数学文卷·2014届上海市六校高三第一次联考(2013.12)扫描版
上海市高三考前调研数学试题 Word版含答案

上海市2013—2014学年度高三年级学业质量调研数学试卷考生注意: 本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,每个空格填对得4分,否则一律得零分. 1.函数)2(log 1)(2-=x x f 的定义域为2.若直线052=+-y x 与直线062=-+my x 互相垂直,则实数=m3.复数z 满足iiz 1=i +1,则i z 31-+= 4.一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 5.在ABC ∆中,若5=b ,4π=∠B ,2tan =A ,则=a6.已知圆O :522=+y x ,直线l :)20(1sin cos πθθθ<<=+y x ,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =7.设等差数列{}n a 的公差2=d ,前n 项的和为n S ,则nn n S n a 22lim-∞→= 8.已知F 是抛物线42y x =的焦点,B A ,是抛物线上两点,线段AB 的中点为)2,2(M ,则ABF ∆的面积为9.某工厂生产10个产品,其中有2个次品,从中任取3个产品进行检测,则3个产品中至多有1个次品的概率为10.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推.如果一个六边形点阵共有169个点,那么它一共有___________层11.函数)6sin()(πω+=x A x f ()0>ω的图象与x 轴的交点的横坐标构成一个公差为2π的等差数列,要得到函数x A x g ωsin )(=的图象,只要..将)(x f 的图象向右平移 个单位12.设))(2()(,1R x x k x f k ∈-=>,在平面直角坐标系中,函数)(x f y =的图象与x 轴交于点A ,它的反函数)(1x fy -=的图象与y 轴交于点B ,并且两函数图象相交于点P ,已知四边形OAPB 面积为6,则k 的值为13.设函数()f x 的定义域为D ,如果对于任意的1x D ∈,存在唯一的2x D ∈,使()()122f x f x C +=(C 为常数)成立,则称函数()f x 在D 上的均值为C.下列五个函数:①x y sin 4= ②3x y = ③x y lg = ④xy 2= ⑤12-=x y ,则满足在其定义域上均值为2的所有函数的序号14.若等差数列{}n a 的首项为1,a 公差为d ,前n 项的和为n S ,则 数列{}nS n为等差数列,且通项为1(1)2n S da n n =+-⋅.类似地,若各项均为正数的等比数列{}nb 的首项为1b ,公比为q ,前n 项 的积为n T ,则数列为等比数列,通项为_____________二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分.15.下列有关命题的说法正确的是A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”.B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“存在,R x ∈使得210x x ++<”的否定是:“对任意,R x ∈ 均有210x x ++<”. D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.16.已知函数f (x )=sin (2x πϕ+)的部分图象如图所示,点B ,C 是该图象与x 轴的交点,过点C 的直线与该图象交于D ,E 两点,则(BD BE +)·BC 的值为A .14 B .12C .1D .2 17.如图,偶函数)(x f 的图象形如字母M ,奇函数)(x g 的图象形如字母N ,若方程:(())0,f f x =(())0,f g x =0))((,0))((==x f g x g g 的实数根的个数分别为a 、b 、c 、d ,则d c b a +++=A .27B .30C .33D .3618.已知[)x 表示大于x 的最小整数,例如[)[)34, 1.31=-=-.下列命题:①函数[)()f x x x =-的值域是(]0,1;②若{}n a 是等差数列,则[){}n a 也是等差数列;③若{}na 是等比数列,则[){}na 也是等比数列;④若()1,2014x ∈,则方程[)12x x -=有2013个根. 其中正确的是A.②④B.③④C.①③D.①④三、解答题(本大题满分74分)本大题共5题,解答下列各题必须写出必要的步骤 . 19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分 . (1)将圆心角为0120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积 (2)在ABC ∆中,满足:AB AC ⊥,||AB 夹角的余弦值20.(本题满分14分)本题共有2已知A B 、分别在射线CM CN 、运动,23MCN ∠=π,在ABC ∆中,角所对的边分别是a 、b 、c .