2007希望杯全国数学邀请赛答案(六年级

合集下载

2007年第5届小学“希望杯”全国数学邀请赛试卷(五年级第1试)

2007年第5届小学“希望杯”全国数学邀请赛试卷(五年级第1试)

2007年第5届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、填空题1.(3分)2007÷2007=_________.2.(3分)对不为零的自然数a,b,c,规定新运算“☆”:☆(a,b,c)=,则☆(1,2,3)=_________.3.(3分)判断:“小明同学把一张电影票夹在数学书的51页至52页之间”这句话是_________的.(填“正确”或“错误”)4.(3分)已知a,b,c是三个连续自然数,其中a是偶数.根据图中的信息判断,小红和小明两人的说法中正确的是_________.5.(3分)某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是_________.6.(3分)当p和P3+5都是质数时,P5+5=_________.7.(3分)下列四个图形是由四个简单图形A、B、C、D(线段和正方形)组合(记为*)而成.则图中①~④中表示A*D的是_________.(填序号)8.(3分)下面四幅图形中不是轴对称图形的是_________.(填序号)(注:如果一个图沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形).9.(3分)小华用相同的若干个小正方形摆成一个立体(如图).从上面看这个立体,看到的图形是图①~③中的_________.(填序号)10.(3分)图中内部有阴影的正方形共有_________个.11.(3分)下图中的阴影部分BCGF是正方形,线段FH长18厘米,线段AC长24厘米,则长方形ADHE的周长是_________厘米.12.(3分)如图熊猫图案的阴影部分的面积是_________平方厘米.(注:阴影部分均由半圆和正方形组成,图中一个小正方形的面积是1平方厘米,π取3.14)13.(3分)小红看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,第三天看了10页正好看完,这本书有多少页?14.(3分)有一副扑克牌中(去掉大、小王),最少取_________张牌就可以保证其中3张牌的点数相同.15.(3分)如图,摩托车里程表显示的数字表示摩托车已经行驶了24944千米,经过两小时后,里程表上显示的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千米,则摩托车在这两小时内的平均速度是_________千米/时.16.(3分)一名搬运工从批发部搬运500只瓷碗到商店,货主规定:运到一只完好的瓷碗得运费3角,打破一只瓷碗赔9角,结果他领到运费136.80元.则在运输中搬运工打破了_________只瓷碗.17.(3分)李经理的司机每天早上7点30分到达李经理家接他去公司.有一天李经理7点从家里出发步行去公司,路上遇到从公司按时接他的车,再乘车去公司,结果比平常早到5分钟.则李经理乘车的速度是步行速度的_________倍.(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)18.(3分)将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有_________种不同的放法.19.(3分)在算式“=1”中,不同的汉字表示不同的自然数,则“希+望+杯”=_________.20.(3分)A、B两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分.如果甲、乙从A地,丙从B地同时出发相向而行,那么,在_________分钟或_________分钟后,丙与乙的距离是丙与甲的距离的2倍.2007年第5届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、填空题1.(3分)2007÷2007=.考点:分数除法;整数、假分数和带分数的互化.分析:2007===,又根据分数除法法则,甲数除以乙数(0除外),等于甲数乘乙数的倒数.所以,2007÷2007=2007×=解答:解:2007÷2007=2007÷=2007÷=2007×=;故答案为2007÷2007=.点评:完成本题时要细心,能用简便方法的用简便方法.2.(3分)对不为零的自然数a,b,c,规定新运算“☆”:☆(a,b,c)=,则☆(1,2,3)=.考点:定义新运算.分析:先看新的运算即“☆”的运算意义是什么;再看新的运算的运算方法是什么,根据把此新的运算方法,运用到所求的式子,即可得到答案.解答:解:☆(1,2,3),=,=÷7,=;故答案为:.点评:解答此题最重要的是,彻底弄清楚新运算符号的意义,然后再利用新运算方法,来计算出题中要求的答案.3.(3分)判断:“小明同学把一张电影票夹在数学书的51页至52页之间”这句话是错误的.(填“正确”或“错误”)考点:页码问题.分析:因为书本第一页不和第二页相对,所以51页应和50页相对,不和52页相对解答:解:因为书本第一页不和第二页相对,所以以后出现的相对的两页偶数页在前面.51页应和50页相对,不和52页相对.所以“小明同学把一张电影票夹在数学书的51页至52页之间”这句话是错误的.故答案:错误.点评:此题重点弄清书本中的第一页不和第二页相对.4.(3分)已知a,b,c是三个连续自然数,其中a是偶数.根据图中的信息判断,小红和小明两人的说法中正确的是小红.考点:奇偶性问题.分析:因为a,b,c是三个连续自然数,a是偶数,则b是奇数,c是偶数,那么a+1、b+2、c+3、肯定都是奇数,根据奇数的性质,n个奇数相乘仍是奇数可知,(a+1)×(b+2)×(c+3)的积一定是奇数.解答:解:根据奇数和偶数的性质可知,a+1、b+2、c+3、肯定都是奇数,则:(a+1)×(b+2)×(c+3)的积一定是奇数.故答案为:小红.点评:完成本题的关健是根据奇偶数的性质首先定a+1、b+2、c+3三个数是奇数还是偶数.5.(3分)某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是41.考点:求几个数的最小公倍数的方法;有余数的除法.分析:由某个自然数除以2余1,除以4余1,除以5也余1可以知道,这个数是2、4、5的公倍数加1.可以先求得它们的最小公倍数是20,20×1+1=21,但是21÷3余数不是2不符合题意,20×2+1=41,41÷3余数为2,由此解得.解答:解:2、4、5的最小公倍数是20,20×1+1=21,但是21÷3余数不是2不符合题意,20×2+1=41,41÷3余数为2,符合题意.故答案为41.点评:解答此类问题要先从共性分析,再逐一探讨特例,注重逻辑推理在数学学习的作用.6.(3分)当p和P3+5都是质数时,P5+5=37.考点:合数与质数;有理数的乘方.分析:因为p3+5仍是质数,且p3+5>2,所以p3+5为奇数,根据偶数+奇数=奇数,得p3为偶数,所以p一定偶数,又因为p是质数,所以p=2,由此解答.解答:解:p=2,p3+5=23+5=8+5=13;p5+5=25+5=32+5=37;故答案为:37.点评:解答此题关键是分析一个数的立方加上5的和是质数,5是质数也是奇数,这个数的立方一定是偶数,因为在质数中只有2是偶数,这样问题就得到解决.7.(3分)下列四个图形是由四个简单图形A、B、C、D(线段和正方形)组合(记为*)而成.则图中①~④中表示A*D的是④.(填序号)考点:图形的拆拼(切拼).分析:分析上面的四个图形的组合,从而分离出四个简单图形,如下图所示:A是竖线,B是大正方形,C是横线,D是小正方形.解答:解:A与D的组合是竖线和小正方形,很明显是④.答:则图中①~④中表示A*D的是④.(填序号)故答案为:④.点评:此题考查了图形的拆拼(切拼),通过两个组合图形中共有的图形,分离出简单图形,是解决此题的关键.8.(3分)下面四幅图形中不是轴对称图形的是③,④.(填序号)(注:如果一个图沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形).考点:轴对称.分析:依据轴对称图形的定义即可作答.解答:解:图①、②都符合轴对称图形的定义,所以它们都是轴对称图形;图③、④都不符合轴对称图形的定义,所以它们都不是轴对称图形.故答案为:③、④.点评:此题主要考查轴对称图形的定义.9.(3分)小华用相同的若干个小正方形摆成一个立体(如图).从上面看这个立体,看到的图形是图①~③中的③.(填序号)考点:从不同方向观察物体和几何体.分析:第一个图形,是从前面看到的;第二个图形是从右面看到的;第三个图形是从上面看到的,由此得出结论.解答:解:看到的是5个正方形,上边有4个,右下角有1个;故答案是第三个图形;故答案为:③.点评:此题应联系生活实际,进行认真观察,逐图进行分析,进而得出正确结论.10.(3分)图中内部有阴影的正方形共有26个.考点:组合图形的计数.分析:按照顺序首先数出1个面积单位的是8个,4个面积单位的是8个,9个面积单位的8个,16个面积单位的是2个,然后合并即可得出答案.解答:解:8+8+8+2=26(个);答:中内部有阴影的正方形共有26个.