2cosx , 则f’(2π)=__ ____练习2. y=xlnx , 则dy=___ ___练习3. y=x x cos 12+ , 则dxdy=___ ___练习4. y=x 4cosx +x1+ e x, 则y’=__ ____ 练习5. y=cos 4x, 则y’=___ 6. y=sin (x 3+1), 则dy=___ ___ 练习7. y=x x +2, 则y’=__ ____ 8. y=)ln(x x +, 则dy=___ ___题型三中,一定要注意运算率 (kv)’=______ (uv)’=______ )'(vu=_____ f(g)’=_____ 一定要背好导数公式,在考试中占40分左右题型二:高阶导数与隐函数的求导练习1. y=x 3+lnx, 则y”=______ 2. y=cos2x, 则y (4)=______ 练习3. y=ln (2x+1), 则y”=______ 4. y=xe 2x , 则y”(1)=______ 练习5. 2x 3+xy++y+y 2=0, 则dx dy =______ 6. e x +y=sinxy, 则dxdy =______题型三. 在某点处的切线或法线(斜率或方程)练习1.曲线y=2x 3在点(1,2)处的切线的斜率为_______, 切线方程为___________ 练习2. 曲线y=sin(x+1)在x=-1处的切线方程为___________ 练习3. 若y=ax 2+2x 在x=1处的切线与y=4x+3平行,则a=________ 练习4.双曲线y =1x 在点(12,2)处的法线方程为题型四:求驻点、极值点(极值)、拐点、单调区间、凹凸区间1.求驻点、拐点、极值点练习1. 曲线 y=x 3-3x 的驻点为___________ 极值点为__________ 拐点为_______2.求单调区间与极值(大题) 练习2.求1431)(3+-=x x x f 的单调区间、极值、凹凸区间和拐点(答案见11年高考)练习3. 若f(x)=ax 3+bx 2+x 在x=1处取得极大值5,求a,b第三部分 一元函数积分学题型一:求不定积分基础计算(背好公式:原函数、不定积分的性质、基本积分公式 ) 练习1:f(x)=3e 2x 则⎰dx x f)('=___ ___练习2:f(x) 的一个原函数是x 3,则f’(x)=_ __ 练习3:x 2是f(x)的一个原函数,则f(x)=__ ___ 练习4:⎰+)21(dx d x dx=__ 练习5:⎰+dx x x )(=______练习6:⎰dx x )1(2=______练习7:⎰++++dx e xx x x )11cos 2(=______题型二:凑微分法求积分 练习1:⎰2x xe dx=_ __ 练习2:⎰+12x e dx=_ __练习3:⎰+x 321dx=__ 练习4:⎰+22x xdx=__ 练习5:⎰+)2cos(2x x dx=___ 练习6:⎰xxln dx=___ 练习7:⎰xx )sin(ln dx=___ 练习8:⎰+12x x dx=__ _题型三:分部积分法求积分 公式:______________________ 练习1:⎰x ln dx=___ 练习2:⎰x x ln dx=___练习3:⎰x e x 2dx=___ 练习4:⎰x x sin dx=___练习5:⎰x x sin 2dx=___题型四: 求定积分基础计算练习1:⎰-22sin ππx dx=_ __ 练习2:⎰+121()x dx=__ _练习3:⎰+1021(dxd )x dx=__ _ 练习4:⎰e dx x11=_ __练习5:=则⎰⎩⎨⎧≤<≤≤=202f(x)dy ,21,210,)(x x x x x f _________ 练习6:⎰ex x 1ln dx=___题型五:广义积分 练习1:⎰+∞12x e dx=___ 练习2:⎰∞-+0211x dx=___题型六:平面图形的面积与旋转体的体积(有可能大题)练习1. 设D 为曲线y=1-x 2, 直线y=x+1及x 轴所围成的平面区域,如图 (1)求平面图形的面积(2)求平面图形D 绕x 轴旋转一周所成旋转体的体积V x还有一道2013年26题见课本第四部分 空间解析几何题型一: 求直线方程或法向量练习1、一平面过点(1,-1,0)且与向量{2,1,3}垂直,则该平面方程应为= 练习2、一平面过点(1,0,2)且与平面2x −y +4z −1=0平行,则该平面方程为 练习3、已知两平面π1:kx −2y +3z −2=0与平面:π2:3x −2y −z +5=0垂直;则k= 练习4、过两点A (1,2,1),B (-1,3,0)的直线方程为 练习5、直线x−13=y+1−1=z−21与平面x+2y -z+3=0位置关系是( )A 、直线垂直于平面B 、直线平行于平面,但不在平面上C 、直线与平面斜交D 、直线在平面内题型二:二次曲面练习1、试确定球面x 2+y 2+z 2−2x +2y +4z +2=0的球心与半径。