(1)若a 、b 、c c 的值;(2)若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值.)21.(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 . 已知函数2||)(+=x x x f (1)判断函数f (x )在区间(0, +∞)上的单调性,并加以证明;(2)如果关于x 的方程f (x ) = kx 2有四个不同的实数解,求实数k 的取值范围.22. (本题满分16分)本题共有3个小题,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分6分在平面直角坐标系xOy 中,已知点A (-1, 0)、B (1, 0), 动点C 满足条件:△ABC 的周长为 2+2 2.记动点C 的轨迹为曲线W . (1)求W 的方程;(2)经过点(0, 2)且斜率为k 的直线l 与曲线W 有两个不同的交点P 和Q ,求k 的取值范围(3)已知点M (2,0),N (0, 1),在(2)的条件下,是否存在常数k ,使得向量OP OQ +与MN 共线?如果存在,求出k 的值;如果不存在,请说明理由.23.(本题满分18分)本题共有3个小题,第(1)小题满分5分,第(2)小题满分6分,第(3)小题满分7分设各项均为非负数的数列{}n a 的为前n 项和n n S na λ=(1a ≠2a ,λ∈R ). (1)求实数λ的值;(2)求数列{}n a 的通项公式(用2n a ,表示). (3)证明:当2m l p +=(m l p ∈*N ,, )时,2m l p S S S ⋅≤一.填空题(本大题满分56分)本大题共有14题,每个空格填对得4分,否则一律得零分.1.()),3(3,2+∞⋃2. 13. 54. π145. 1026. 47. 38. 2 911.12π12.3 13. (2)(3)(5) 14.211-=n n q a T二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分. 15.D 16.C 17. B 18D. 三、解答题(本大题满分74分)本大题共5题,解答下列各题必须写出必要的步骤 . 19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分 . (1)设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则21203,3360l l ππ==;232,13r r ππ⨯==; 24,S S S rl r πππ=+=+=侧面表面积底面2111333V S h π==⨯⨯⨯= (2)设向量2AB AC +与向量2AB AC +的夹角为θ(2)(2)cos |2||2|AB AC AB AC AB AC AB AC θ+⋅+=+⋅+,令||||AB AC a ==,224cos 5θ==20.(本题满分14分)本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分 . (1)a 、b 、c 成等差,且公差为2,∴4a c =-、2b c =-. 又23MCN ∠=π,1cos 2C =-, ∴222122a b c ab +-=-, ∴()()()()2224212422c c c c c -+--=---, 恒等变形得 29140c c -+=,解得7c =或2c =.又4c >,∴7c =.(2)在ABC∆中,s i n s i n si nA CBC A B A BC B ACA C==∠∠∠,∴22sin sin sin 33ACBC ===ππθ⎛⎫-θ ⎪⎝⎭,2sin AC =θ,2sin 3BC π⎛⎫=-θ ⎪⎝⎭.∴ABC ∆的周长()f θAC BC AB =++2sin 2sin 3π⎛⎫=θ+-θ+ ⎪⎝⎭12sin cos 22⎡⎤=θ+θ+⎢⎥⎣⎦2sin 3π⎛⎫=θ+ ⎪⎝⎭又0,3π⎛⎫θ∈ ⎪⎝⎭,∴2333πππθ<+<,∴当32ππθ+=即6πθ=时,()f θ取得最大值2. 21.(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 .(1) 2||)(+=x x x f ,2)(,0+=>∴x xx f x 时当221+-=x()+∞+=,022在x y 上是减函数 ),0()(+∞∴在x f 上是增函数(2)原方程即:22||kx x x =+ )(* ①0=x 恒为方程)(*的一个解.②当20-≠<x x 且时方程)(*有解,则012,222=++=+-kx kx kx x x当0=k 时,方程0122=++kx kx 无解;当0≠k 时,时或即10,0442≥<≥-=∆k k k k ,方程0122=++kx kx 有解.设方程0122=++kx kx 的两个根分别是,,21x x 则kx x x x 1,22121=⋅-=+. 当1>k 时,方程0122=++kx kx 有两个不等的负根; 当1=k 时,方程0122=++kx kx 有两个相等的负根; 当0<k 时,方程0122=++kx kx 有一个负根③当0>x 时,方程)(*有解,则012,222=-+=+kx kx kx x x当0=k 时,方程0122=++kx kx 无解;当0≠k 时,时或即01,0442>-≤≥+=∆k k k k ,方程0122=-+kx kx 有解.