故答案为:26.点评:出题的解答首先分类进行计算,养成按照一定顺序进行分类观察思考,通过观察思考探寻事物的规律.11.(3分)下图中的阴影部分BCGF是正方形,线段FH长18厘米,线段AC长24厘米,则长方形ADHE的周长是84厘米.考点:巧算周长.分析:设BC=CG=GF=FB=AF=DH=a,AB=EF=b,CD=GH=c,FH=FG+FH=a+c=18,AC=AB+BC=b+a=24,ADHE周长=4a+2b+2c=2(FH+AC)=84cm.解答:解:(18+24)×2=84(厘米),答:长方形ADHE的周长是84厘米.故答案为:84.点评:此题解答的关键是根据要求的问题,在题中进行分析、推理,等量代换为已知数据,然后进行巧算,得出结论.12.(3分)如图熊猫图案的阴影部分的面积是54.595平方厘米.(注:阴影部分均由半圆和正方形组成,图中一个小正方形的面积是1平方厘米,π取3.14)考点:组合图形的面积.分析:根据题干:图中一个小正方形的面积是1平方厘米,那么每个小正方形的边长是1厘米,由可得出圆形和半圆形的半径,在根据圆的面积公式进行计算,即可得到答案.解答:解:3.14×2.52×2+3.14×2.52﹣3.14×12×2+2=19.625×2+19.625﹣3.14×2+2=39.25+19.625﹣6.28+2=58.875﹣6.28+2=52.595+2=54.595(平方厘米)答:熊猫图案的阴影部分的面积是54.595平方厘米.点评:此题主要考查的是圆的面积.13.(3分)小红看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,第三天看了10页正好看完,这本书有多少页?考点:逆推问题.分析:此题抓住最后第三天看的页数是10页正好看完,向前逆推:(1)根据第二天看了余下的一半又10页,可知:第三天看的10页是第一天余下的一半少10页,所以第一天余下的页数的一半就是:10+10=20页,所以第一天余下的页数是20×2=40页;(2)根据第一天看了这本书的一半又10页,说明这40页是这本书的一半少10页,所以这本书的一半就是40+10=50页,所以这本书的页数是50×2=100页.解答:解:根据题干分析可得:[(10+10)×2+10]×2,=[40+10]×2,=50×2,=100(页),答:这本书有100页.点评:此类题目是考查、培养学生的逆向思维的能力,要弄清题意找准等量关系,抓住最后的已知数10页正好看完,向前推理得出第一天看完余下的一半,从而求得这本书的一半,进而求得总页数.14.(3分)有一副扑克牌中(去掉大、小王),最少取27张牌就可以保证其中3张牌的点数相同.考点:简单的排列、组合.分析:一副扑克牌中(去掉大、小王),还有52张,从A到K分成四组,每组有52÷4=13张牌,只要拿2组再加一张就能保证其中3张牌的点数相同,由此即可解决问题.解答:解:52÷4=13(张),13×2+1,=26+1,=27(张);答:最少取27张牌就可以保证其中3张牌的点数相同.故答案为:27.点评:此题考查了简单的排列、组合问题的解决方法.15.(3分)如图,摩托车里程表显示的数字表示摩托车已经行驶了24944千米,经过两小时后,里程表上显示的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千米,则摩托车在这两小时内的平均速度是54千米/时.考点:数字问题;简单的行程问题.分析:里程表上的数介于24944~25124之间,(24944+90×2)满足条件的数只有25052;两小时路程25052﹣24944=108;两个小时内的平均速度是108÷2=54 (千米/小时).解答:解:由题意,最贴近的数是25052.(25052﹣24944)÷2,=108÷2,=54(千米/小时).故答案为:54.点评:此题属于数字问题,在考查这类问题时,同时考查了简单的行程问题.16.(3分)一名搬运工从批发部搬运500只瓷碗到商店,货主规定:运到一只完好的瓷碗得运费3角,打破一只瓷碗赔9角,结果他领到运费136.80元.则在运输中搬运工打破了11只瓷碗.考点:整数、小数复合应用题.分析:由题意可知,共有500只碗,求打破了几只,设出打破的碗的只数为x只,则完好的为(500﹣x)只,然后根据题意列出方程进行解答即可.解答:解:设在运输中搬运工打破了X只瓷碗,0.3×(500﹣X)﹣0.9×X=136.8,150﹣0.3X﹣0.9X=136.8,1.2X=13.2,X=11;答:在运输中搬运工打破了11只瓷碗.故答案为:11.点评:此题用方程解决比较容易,根据题意,列出方程,然后进行解答即可求出结论.17.(3分)李经理的司机每天早上7点30分到达李经理家接他去公司.有一天李经理7点从家里出发步行去公司,路上遇到从公司按时接他的车,再乘车去公司,结果比平常早到5分钟.则李经理乘车的速度是步行速度的11倍.(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)考点:简单的行程问题.分析:据题意可知,李经理早行了30分钟,由于早行而使接他汽车比平时早到5分钟,所以汽车一个单程节约5÷2=2.5分钟.那么相遇时李经理走了30﹣2.5=27.5分钟.也就是李经理遇到汽车的时间是:7时27.5分.由此可知,乘车的速度是步行速度的:27.5÷2.5=11倍.解答:解:李经理早了:7:30﹣7:00=30(分),汽车单程节省时间:5÷2=2.5(分),相遇时李经理走了:30﹣2.5=27.5(分),车速是步行的:27.5÷2.5=11倍.故答案为点评:本题要认真审题,分析清楚数量关系,特别要注意汽车行程是双程的,所以单程节约2.5分钟.18.(3分)将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有10种不同的放法.考点:简单的排列、组合.分析:分两步解决,第一步,先把三盆同样的红花放好,按照题意,三盆红花互不相邻,那么有两盆黄花放在它们之间,也确定了;第二步,余下的两盆花,可以放在红花的两边或之间4个位置上,把两盆花看作一个整体,有C41=4种排法:红黄红黄红黄黄,红黄黄黄红黄红,黄黄红黄红黄红,红黄红黄黄黄红;把两盆花分开看作两个,放在4个位置上,有C42=6种放法:黄红黄黄红黄红,黄红黄红黄黄红,黄红黄红黄红黄,红黄黄红黄黄红,红黄黄红黄红黄,红黄红黄黄红黄;加在一起,即可得解.解答:解:第一步,先把三盆同样的红花放好,按照题意,三盆红花互不相邻,那么有两盆黄花放在它们之间,也确定了;第二步,余下的两盆花,可以放在红花的两边或之间4个位置上,把两盆花看作一个整体,有C41=4种排法:红黄红黄红黄黄,红黄黄黄红黄红,黄黄红黄红黄红,红黄红黄黄黄红;把两盆花分开看作两个,放在4个位置上,有C42=6种放法:黄红黄黄红黄红,黄红黄红黄黄红,黄红黄红黄红黄,红黄黄红黄黄红,红黄黄红黄红黄,红黄红黄黄红黄;4+6=10;答:共有10种不同的放法.故答案为:10.点评:此题考查了简单的排列、组合.19.(3分)在算式“=1”中,不同的汉字表示不同的自然数,则“希+望+杯”=11.考点:横式数字谜.分析:要想知道“希+望+杯”等于多少,就要从前面的分数算式入手,根据对分数加法的了解,找出是哪几个分子为“1”而分母不相同的分数相加等于1,从而知道希、望、杯所代表的数字,然后计算即可.解答:解:根据对分数的了解可知,++==1,所以“希、望、杯”这三个字代表的数字为2、3、6,2+3+6=11.故答案为:11.点评:认真审题,联系分数知识多方位思考,寻找突破点.20.(3分)A、B两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分.如果甲、乙从A地,丙从B地同时出发相向而行,那么,在21分钟或29分钟后,丙与乙的距离是丙与甲的距离的2倍.考点:多次相遇问题;简单的行程问题.分析:本题分情况讨论①第一次乙与丙的距离是甲与丙距离的2倍时,乙已经与丙相遇,而甲还没有与丙相遇,设x分钟后丙与乙的距离是丙与甲的距离的2倍.丙与乙合走的路程就是(6+5)x米,他们之间的距离就是(6+5)x﹣203;甲与丙合走的路程就是(4+5)x,他们之间的距离就是203﹣(4+5)x,由乙与丙的距离是甲与丙的2倍这一等量关系可得(6+5)x﹣203=2×[203﹣(4+5)x]②设第二次乙与丙的距离是甲与丙距离的2倍时,甲和乙都已经与丙相遇,设y分钟后乙与丙的距离是甲与丙距离的2倍.丙与乙合走的路程就是(6+5)y米,他们之间的距离就是(6+5)y﹣203;与丙合走的路程就是(4+5)y,他们之间的距离就是(4+5)y﹣203,由乙与丙的距离是甲与丙的2倍这一等量关系可得(6+5)y﹣203=2×[(4+5)y﹣203]解答:解:设第一次乙与丙的距离是甲与丙距离的2倍时经过了x分钟,由题意可知:(6+5)x﹣203=2×[203﹣(4+5)x]11x﹣203=2×(203﹣9x)11x﹣203=406﹣18x29x=609x=21设第二次乙与丙的距离是甲与丙距离的2倍时经过了y分钟,由题意可知:(6+5)y﹣203=2×[(4+5)y﹣203]11y﹣203=2×(9y﹣203)11y﹣203=18y﹣4067y=203y=29故填21,29.点评:本题解题的关键是分情况讨论出乙与丙的距离是甲与丙距离的2倍时,甲与丙是否相遇,可在练习本上画图分析.。