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020成人高考专升本高等数学二知识点汇总复习(自编)本文介绍了成人高考专升本高等数学二的第一章:极限与连续,其中包括极限的概念、无穷小量与无穷大量、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的比较与替换、两个重要极限和求极限的方法。

另外,还介绍了函数在某一点上的连续性。

极限的概念是指当自变量趋近于某一值时,函数值趋近于某一常数。

左极限、右极限存在且唯一时,称该点极限存在。

无穷小量和无穷大量是指在某一变化过程中,函数值趋近于零或无穷大的量。

它们之间有一定的关系,比如同阶无穷小量可以相互替换,等价无穷小量的极限相等。

函数的连续性是指函数在某一点上的极限等于函数在该点的函数值。

如果函数在某一点上连续,则该点的左右极限存在且等于该点的函数值。

求极限的方法包括直接代入法、分子分母消去公因子、分子分母同除最高次幂、利用等价代换法、利用两个重要极限和洛必达求导法则等。

最后,需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要删除和改写。

第二章一元函数微分学2-1 导数与微分1.导数概念在函数y=f(x)的某个邻域内,当自变量x在点x处的改变量为Δx时,相应的函数改变量Δy=f(x+Δx)-f(x)。

如果极限lim(Δy/Δx)存在,则称此极限为函数y=f(x)在x处的导数,表示形式如下:lim(Δy/Δx) Δx→0存在,则称此极限为函数y=f(x)在x处连续。

2.常见的求导公式1) (c)'=02) (xa)'=ax^(a-1)3) (log_a x)'=xlna4) (ln x)'=1/x5) (ax)'=a^xlna6) (e^x)'=e^x7) (sin x)'=cos x8) (cos x)'=-sin x 3.导数的运算法则1) (u±v)'=u'±v'2) (uv)'=u'v+uv'3) (cu)'=cu'4) (v/u)'=(u'v-uv')/u^24.复合函数求导如果函数u=φ(x)在点x处可导,函数y=f(u)在对应点u处也可导,则复合函数y=f[φ(x)]在点x处可导,且有:dy/dx)=(dy/du)(du/dx)5.隐函数求导隐函数:x与y之间的函数关系是由一个方程F(x,y)=0来确定。

成人高考专升本高等数学(一)复习资料

成人高考专升本高等数学(一)复习资料

第一阶段(3月初)主要任务是全面复习,夯实基础。

这个阶段,要按照考试大纲所列复习考试内容,全面系统地复习基础知识,对基本概念与基本原理狠下功夫,对两者的理解要深、透、不留死角。

复习基础知识时要讲究方法,注意各种知识点的归纳与类比、分析与综合,注意各知识点之间纵向与横向的联系,建立基础知识框架,总体把握基础知识的脉络。

第二阶段(8月初)主要任务是重点复习,强化练习。

这个阶段,要抓住复习重点,加强考试热点、常考知识点的复习,同时强化练习,掌握基本方法、基本技能,提高解题能力。

第三阶段(9月底10月初)主要任务是冲刺复习,模拟测试。

这个阶段,在重点复习的同时,要进行模拟测试。

通过模拟测试能发现自己的薄弱环节,从而拾遗补缺,针对薄弱环节重点复习。

同时,通过模拟测试,有利于熟悉考试情景,合理安排答题时间,调整应考心里,从而提高应试能力。

第一章极限和连续第一节极限[复习考试要求]1.理解极限的概念(对极限定义、、等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

第二节函数的连续性(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处连续性的方法 (2)会求函数的间断点。

(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单的命题。

(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限 精选考题例题1 设,0≠b 当0→x 时,bx sin 是2x 的( ) 高阶无穷小量 等阶无穷小量 同阶但不等价无穷小量 低阶无穷小量 【答案】 D【考点】 本题考查了无穷小量的比较的知识点. 【解析】 因为,1lim 1lim sin lim sin lim 00020∞==⋅⋅=→→→→x b x b bxbx x bx x x x x 故bx sin 是比2x 低阶的无穷小量,即bx sin 是2x 的低阶无穷小量.例题2 函数22)(-+=x x x f 的间断点为=x _______________. 【答案】 2【考点】 本题考查了函数的间断点的知识点. 【解析】 函数22)(-+=x x x f 在2=x 处无定义,故2=x 为)(x f 的间断 点.例题3 计算.1)1sin(lim 21--→x x x 解:.2111lim 1)1(lim 1)1sin(lim 12121=+=--=--→→→x x x x x x x x 第二章 一元函数微分学第一节 导数与微分(一)导数与微分(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义要求函数在一点处的导数的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档