设方程0122=-+kx kx 的两个根分别是43,x x243-=+∴x x ,kx x 143-= ∴当0>k 时,方程0122=-+kx kx 有一个正根,当1-≤k 时,方程0122=-+kx kx 没有正根综上可得,当),1(+∞∈k 时,方程2)(kx x f =有四个不同的实数解22. (本题满分16分)本题共有3个小题,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分6分 (1) 设C (x , y ),∵ 2AC BC AB +=++2AB =, ∴ 2AC BC +=>,∴ 由定义知,动点C 的轨迹是以A 、B 为焦点,长轴长为22的椭圆除去与x 轴的两个交点.∴ =1a c . ∴ 2221b a c =-=∴ W : 2212x y += (0)y ≠.(2) 设直线l 的方程为y kx =22(12x kx +=.整理,得221()102k x +++=. ①因为直线l 与椭圆有两个不同的交点P 和Q 等价于222184()4202k k k ∆=-+=->,解得k <k >∴ 满足条件的k 的取值范围为 2,(,)22k ∈-∞-+∞( (3)设P (x 1,y 1),Q (x 2,y 2),则OP OQ +=(x 1+x 2,y 1+y 2),由①得12x x += ②又1212()y y k x x +=++ ③因为M ,(0, 1)N , 所以(MN =.所以OP OQ +与MN 共线等价于1212)x x y y ++.将②③代入上式,解得k = 所以不存在常数k ,使得向量OP OQ +与MN 共线.23.(本题满分18分)本题共有3个小题,第(1)小题满分5分,第(2)小题满分6分,第(3)小题满分7分(1)当1n =时,11a a λ=,所以1λ=或10a =,若1λ=,则n n S na =,取2n =得1222a a a +=,即12a a =,这与1a ≠2a 矛盾; 所以10a =,取2n =得1222a a a λ+=,又1a ≠2a ,故20a ≠,所以12λ=,(2)记12n n S na =①,则111(1)2n n S n a --=- ()2n ≥②,①-②得111(1)22n n n a na n a -=-- ()2n ≥,又数列{}n a 各项均为非负数,且10a =, 所以112nn a n a n --=-()3n ≥, 则354234123411222n n a a aa n a a a a n --⋅⋅⋅=⨯⨯⋅⋅⋅⨯-,即()21n a a n =-()3n ≥,当1n =或2n =时,()21n a a n =-也适合, 所以()21n a a n =-;(3)因为()21n a a n =-,所以2(1)2n n n S a -=()20a ≠, 又2m l p +=(m l p ∈*N ,, ) 则[]{}2222(1)(1)(1)4pm n a S S S p p m m l l -=----[]{}222(1)(1)(1)4a p p m m l l =----()2222(1)(1)422a m l m l ml m l ⎧⎫⎡⎤⎪⎪++=----⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭(222(1)(1)4a ml ml m l ⎡⎤---⎢⎥⎣⎦≥(当且仅当m l =时等号成立)(222(1)(1)4a ml ml m l ⎡⎤---⎢⎥⎣⎦= )2221(1)(1)4a mlm l ⎡⎤---⎢⎥⎣⎦=()224a ml m l ⎡+-⎣= 0≥(当且仅当m l =时等号成立)所以2m l p S S S ⋅≤.。
上海市普陀区2014届高三数学一模试卷(文理合卷)

2013学年第一学期普陀区高三数学质量调研卷2013.12一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 若集合}02|{2>-=x x x A ,}2|1||{<+=x x B ,则=B A I .2. 设1e 、2e 是平面内两个不平行的向量,若21e e a +=与21e e m b -=平行,则实数=m .3. 在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2=a ,32=c ,3π=C ,则=b .4. 在nx )3(-的展开式中,若第3项的系数为27,则=n .5. 若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d lim .6. 函数)1(log )(2-=x x f )21(≤<x 的反函数=-)(1x f.7. 已知椭圆13422=+y x 的左、右两个焦点分别为1F 、2F ,若经过1F 的直线l 与椭圆相交于A 、B 两点,则△2ABF 的周长等于 .8. 数列}{n a 中,若11=a ,n n n a a 211=++(*N n ∈),则=+++∞→)(lim 221n n a a a Λ . 