(完整word版)第五届希望杯六年级一试试题+答案详解

(完整word版)第五届希望杯六年级一试试题+答案详解

第五届小学“希望杯”全国数学邀请赛六年级 第1试2007年3月18日 上午8:30至10:00亲爱的小朋友们,欢迎你参加第五届小学“希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数字天地,将会留个一个难忘的经历,好,我们开始前进吧!……以下每题6分,共120分。

1. 已知31::1.2,:0.75:,:____.(22a b b c c a ===那么写成最简单的整数比) 2. 11111111(1)(1)(1)(1)(1)(1)(1)(1)23456789_____.0.10.20.30.40.50.60.70.80.9--------=++++++++ 3. 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.1□2□3□4□54. 在图1所示的和方格表中填入合适的数,使用权每行、每列以及每条对角线上的三个数的和相等。

那么标有“★”的方格内应填入的数是_______.5. 过年时,某商品打八折销售,过完年,此商品提价________%可恢复原来的价格。

6.如图2是2003年以来我国日石油需求量和石油供应量的统计图。

由图可知, 我国日石油需求量和日石油需求量增长更______(填“大”或“小”),可见我国对进口石油的依赖程度不断定_______(填“增加”或“减小”)。

7.小红和小明帮刘老师修补一批破损图书。

根据图3中信息计算,小红和小时一共修补图书______本。

8.一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,古代合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工。

完成这项工程共用______天。

9.甲、乙两车分别从A 、B 两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A 、B 距离的13多50千米时,与乙车相遇.A 、B 两地相距______千米。

第十三届小学“希望杯”全国数学邀请赛 六年级 第1试试题解析

第十三届小学“希望杯”全国数学邀请赛 六年级 第1试试题解析

第十三届小学“希望杯”全国数学邀请赛六年级第1试试题吴乃华1、计算:12+14+18+116+132=?_____________。

解:观察这这五个分数的分数值,刚好后一个是前一个的一半,现在,要求五个分数的分数的和,如右图,减去最后一个分数,不就是这五个分数的和了吗?所以,12+14+18+116+132=1-132=31322、将13999化成小数,小数部分在第2015位上的数字是_______________。