9. 若函数x x x f 1)(+=,则不等式25)(2<≤x f 的解集为 .10.【文科】如图,正四棱柱1111D C B A ABCD -的底面边长2=AB ,若异面直线A A 1与C B 1 所成的角的大小为21arctan,则正四棱柱1111D C B A ABCD -的侧面积为 . 【理科】如图,正四棱柱1111D C B A ABCD -的底面边长2=AB ,若直线C B 1与底面ABCD 所成的角的大小为2arctan ,则正四棱柱1111D C B A ABCD -的侧面积为 . 11. 【文科】在数列}{n a 中,21=a ,341+=-n n a a (2≥n ),则数列}{n a 的前n 项和=n S .【理科】数列}{n a 的前n 项和为n S ,若2cos1πn n a n +=(*N n ∈),则=2014S . 第10题12. 已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,若43214321b b b b a a a a +++<+++,则集合A 的取法共有 种. 13. 【文科】若函数2cos1)(xx x f ⋅+=π,则=+++)100()2()1(f f f Λ .【理科】正三角形ABC 的三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点D 是线段BC 的中点,过D 作球O 的截面,则截面面积的最小值为 .14.已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是 . 二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.若)(x f 和)(x g 都是定义在R 上的函数,则“)(x f 与)(x g 同是奇函数或偶函数”是“)()(x g x f ⋅是偶函数”的………………………………………………………………( ))(A 充分非必要条件. )(B 必要非充分条件. )(C 充要条件. )(D 既非充分又非必要条件16. 若a 和b 均为非零实数,则下列不等式中恒成立的是……………………………( ))(A ||2||ab b a ≥+. )(B 2≥+baa b . )(C 4)11)((≥++ba b a . )(D 222)2(2b a b a +≥+. 17.将函数)(x f y =的图像向右平移4π个单位,再向上平移1个单位后得到的函数对应的表达式为x y 2sin 2=,则函数)(x f 的表达式可以是………………………………………( ))(A x sin 2. )(B x cos 2. )(C x 2sin . )(D x 2cos .18. 若i A (n i ,,3,2,1Λ=)是AOB ∆所在的平面内的点,且OB OA OB OA i ⋅=⋅. 给出下列说法:第13题①||||||||21OA OA OA OA n ====Λ; ②||i OA 的最小值一定是||OB ; ③点A 、i A 在一条直线上;④向量OA 及i OA 在向量OB 的方向上的投影必相等.其中正确的个数是…………………………………………………………………………( ))(A 1个. )(B 2个. )(C 3个. )(D 4个.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分. 已知点)0,2(P ,点Q 在曲线C :x y 22=上.(1)若点Q 在第一象限内,且2||=PQ ,求点Q 的坐标; (2)求||PQ 的最小值.20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分. 已知函数x x x x f cos sin 322cos )(+=(1)【文科】求函数)(x f 的值域,并写出函数)(x f 的单调递增区间;【理科】求函数)(x f 的最大值,并指出取到最大值时对应的x 的值; (2)若60πθ<<,且34)(=θf ,计算θ2cos 的值. 21.(本题满分14分) 本大题共有2小题,第1小题6分,第2小题8分.如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径310=r 毫米,滴管内液体忽略不计.(1)如果瓶内的药液恰好156分钟滴完,问每分钟应滴下多少滴? (2)在条件(1)下,设输液开始后x (单位:分钟),瓶内液面与进气管的距离为h (单位:厘米),已知当0=x 时,13=h .试将h 表示为x 的函数.(注:3310001mm cm =)OAB第18题第21题22. (本题满分16分) 本大题共有3小题,第1小题满分5分,第2小题满分5分 ,第3小题满分6分.已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明数列{}2n n a -是等比数列,并求数列{}n a 的通项公式;(2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;(3)若1r s <<且r ,*s N ∈,求证:使得1a ,r a ,s a 成等差数列的点列(),r s 在某一直线上.23.(本题满分18分) 本大题共有3小题,第1小题满分4分,第2小题满分6分 ,第3小题满分8分.定义在()0,+∞上的函数()f x ,如果对任意()0,x ∈+∞,恒有()()f kx kf x =(2k ≥,*k N ∈)成立,则称()f x 为k 阶缩放函数.(1)已知函数()f x 为二阶缩放函数,且当(]1,2x ∈时,()121log f x x =+,求(22f 的值;(2)【文科】已知函数()f x 为二阶缩放函数,且当(]1,2x ∈时,()22f x x x =-()y f x x =-在)8,1(上无零点;【理科】已知函数()f x 为二阶缩放函数,且当(]1,2x ∈时,()22f x x x =-()y f x x =-在()1,+∞上无零点;(3)已知函数()f x 为k 阶缩放函数,且当(]1,x k ∈时,()f x 的取值范围是[)0,1,求()f x 在(10,n k+⎤⎦(n N ∈)上的取值范围.2013学年第一学期普陀区高三数学质量调研卷 评分标准一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. )0,3(-; 2.1-; 3. 4;4.3; 5.1; 6. =-)(1x f )0(21≤+x x (不标明定义域不给分);7. 8; 8.32; 9.)2,21( 10.32; 11.【文科】 14--n n (*N n ∈); 【理科】1006; 12.31; 13.【文科】150;【理科】49π; 14.2<a ;二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.题号 15 16 17 18 答案ADCB三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分. 【解】设),(y x Q (0,0>>y x ),x y 22=(1)由已知条件得2)2(||22=+-=y x PQ …………………………2分将x y 22=代入上式,并变形得,022=-x x ,解得0=x (舍去)或2=x ……………4分当2=x 时,2±=y只有2,2==y x 满足条件,所以点Q 的坐标为)2,2(………………6分 (2)||PQ 22)2(y x +-=其中x y 22=…………………………7分422)2(||222+-=+-=x x x x PQ 3)1(2+-=x (0≥x )…………10分当1=x 时,3||min =PQ ……………………………………12分(不指出0≥x ,扣1分)20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分.【解】(1))62sin(22sin 32cos )(π+=+=x x x x f ………………2分【文科】由于2)62sin(22≤+≤-πx ,所以函数)(x f 的值域为]2,2[-………4分由πππππk x k 22)6222+≤+≤+-得ππππk x k +≤≤+-63所以函数)(x f 的单调的增区间为]6,3[ππππ+-k k ,Z k ∈………6分(文科不写Z k ∈,不扣分;不写区间,扣1分)【理科】由20π≤≤x 得,67626πππ≤+≤x ………4分 所以当262ππ=+x 时,2)(max =x f ,此时6π=x ………6分(2)由(1)得,34)62sin(2)(=+=πθθf ,即32)62sin(=+πθ……………8分其中2626ππθπ<+<得0)62cos(>+πθ………………10分所以35)62cos(=+πθ……………11分 ]6)62cos[(2cos ππθθ-+=………………13分 621521322335+=⨯+⨯=………………14分 21. (本题满分14分) 本大题共有2小题,第1小题6分,第2小题8分. 【解】(1)设每分钟滴下k (*N k ∈)滴,………………1分则瓶内液体的体积πππ1563294221=⋅⋅+⋅⋅=V 3cm ………………3分k 滴球状液体的体积75340103432ππk mm k k V ==⋅⋅⋅=3cm ………………5分 所以15675156⨯=ππk ,解得75=k ,故每分钟应滴下75滴。
14年高考真题——理科数学(上海卷)-推荐下载

4
6.若圆锥的侧面积是底面积的 3 倍,则其母线与底面夹角的大小为____________(结 果用反三角函数表示)。
7.已知曲线 C 的极坐标方程为 3cos 4sin 1 ,则 C 与极轴的交点到极点的
距离为___________。
8.设无穷等比数列 an 的公比为
q ________。
2014 年高考真题理科数学(解析版) 卷
2014 年普通高等学校招生全国统一考试(上海)卷
数学(理科) 一.填空题:共 14 小题,每小题 4 分,共 56 分。
1.函数 y 1 2 cos2 2x 的最小正周期是______________。
2.若复数
z
1
2i
,其中
i
是虚数单位,则
3.若抛物线 y2 2 px 的焦点与椭圆 x2 y2 1的右焦点重合,则该抛物线的准线方 95
程为_______________。
4.设
f
x
x
x
2
x a
,若
x a
f
2
5.若实数 x, y 满足 xy 1,则 x2 2 y2 的最小值为______________。