解:13999=0.013013013…循环节为“013”,2015÷3=671 (2)即2015位上的数字,是在此循环小数循环671次后的第二个数字,所以1.3、若四位数27AB能被13整除,则两位数AB的最大值是_____________。

解:根据能被13整除的特征,一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被13整除,这个数就能被13整除。

因为,AB7-2=AB5,这个三位数的个位是5,能被5整除,可知5AB是13与某数5的倍数的积。

由于AB5=75×13=975所以,两位数AB的最大值是97。

4、若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了______%。

解:本题旨在探讨新分数比原来的分数减少的百分数,与原分数是多少无关。

设原分数为37。

根据题意则新分数为:37+%⨯⨯(1-20%)(128)=58×37因此新分数比原来的分数减少了1-58=0.375=37.5%。

5、若111111++++20112012201320142015<a +1,则自然数a =______________。

解:假设111111++++20112012201320142015的分母部分是5个12015, 则1÷(12015×5)=403; 假设是分母部分是5个12011,则1÷(12011×5)=402.2; 可知,402.2<12011+12012+12013+12014+12015<403 可得a ≤4.02.2+1≥403所以,a =4026、定义:符号{x}表示x 的小数部分,如{3.14}=0.14,{0.5}=0.5,那么,2015315412++345⎧⎫⎧⎫⎧⎫⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭=_______________。

最新希望杯六年级真题及解析

最新希望杯六年级真题及解析

第十三届小学“希望杯”全国数学邀请赛六年级 第 1 试试题2015 年 3 月 15 日上午 8:30 至以下每题 6 分,共 120 分. 1. 计算:1 + 1 + 1 + 1+ 1 ________. 2 4 8 1632【出处】2015 年希望杯六年级初赛第 1 题【考点】借来还去——分数计算【难度】☆31【答案】 32【解析】原式 =12 + 14 + 18 + 161 + ( 321 + 321 ) - 321= 12 + 14 + 18 + (161 + 161 ) - 321 = 12 +14 + (18 +18 ) - 321= 12 + (14 + 14 ) - 321=12 + 12 - 321= 1 - 321= 32312. 将 99913化成小数,小数部分第 2015 位上的数字是________.【出处】2015 年希望杯六年级初赛第 2 题【考点】循环小数与分数——计算【难度】☆【答案】1【解析】 99913= 0.013 , 2015 ÷ 3 = 671 2 ,所以数字为 1.13.若四位数2AB7能被13整除,则两位数AB的最大值是________.【出处】2015年希望杯六年级初赛第3题【考点】整除问题——数论【难度】☆☆【答案】97【解析】13 2AB7⇒13AB0+2007,2007÷135,所以AB0÷138 ,13 AB5 ,利用数字谜或倒除法,可确定AB=97。

数字谜方法如下:根据乘积的个位,可确定第二个因数的个位为5,因为构造最大值,所以十位为最大为7,积为9751 3 1 3 1 3⇒ 6 5 6 55 5 9 7 54.若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了________%.【出处】2015年希望杯六年级初赛第4题【考点】分数应用题——应用题【难度】☆☆【答案】37.5a a ⨯1 - 20% ) a 5 5 ⎛ 5 ⎫= ⨯ - ÷ 1 ⨯ 100% = 37.5% 【解析】设原分数为,则新分数为,所以新分数为原分数的⎪b b ⨯(1 + 28% ) b8 8 ⎝ 8 ⎭5. 若a< 1 < a +1 ,则自然数a=________.1 + 1 + 1 + 1 + 12011 2012 2013 2014 2015【出处】2015年希望杯六年级初赛第5题【考点】比较与估算——计算【难度】☆☆【答案】402【解析】设x= 1 x> 1 = 2011 = 402 1 x < 1 = 2015 = 403 ,所1+ 1+1+1+1 1⨯ 51⨯ 52011 2012 2013 2014 2015 2011 2015 以402 1 < x <403, a =4025x 3.14 = 0.14 0.5 = 0.5 ⎧ 2015 ⎫ + ⎧ 315 ⎫ + ⎧412 ⎫ =6. .那么,⎨ ⎬ ⎨ ⎬ ⎬5⎩ 3 ⎭ ⎩ 4 ⎭ ⎩ ⎭ ________.(结果用小数表示)【出处】2015年希望杯六年级初赛第6题【考点】高斯记号与循环小数——计算2【难度】☆☆【答案】1.816⎧ 2015 ⎫ ⎧ 315 ⎫ ⎧ 412 ⎫ 2 3 2【解析】⎨ ⎬ + ⎨ ⎬ + ⎨ ⎬ = + + = 0.6 + 0.75 + 0.4 =1.8164 5 3 4 5⎩ 3 ⎭ ⎩ ⎭ ⎩ ⎭7.甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了________件.【出处】2015年希望杯六年级初赛第7题【考点】比例应用题——应用题【难度】☆☆【答案】15【解析】甲制作了总数的30%,乙、丙制作的件数是总数的1-30%=70%,乙、丙制作的件数之比是3:4,则乙做了30%,丙做了40%,则甲:乙:丙= 3 : 3 : 4,甲制作了20÷4⨯3=15(件)。