z
lim
n
x
1 z
z
______________。
的取值范围是_______________。
a3
a4
的取值范围为________________。
an
,则
Hale Waihona Puke 上海2014 年高考真题理科数学(解析版) 卷
上海市普陀区2014年高三第一次质量调研卷数学【理】试卷及答案

2014学年第一学期普陀区高三理科数学质量调研卷2014.121.答卷前,考生务必在答题纸上将姓名、考试号填写清楚,并在规定的区域贴上条形码.2.本试卷共有23道题,满分150分.考试时间120分钟.3.本试卷另附答题纸,每道题的解答必须写在答题纸的相.........应位置,本卷上任何解答都不作评分................依据... 一、填空题(本大题满分56分)本大题共有14小题,要求直接将结果填写在答题纸对应的空格中.每个空格填对得4分,填错或不填在正确的位置一律得零分.1. 若集合}1lg |{<=x x A ,∈==x x y y B ,sin |{R },则=B A .2. 若1lim=+∞→an ann ,则常数=a .3. 若1>x ,则函数112-+-=x x x y 的最小值为 .4. 函数⎪⎭⎫⎝⎛-π=x y 4tan 的单调递减区间是 . 5. 方程1)7lg(lg =-+x x 的解集为 .6. 如图,正三棱柱的底面边长为2,体积为3,则直线C B 1与底面ABC 所成的角的大小为 (结果用反三角函数值表示).7. 若方程132||22=-+-ky k x 表示双曲线,则实数k 的取值范围是 . 8. 函数22)(2+-=x x x f (0≤x )的反函数是 .9. 在二项式81⎪⎪⎭⎫ ⎝⎛-x x 的展开式中,含2x 项的系数为 (结果用数值表示).10. 若抛物线mx y 42=(0>m )的焦点在圆122=+y x 内,则实数m 的取值范围是 .11. 在ABC ∆中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若32=a ,2=c ,120=A ,A BC1C 1B 1A 第6题则=∆ABC S .12. 若无穷等比数列}{n a 的各项和等于公比q ,则首项1a 的最大值是 . 13. 设a 为大于1的常数,函数⎩⎨⎧≤>=+00log )(1x ax x x f x a ,若关于x 的方程0)()(2=⋅-x f b x f恰有三个不同的实数解,则实数b 的取值范围是 .14. 如图,点1P ,2P ,… ,10P 分别是四面体的顶点或其棱的中点,则在同一平面 内的四点组()k j i P P P P ,,,1 (101≤<<<k j i )共有 个.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个结论是正确的,必须把正确结论的代号写在答题纸相应的空格中. 每题选对得5分,不选、选错或选出的代号超过一个(不论是否都写在空格内),或者没有填写在题号对应的空格内,一律得零分.15.设a 、∈b R ,且0<ab ,则…………………………………………………………………………( ))(A ||||b a b a -<+ )(B ||||b a b a ->+ )(C ||||||b a b a -<- )(D ||||||b a b a +<-16.“点M 在曲线x y 42=上”是“点M 的坐标满足方程02=+y x ”的…………………………( ))(A 充分非必要条件 )(B 必要非充分条件 )(C 充要条件 )(D 既非充分也非必要条件17.要得到函数x y 2sin =的图像,只需将函数⎪⎭⎫⎝⎛-=42cos πx y 的图像………………………………( ))(A 向左平移8π个单位 )(B 向右平移8π个单位 )(C 向左平移4π个单位 )(D 向右平移4π个单位3 498第14题131-n 2k第18题18. 若在边长为1的正三角形ABC 的边BC 上有n (∈n N *,2≥n )等分点,沿向量BC 的方向依次为121,,,-n P P P ,记AC AP AP AP AP AB T n n ⋅++⋅+⋅=-1211 , 若给出四个数值:①429 ②1091③18197 ④33232,则n T 的值不可能的共有…………………( ) )(A 1个 )(B 2个 )(C 3个 )(D 4个三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸规定的方框内写出必要的步骤.19. (本题满分12分)已知P 是椭圆12422=+y x 上的一点,求P 到)0,(m M (0>m )的距离的最小值. 20. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.已知函数x x b x a x f cos sin sin )(2+=满足2)23()6(==ππf f(1)求实数b a ,的值以及函数)(x f 的最小正周期;(2)记)()(t x f x g +=,若函数)(x g 是偶函数,求实数t 的值.21. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等,铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm ).(加工中不计损失).(1)若钉身长度是钉帽高度的2倍,求铆钉的表面积;(2)若每块钢板的厚度为12mm ,求钉身的长度(结果精确到1mm ).22. (本题满分16分)本题共有3个小题,第(1)小题5分,第(2)小题6分,第(3)小题5分已知数列}{n a 的前n 项和为n S ,且4=+n n a S ,∈n N * (1)求数列}{n a 的通项公式;(2)已知32+=n c n (∈n N *),记=n d n Cn a c l o g+(0>C 且1≠C ),是否存在这样的常数C ,使得数列}{n d 是常数列,若存在,求出C 的值;若不存在,请说明理由. (3)若数列}{n b ,对于任意的正整数n ,均有2221123121+-⎪⎭⎫ ⎝⎛=++++--n a b a b a b a b nn n n n 成立,求证:数列}{n b 是等差数列;23. (本题满分18分)本题共有3个小题,第(1)小题4分,第(2)小题6分,第(3)小题8分已知函数)(x f y =,若在定义域内存在0x ,使得)()(00x f x f -=-成立,则称0x 为函数)(x f 的局部对称点.(1)若a 、∈b R 且0≠a ,证明:函数a bx ax x f -+=2)(必有局部对称点;(2)若函数c x f x+=2)(在区间]2,1[-内有局部对称点,求实数c 的取值范围; (3)若函数324)(21-+⋅-=+m m x f x x在R 上有局部对称点,求实数m 的取值范围.2014学年第一学期普陀区高三理科数学质量调研卷参考答案一、填空题(本大题满分56分)本大题共有14小题,要求直接将结果填写在答题纸对应的空格中.每个空格填对得4分,填错或不填在正确的位置一律得零分. 1. )10,1[- 2.1 3.3 4.⎪⎭⎫⎝⎛+-43.4ππππk k (Z k ∈)5.}5,2{6.21arctan7.),3()2,2(+∞- 8.)2(11)(1≥--=-x x x f 9.70 10.1>m 11.3 12.4113. a b ≤<0 14. 33二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个结论是正确的,必须把正确结论的代号写在答题纸相应的空格中. 每题选对得5分,不选、选错或选出的代号超过一个(不论是否都写在空格内),或者没有填写在题号对应的空格内,一律得零分.三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸规定的方框内写出必要的步骤.19. (本题满分12分)【解】设),(y x P ,其中22≤≤-x ……………………2分则222)(||y m x PM +-==2221212)(2222++-=-+-m mx x x m x ……5分 222)2(21m m x -+-=,对称轴m x 2=0>……7分 (1) 若220<<m ,即10<<m ,此时当m x 2=时,2min 2||m PM -=;……9分(2) 若22≥m ,即1≥m ,此时当2=x 时,|2|44||2min -=+-=m m m PM ;……11分综上所述,⎪⎩⎪⎨⎧≥-<<-=1|,2|10,2||2min m m m m PM …………12分20. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.【解】 (1)由⎪⎪⎩⎪⎪⎨⎧==2)23(2)6(ππf f 得,⎩⎨⎧==+283a b a ……2分,解得⎩⎨⎧==322b a ……3分所以)(x f x x 2sin 32cos 1+-=……4分)62sin(21π-+=x …………5分 所以函数)(x f 的最小正周期ππ==22T …………6分(2)由(1)得,1]6)(2sin[2)(+-+=+πt x t x f ,所以1622sin 2)(+⎪⎭⎫ ⎝⎛-+=πt x x g ……8分函数)(x g 是偶函数,则对于任意的实数x ,均有)()(x g x g =-成立。
上海市各区2014届高三数学一模试题分类汇编 数列(理)

上海市各区2014届高三数学(理科)一模试题分类汇编数列2014.01.26(长宁区2014届高三1月一模,理)5、数列{}n a 满足*,5221...2121221N n n a a a n n ∈+=+++,则=n a . 5、⎩⎨⎧≥=+.2,21,141n n n (嘉定区2014届高三1月一模,理)4.已知数列}{n a 的前n 项和2n S n =(*N ∈n ),则8a 的值是__________. 4.15(普陀区2014届高三1月一模,理)8. 数列}{n a 中,若11=a ,n n n a a 211=++(*N n ∈),则=+++∞→)(lim 221n n a a a .8.32; (长宁区2014届高三1月一模,理)11、已知数列{}{}n n b a ,都是公差为1的等差数列,其首项分别为11,b a ,且,511=+b a ,,11N b a ∈设),(N n a c n b n ∈=则数列{}n c 的前10项和等于______. 11、85(浦东新区2014届高三1月一模,理)3.