2007年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)-

2007年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)-

第十八届(2007年)“希望杯”全国数学邀请赛培训题“希望杯”命题委员会(未署名的题,均为命题委员会命题)初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后的圆括号内)1.有下面的四个叙述:①整式加整式还是整式;②整式减整式还是整式;③整式乘整式还是整式;④整式除整式还是整式.其中正确叙述的个数为().(A)4 (B)3 (C)2 (D)12.若x是有理数,分式1||2x-的值为正整数,则x的个数为()(A)2 (B)4 (C)6 (D)无数个3.将分式2aa b+中的a扩大2倍,6扩大4倍,而分式的值不变,则()(A)a=0 (B)b=0 (C)a=0,且b=0 (D)a=0或b=04.已知x与y+2成反比例,当x=1时,y=4,那么y=1时,x的值是()(A)0 (B)1 (C)2 (D)45.若实数a,b,c满足a2+b2≠0,a3+a2c-ab c+b2c+b3=0,则a+b+c的值是()(A)-1 (B)0 (C)1 (D)26.若实数a,b,c满足1a+1b+1c=1a b c++,则a+b,b+c,c+a中等于零的()(A)有且只有1个(B)至少有1个(C)最多有1个(D)不可能有2个7.设f=2x-3x-2,g=x-2,考察下面四个叙述:①f+g是整式;②f-g是整式;③f×g是整式;④当x≠2时,f÷g是整式.其中正确叙述的个数为()(A)4 (B)3 (C)2 (D)18.如果≠0成立,那么下列各式中正确的是()(A)a+b≥0 (B)a+b>0 (C)a+b≤0 (D)a+b<09.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象如图,根据图中提供的信息,•有下列叙述:①他们都行驶了18千米;②甲在途中停留了0.5小时;③乙比甲晚出发了0.5小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地.其中,符合图象的叙述有()个.(A)2 (B)3 (C)4 (D)5(第9题) (第10题) (第15题)10.已知直线y=2x+a与y=2a-x的图象的交点在如图所示的阴影长方形区域内(•含长方形边界),则a的取值范围是()(A)0≤a≤32(B)65≤a≤95(C)65≤a≤32(D)0≤a≤9511.甲车追超过前方的乙车,经过时间t后在A处追上,若甲、乙各提速a%,则()(A)甲车追上乙车所用的时间增加了a%; (B)甲车追上乙车所用的时间减少了a% (C)甲车仍在A处追上乙车; (D)甲车驶过A处后才追上乙车12.某人用1000元钱购进一批货物,第二天售出,获利10%,•过几天后又以上次售出的价格的90%购进一批同样的货物,由于卖不出去,•两天后他将其按第二次购进价的九价再QQ :- 3 -出售,这样他在两次交易中( )(A )刚好盈亏平衡 (B )盈利1元 (C )盈利9元 (D )亏损1.1元13.某足球赛,记分规律如下:胜一场积3分,平一场积1分,负一场积0分,A 队经过12场比赛后,积19分,若队员出赛一场的出场费为500元/人,胜一场奖金1000元/人,•平一场奖金500元/人,那么A 队队员在12场比赛后的最高收益可能是( )(A )13500元/人 (B )14000元/人 (C )13000元/人 (D )12500元/人14.小明和小刚用掷两枚骰子的方法来确定点P (x ,y )在坐标系上的位置,他们规定:小明掷得的点数为x ,小刚掷得的点数为y ,•那么他们各掷一次所确定的点落在已知直线y=-2x+6上的概率为( )(注:骰子是骨制的一个白色小正方体,它的六个面上分别刻有1个,2个,3个,4个,5个,6个红色小圆点,将其随意掷放于一个平面上,骰子必有一面向上,•这个面上红色圆点的个数就叫做点数).(A )16 (B )112 (C )118 (D )1915.如图,晴朗的夏天,太阳当空,•一只小鸟以不变的速度水平地飞过一个斜坡上空,则小鸟在斜坡上的影子移动的速度( )(A )越来越大 (B )越来越小(C )不变 (D )一定和小鸟的飞行速度一样大16.当5个整数从小到大排列时,中位数是4,如果这5个整数的惟一众数是6,则这5个整数的和最大是( ).(A )20 (B )21 (C )22 (D )2317.某市出租车的起步价为12元(行程在3公里以内),行程到达3公里之后,•每增加1公里需加付m 元(不足1公里亦按1公里计价),•张老师坐这种出租车从学校到离学校n 公里的教育局开会,沿途未遇红灯,下车时付车费28元,则m 与n 的关系是m=( ) (注:[n]表示不大于n 的最大整数,如[3,2]=3,[4]=4.)(A )16162828()()3()3[]3[]2[]3[]2B C D n n n n ------ 18.用200元钱买A 、B 、C 、D 四种商品共10件,若A 、B 、C 、D 的单价依次是13元,17元,22元,35元,则( )(A )A 、B 、C 、D 各买了2,3,4,1件 (B )A 、B 、C 、D 各买了4,2,2,2件(C )以上两种情况都可能 (D )以上三种情况都不可能19.如图,直线AE ∥BF ,点P 在AE 上方,点M 、N 分别在AE 、BF 上,若PC 平分∠MPN 交AE 、BF 于C 、D 两点,∠PCE=α,则∠1=∠2的大小为( )(A )α (B )2α (C )3α (D )4α(第19题) (第22题) (第25题)20.周长为30,各边长互不相等且都是整数的三角形的个数为( )(A )11 (B )12 (C )7 (D )821.如果△ABC 的垂心G (三条高的交点)在△ABC 的内部,并且在BC 边的中线AD 上,那么△ABC 一定是( )(A )直角三角形 (B )等腰三角形(C )等边三角形 (D )等腰直角三角形22.如图5,△ABC 中,∠A=60°,AC=16,S △ABC AB=( )(A )554(B )55 (C )45 (D )23.有下面四个判断性语句:①平行四边形的四个内角之和为360°;②有两个内角相等的四边形是平行四边形;QQ :- 5 -③平行四边形的四个内角中有两对是相等的;④四个内角中有两对相等的四边形是平行四边形.(A )4 (B )3 (C )2 (D )124.对凸四边形ABCD ,给出下列4个条件:①AB ∥CD ; ②AD ∥BC ; ③AB=CD ; ④∠BAD=∠DCB .现从以上4个条件中任选2个条件为一组,能推出四边形ABCD•为平行四边形的概率是( )(A )13 (B )12 (C )23 (D )5625.如图,以Rt △ABC 的两直角边AB 、BC 为边,•在△ABC•外部作等边△ABE•和△BCF ,EA 、FC 的延长线交于M 点,则点B 一定是△EMF 的((A )垂心 (B )重心 (C )内心 (D )外心26.Assume that in Fig . 7 ABCD is a square ,and •point •E •is •on •theline BC ,CE=AC .we connect A and E ,AE intersects CD at point •F ,•then •thedegree of ∠AFC is ( )(A )150° (B )125° (C )135° (D )112.5°(英汉词典:Fig .是figure (图、图形)的缩写;to cormect 连接;to intersect …at 相交于;degree 度、度数)(第26题) (第27题) (第28题) (第30题)27.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则∠CDF 等于( )(A )80° (B )70° (C )65° (D )60°28.如图,顺次连接凸四边形ABCD 的中点,得到四边形EFGH .要使四边形EFGH•是正方形,应补充的条件是( )(A )四边形ABCD 是等腰梯形 (B )四边形ABCD 是平行四边形(C )四边形ABCD 是菱形 (D )AC=BD ,且AC ⊥BD29.将一把折扇逐渐打开,会发现打开部分的扇形面积随圆心角的变化而变化,•那么能正确描述这种变化的函数是( )(A )正比例函数 (B )反比例函数(C )一次函数y=kx+b (b ≠0) (D )以上都不是30.如图是一间卧室地面瓷砖的图案,在这间卧室地下藏有一宝物,•则藏在白色瓷砖和灰色瓷砖下的可能性是( )(A )藏在白色瓷砖下的可能性大(B )藏在灰色瓷砖下的可能性大(C )藏在两种瓷砖下的可能性一样大(D )藏在灰色瓷砖下与藏在白色瓷砖下的可能性之比是3:2二、填空题31.计算:20082+20072+20062-2008×2007-2007×2006-2006×2008=________.32.已知则x 2007=2,则(x 2006+x 2005+x 2004+…+x+1)(x-1)=__________.33.设a ,b ,c 是实数,则能使(a+b+c )(1a +1b +1c )=1成立的条件是______或_______.(•写出两个满足条件即可)34.Ifm and n are positive integers satisfying m 2+27mn+n 2=729 and m+•n>mn ,then the value of m+n is_________.(英汉词典:positive integer 正整数;to satisfy 满足;value 值、数值)35.计算:(+2=________.36.已知A=××,B=(2007×2008×2009)2007200820093++,则A•与B•的大小关系是A_____B .(填“>”、“<”或“=”)QQ :- 7 -37.设B =,则A_______B .(填“>”、“<”或“=”) 38.39.If a and •b •are •constant .•and •the •set •of •solutions •of •theinequality ax+b>0 is x<13,then the set of solutions of the inequalityba<0 is________. (英汉词典:constant 常数;set 集合;solution 解、解答;inequality 不等式)40.一次智力测试有25道题,答对一题得4分,不答扣2分,答错扣4分,小明要想在这次智力测试中的得分不低于60分,他至少要答对________道题.41.设正数a ,b ,c ,x ,y 满足:a ≠c ,22222222221,x xy y x xy y a b c c b a++=++=1,则代数式222111a b c++的值为________. 42.若以x 为未知数的方程42ax x -+=3无解,则a=_______. 43.已知m 与n 使m m m n m n ++-的值等于-14,则n m的值是_________. 44.当x=2时,多项式75312a b c d x x x x ++++的值是3,那么当x=-2时,多项式的值是_______. 45.若实数a ,b 满足1a -1b -1a b +=0,则2222b a a b-的值等于________. (拟题:夏建平 江苏省江阴市要塞中学)46.如果以x ,y 为元的二元一次方程12ax y x ay +=⎧⎨+=⎩有解,那么a 不等于________.52.如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数y=4x(x>0)的图象上,•斜边OA,AA都在x轴上,则点A的坐标是________.(第52题) (第53题) (第55题) 53.In the following traffic marks,the number of marks whose•figuresaxially-symmetric is___________.(英汉词典:traffic交通;•mark•标志;•number•个数;•figure•图形;•axially-symmetric(轴对称)54.仅将两个全等的非等腰的直角三角形的一条边重合,拼接成新的图形,•拼成的图形可能是下列各种图形中的一种或几种:①矩形;②菱形;③直角梯形;④平行四边形;⑤等腰三角形;⑥等腰梯形.则正确结论的序号是_______.(把所有正确的图形的序号都填上)55.如图所示,平行四边形ABCD中,过BD的中点O的直线交AB、CD于M、N,•交DA、BC 延长线于E、F,则图中有全等三角形________对.56.如图,在一个由4×4个小正方形组成的正方形网格中,•阴影部分面积与正方形ABCDQQ :- 9 -的面积比是_______;周长的比是________.(第56题) (第58题) (第59题) (第60题)57.在平面直角坐标系内点A 、B 的坐标分别为(-3,-2),(3,a ),点B 在第一象限,•且A 、B 两点间的距离为10,那么a 等于______.58.在建筑工地上,工人用如图所示的装置能将重物运往高处:•绳子绕过定滑轮,一端系着重物,在地面的工人手拿绳子的另一端,沿着垂直于滑轮轴的方向,向前走一段距离,重物便上升到定滑轮外,被高处的工人卸下,已知重物上升的距离是5米,则地面上的工人向前行走的距离为________米.59.图中的两个滑块A 、B 由一个连杆连接,可以在竖直和水平的滑道内滑动,•开始时,滑块A 距0点15厘米,滑块B 距0点20厘米,A 、B 的距离为25厘米,那么滑块B 滑到C 点时,滑块A 共滑动了_________厘米.60.如图,△ABC 的边AB 长为2,AB 边上的中线CD 长为1,AC 、BC,则△ABC 的面积为_________.61.a 、b 、c 是三角形的三边,它们满足ac 2+b 2c-b 3=abc ,若三角形的一个内角是120°,那么a :b :c=_______.62.设a ,b ,c 是△ABC 的三条边,满足c a b a b c b c a c a b <<+-+-+-,则三边中最长的边是________.63.如图,0是△ABC 外部一点,AO 交BC 于A 点,BO ,CO 的延长线分别交AC ,AB•的延长线于点B ,C ,则111AO BO CO AA BB CC ++的值为_________.(第63题) (第64题) (第65题) (第66题)64.如图,已知梯形ABCD中,AD∥BC,∠A=90°,E为CD的中点,BE=132,梯形ABCD•的面积为30,则AB+BC+DA的值为________.65.如图,边长为2的正方形ABCD中,若∠PAQ=45°,则△PCQ的周长是_____.66.如图,A,B两个平行四边形草坪有公共部分(阴影处),A,B•草坪面积之和为160m2,A的面积为120m2,B的面积为74m,则重叠部分的面积是_______m2.67.若凸4n+2边形AA…A(A为正整数)的每个内角都是30°的整数倍,且∠A=∠A=∠A=90°,则n的值是________.?68.服装店进了某款式的时装,开始按比进价提高30%的价格销售,但是无人问津,•于是决定打折降价销售.•如果要使利润率不低于10%,••那么打折的幅度不能低于_________.(保留两位有效数字)69.红光中学去年有120人参加“希望杯”全国数学邀请赛,•今年的参赛人数增加了50%,考场数比去年多了3个,而且平均每个考场安排的考生增加了2人,今年安排的考场有_________个.70.直角三角形三边长均为整数,其中一条直角边长为35,•则它的周长的最大值是________,最小值是_______.(拟题:刘朝晖广东省中山市第一中学初中部)71.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,•若现在所需要的时间为b小时,则_______<b<______.(用关于a的表达式表示)72.1=12,2+3+4=32,3+4+5+6+7=52,QQ :- 11 -……从中找出一般规律是________.73.一种商品的进价为90元,原售价定为m 元,售出一半之后,剩余的一半按8折出售,全部售出后共获利10%,则原售价定为m=________元.74.某学校八年级的数学竞赛小组进行了一次数学测验,如图所示是反映这次测验情况的频率分布直方图,那么该小组共有______人;70.5~90.5这一分数段的频率是______.(第74题) (第76题) (第77题) 75.用[a ,b]表示自然数a ,b 的最小公倍数,(a ,b )表示□,b 的最大公约数,若[•a ,b]=1085-(a ,b ),那么当a>b 时,a-b 的最小值是________. 76.如图,△ABC 中,∠C=90°,EC=13AC ,CD=13BC ,BE=8,AD=EC+CD=6,则S △BCD =______. (拟题:刘朝晖 广东省中山市第一中学初中部)77.如图,E 是平行四边形ABCD 的边CD 上任一点,AE 的延长线与BC 的延长线交于点F ,连结BE 、DF ,则S △BCE _______S △DEF .(填“>”、“<”或“=”) (拟题:李廷江 贵州省修文县第二中学)78.若4x 2+1+kx 是关于x 的完全平方式,则k 2-2k+2的值为________. (拟题:窦桐生 吉林省磐石市明城中学 ) 79.解方程:20052007200820042004200620072003x x x x x x x x +++++=+++++得x=_________.(拟题:钟金子 福建省安溪恒兴中学) 三、解答题80.某班有语文、数学两个课外兴趣小组,•其中参加语文组的人数是全班人数的23,既参加语文组又参加数学组的人数是参加数学组人数的23,另外有4•位同学既不参加语文组,也不参加数学组,如果这4位同学参加语文组,•那么参加数学组与参加语文组的人数恰好相等,问全班有多少同学?既参加语文组又参加数学组的人数是多少?81.某工厂计划生产A、B两种产品,为取得最大生产利润,事先做了市场调查,根据厂内实际情况和市场需要得到有关数据如下表:现在工厂可以筹集到的资金用于原料及消耗的是元/月,用于工资支出的是元/月,问如何确定两种产品的月产量,可以使工厂得到的总利润达到最大?并求这个最大利润值.82.如图,从直线COD上一点O引两条射线OE,OF,使∠GOF=∠FOE=∠EOD=60°,•在射线QQ:OF,OG,OE上各取一点A,B,C,使∠CAB=60°,若OA=m,求△ABC面积的最大值.83.从2006年元旦起,公民的月工资、薪金个人所得税的起征点由原来的800•元调整为1600元,如果公民的月工资、薪金超过1600元,则税款按下表累加计算:根据上表,请:(1)写出所纳款税y(元)与该月收入x(元)之间的函数关系式;(2)作出所纳款税y(元)与该月收入x(元)之间的函数图象;(3)若李先生月薪金4000元,他应交纳的个人所得税是多少元?84.用红色刻度线将一根木棍分成135等份,•再用黑色刻度线将这根木棍分成40等份,沿- 13 -两种刻度线将这一木棍锯成短木棍.问共有多少种不同长度的短木棍?85.100条线段的长度分别为1,2,3,…,99,100,从中取出一些线段,•要使取出的线段中的任意三条都能构成一个三角形,问最多能取出多少条线段?第十八届(2007年)“希望杯”全国数学邀请赛初二培训题(1~85题)QQ:答案.解析一、选择题- 15 -。

第5届六年级2试试题及详解

第5届六年级2试试题及详解

2007年第五届小学“希望杯”全国数学邀请赛六年级 第2试一、填空题(每小题5分,共60分。

)1.小华拿一个矩形木框在阳光下玩,她看到矩形木框在地面上形成的影子不可能是图1中的________。

(填序号)2.气象台预报“本市明天降雨概率是80%”。

对此信息,下列说法中正确的是________。

①本市明天将有80%的地区降水。

②本市明天将有80%的时间降水。

③明天肯定下雨。

④明天降水的可能性比较大。

3.将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,再展开正方形纸片,得到下图中的________。

(填序号)4.图3是华联商厦3月份甲、乙、丙三种品牌彩电的销售量的统计图,预测4月份甲、乙、丙三种品牌彩电的销售量将分别增长5%,10%和20%。

根据预测,甲、丙两种品牌彩电4月份的销售量之和为________台。

5.对于非零自然数a 和b ,规定符号⊗的含义是:2m a b a b a b⨯+⊗=⨯⨯(m 是一个确定的整数)。

如果1⊗4=2⊗3,那么3⊗4=________。

6.111112005200620072008+++的整数部分是________。

7.在一次动物运动会的60米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小狗、小兔和小鸭四人的平均用时为5分钟。

请问:小鸭在这项比赛中用时________分钟。

8.2007年4月15日(星期日)是第5届小学“希望杯”全国数学邀请赛举行第2试的日子,那么这天以后的第2007+4×15天是星期________。

9.将16个相同的小正方体拼成一个体积为16立方厘米的长方体,表面涂上漆,然后分开,则3个面涂漆的小正方体最多有________个,最少有________个。

10.已知n个自然数之积是2007,这n个自然数之和也是2007,那么n的值最大是________。

11.如图4,三角形田地中有两条小路AE和CF,交叉处为D,张大伯常走这两条小路,他知道DF=DC,且AD=2DE。

希望杯模拟考六年级答案

希望杯模拟考六年级答案
丙在 A 仓库做了 6 小时.
16. 有 4 位朋友的体重都是整千克数,他们两两合称体重,共称了 5 次,称得的千克数分别是 99, 113,125,130, 144.其中有两人没有一起称过,那么这两个人中体重较重的人的体重是_____ 千克。 解析:在已称出的五个数中,其中有两队之和,恰好是四人体重之和是 243 千克,因此没有称过的 两人 体重之和为 243-125=118(千克). 设四人的体重从小到大排列是 a 、 b 、 c 、 d ,那么一定是 a + b =99, a + c :=113. 因为有两种可能情况: a + d =118, b a + d =125. 因为 99 与 113 都是奇数, b =99- a , c =113- a ,所以 b 与 c 都是奇数,或者 b 与 c 都是偶数, 于是 b + c 一定是偶数,这样就确定了 b + c =118. a 、 b 、 c 三数之和为:(99+113+118)÷2=165. b 、 c 中较重的人体重是 c , c =( a + b + c )-( a + b )=165-99=66(千克). 没有一起称过的两人中,较重者的体重是 66 千克.
1 1 1 1 = , 10 12 15 4
1 ×16=4,即第二天的 4 1 8 每个仓库的工作总量为 4÷2=2.于是甲工作了 16 小时只完成了 16× = 的工程量,剩下的 10 5 8 2 2 1 2- = 的工程量由丙帮助完成,则丙需工作 ÷ =6(小时). 5 5 5 15
小明上学的时间是:
100 200 100 475 3 2 4 3 100 200 100 400 3 4 2 3

第六届小学“希望杯”全国数学邀请赛六年级第一试及答案

第六届小学“希望杯”全国数学邀请赛六年级第一试及答案

第六届小学“希望杯”全国数学邀请赛六年级第1试以下每题6分,共120分。

1、若3 A = 4B = 5 C ,那么A :B :C = ( )2、在其中填上“+”或 “—”使等式成立:11□10□9□8□7□6□5□4□3□2□1=13、如图1△ABC 被分成四个小三角形,请在每个小三角里各填入一个数,满足下面两个要求:(1)任何两个有公共边的三角形里的数都互为倒数(如:32和23是互为倒数);(2)四个小三角形里的数字的乘积等于225。

则中间小角形里的数是( )4、春节期间,原价100元/件的某商品按以下两种方式促销: 第一种方式:减价20元后再打八折; 第二种方式:打八折后再减价20元。

那么,能使消费者少花钱的方式是第( )种。

5、一项工程,甲队单独完成需40天,若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成。

如果乙队单独完成此工程,则需( )天。

6、幼儿园的王阿姨今年的年龄是小华今年年龄的8倍,是小华3年后年龄的4倍,则小华今年( )岁。

7、若3a+2b=24,则43a -5 +21b 的值是( )8、如图2,由小正方形构成的长方形网格中共有线段( )条。

9、购买3斤苹果,2斤桔子需6.90元;购8斤苹果,9斤桔子22.80元,那么桔子、苹果各买一斤需( )元。

10、如图3,边长为4的正方形ABCD 和边长为6的正方形BEFG 并排放在一起,O 1和O 2分别是两个正方形的中心(正方形对角线的交点),则阴影部分的面积是( )。

11、16点16分这个时刻,钟表盘面上分针和时针的 夹角是( )度。

12、20721+650091=A1 则A=( )。

13、把2008个小球分放在5个盒子里,使每个盒子里的小球的个数彼此不同,且都有数字“6”,那么这5个盒子里的小球的个数可以是610,560,630,162,46。

如果每个盒子里的小球的个数彼此不同,且都有数字“8”, 那么这5个盒子里的小球的个数分别是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五届小学“希望杯”全国数学邀请赛(六年级)
1、解析:这道题主要考察比例的性质。

已知a:b和b:c,求a:c
a:b=3
2
:1.2=1.5:1.2=15:12
b:c=0.75:1
2
=0.75:0.5=12:8
所以a:c=15:8
答案:8:15
2、解析:很明显,这是一道化简题。

分子可以化简为12345678 23456789
⨯⨯⨯⨯⨯⨯⨯=
1
9
而分母可利用数列求和处理,得,(0.1+0.9)⨯9/2=4.5
则原式=2 81
3、解析:要想使结果最大,尽量让较大的数出现乘法,然后是加法,
让更小的数出现减法或者除法。

根据观察和试验,可以得到:1-2/3+4*5=
1 20
3
4、解析:首先,根据一个共用位置(五角星),可以得到中心位置的数为6
再根据一个共用为主(右下角),可以得到右上角位置的数为5
则幻和为5+6+7=18
故,五角星位置的数为:18-3-7=8
5、解析:这是一道经济问题,对于经济问题,
如果没有出现具体的数字,一般常把一些特定的量假设为单位1。

这道题,我们可以假设原来的定价为1,则过年时的定价为0.8
而过年后要恢复原来的价格,则此商品需要提价:10.8
100%
0.8
-
⨯=25%
6、解析:这道题主要考查孩子的观察数据和分析数据的能力。

通过图形所给的数据,我们可以看出,
日石油需求量与日石油供应量的差不断增加,所以进口也在不断增加。

7、解析:这是一道分数应用题。

主要找出分数对应量。

总本数:(20-2+3)/(1-40%-1
4
)=60(本)
小红和小明:60-20=40(本)
8、解析:该题为工程问题,
解决工程问题首先求解各个对象的工作效率或者某些对象组合的工作效率
很明显,这里涉及了甲乙丙三人和乙丙两人的工作效率
甲乙丙的工作效率和:
111 101520
++=
13
60
乙丙的工作效率和:
11 1520
+=
7
60
甲乙丙工作三天作的工作量:13
60
⨯3=
13
20
剩余工作量:1-13
20
=
7
20
则乙丙完成剩余工作量需要天数:7
20
/
7
60
=3(天)
所以,共用3+3=6(天)
9、解析:在同样的时间,甲乙所走的路程比等于两人的速度比
所以路程比:甲:乙=5:4
则全程为:50/(5
9
-
1
3
)=225(千米)
10、解析:可以列出如下比例关系
儿子父亲差
今年1:4:3
15年后5:11:6
根据两人的年龄差不变,有
15÷(51
63
-)=30(岁)
则今年儿子的年龄为30/3*1=10(岁)
11、解析:A转的圈数:144÷
4
1
5
=80(圈)
B转的圈数:80-35=45(圈)
则B转一圈需要的时间为:144÷45=3.2(小时)12、解析:根据p,p+1,p+3都是质数,可知p=2
则111 235
++=
31
30
所以答案应为:30 31
13、解析:这是一道不定方程题
假设原来的两位数为AB,现在的三位数为0
A B
根据题意,有
80A+8B=100A+B+1
化简为:20A+1=7B
解得:
A=1 B=3⎧


故,原来的两位数为13。

14、解析:这道题用到了一种方法,叫扩缩法,
即适当地扩大或者缩小一些数再跟一些数比较大小。

为了方便,我们可以把中间的式子假设为A
则A=10-(
1111111111+++++++++11121314151617181920
) 因为 12<1111111111+++++++++11121314151617181920<1011
所以,9<10-1011<A<9.5<10 15、解析:利用加法乘法原理,解得如图
16、解析:从10点到10点半,时针示数必定为10
分针的十位数字也必定为2
而秒针的十位数字不能大于5
所以有3*6*5=90(种)
17、解析:几何面积是小学奥数中必考的内容
方法很多,不同的题有不同的方法
现提供一种方法供参考。

连接B 点和正方形中心点O
阴影部分的面积为整个正方形面积的
14减去弓形面积BO 1552⨯⨯-1554
π⨯⨯⨯=7.125(cm 2) 110104
⨯⨯-7.125=17.875(cm 2) 18、解析:根据题意,可以连出一个梯形
上底为2个正方形边长,下底为7个正方形边长
高为5个正方形边长,则该梯形的面积为
(2+7)*5/2=22.5(个正方形)
则面积为22.5*50*50=56250(cm 2)
19、解析:这是一道牛吃草问题。

求出两次总的存款差值,就可以求出月收入 不支出,第一次存款:1000*1.5*12+8000=26000(元) 不支出,第二次存款:800*2*12+12800=320000(元) 则月收入:(32000-26000)/(2*12-1.5*12)=1000(元) 则原存款:8000元。

20、解析:巧用比例解决
盐 水
第一次: 15 : 85=60:340
第二次: 1 : 9 =60:440
根据盐水中盐的量不变
则加水量为440-340=100
第三次:水为550,则盐水含盐百分比为:60/(60+540)=10%。

相关文档
最新文档