已知数列{}n a 中,11a =,*13,(2,)n n a a n n N -=+≥∈,则n a =___________.3. 32n -(普陀区2014届高三1月一模,理)22. (本题满分16分) 本大题共有3小题,第1小题满分5分,第2小题满分5分 ,第3小题满分6分.已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明数列{}2nn a -是等比数列,并求数列{}na 的通项公式;(2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;(3)若1r s <<且r ,*s N ∈,求证:使得1a ,r a ,s a 成等差数列的点列(),r s 在某一直线上.22. (本题满分16分) 本大题共有3小题,第1小题满分5分,第2小题满分5分 ,第3小题满分6分.解:(1)将已知条件132n n n a a ++=⋅变形为()1122n n n n a a ++-=--……1分由于123210a -=-=≠,则12211-=--++nn n n a a (常数)……3分即数列{}2n n a -是以1为首项,公比为1-的等比数列……4分所以1)1(12--⋅=-n n n a 1)1(--=n ,即n n a 2=1)1(--+n (*N n ∈)。
上海市各区2014届高三数学(理科)一模试题分类汇编:函数

上海市各区2014届高三数学(理科)一模试题分类汇编函数 2014.01.23(浦东新区2014届高三1月一模,理)6.已知函数的反函数为,则11()24x x f x -=1()f x -___________.1(12)f -=( 6. 2log 3(杨浦区2014届高三1月一模,理)6.若函数的反函数为,则 .()23-=x x f ()x f 1-()=-11f 6. 1 ; ((嘉定区2014届高三1月一模,理)1.函数的定义域是_____________.)2(log 2-=x y 1. ),2(∞+(徐汇区2014届高三1月一模,理)7. 若函数()f x 的图像经过(0,1)点,则函数()3f x +的反函数的图像必经过点.长宁区2014届高三1月一模,理)1、设是上的奇函数,当时,,则 ()x f R 0≤x ()x x x f -=22()=1f 1、 3-(浦东新区2014届高三1月一模,理)17.已知函数则,1)(22+=x x x f ( )()()()111112(2013)20142320132014f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭K L (A) 2010 (B) 2011 (C) 2012 (D) 2013 21212121 17. D (普陀区2014届高三1月一模,理)6. 函数)1(log )(2-=x x f )21(≤<x 的反函数 .=-)(1x f 6. (不标明定义域不给分); =-)(1x f )0(21≤+x x(嘉定区2014届高三1月一模,理)13.已知函数是偶函数,直线⎪⎧≥++=,0,12)(2x x ax x f 与函数的图像自左t y =)(x f至右依次交于四个不同点、、、,若,则实数的值为________.A B C D ||||BC AB =t 13. 47(嘉定区2014届高三1月一模,理)3.已知函数存在反函数,若函数的)(x f y =)(1x f y -=)1(-=x f y 图像经过点,)1,3(则的值是___________.)1(1-f 3. 2(杨浦区2014届高三1月一模,理)8. 已知函数,若,则 ()lg f x x =()1f ab =22()()f a f b +=_________.8. 2;(浦东新区2014届高三1月一模,理)14. 已知函数,对任意都有**(),,y f x x y =∈∈N N *n ∈N ,且是增函数,则 [()]3f f n n =()f x (3)f =14.6(长宁区2014届高三1月一模,理)3、已知函数的图像关于直线对称,则5()2x f x x m -=+y x =m =3、 1-(普陀区2014届高三1月一模,理)14.已知函数,若方程有且仅有两⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x 0)(=+x x f 个解,则实数的取值范围是 .a 14.;2<a (徐汇区2014届高三1月一模,理)14. 定义区间(),c d 、[),c d 、(],c d 、[],c d 的长度均为()d c d c ->.已知实数(),a b a b >.则满足111x a x b +≥--的x 构成的区间的长度之和为 .14. 2(杨浦区2014届高三1月一模,理)18.定义一种新运算:,已知函数,(),()b a b a b a a b ≥⎧⊗=⎨<⎩,若函数24()(1log f x x x =+⊗ 恰有两个零点,则的取值范围为 ………( ).()()g x f x k =-k . . . . )(A (]1,2)(B (1,2))(C (0,2))(D (0,1)18.理B ;(嘉定区2014届高三1月一模,理)18.设函数的定义域为,若存在闭区间,使得函数)(x f D D b a ⊆],[满足:①)(x f )(x f 在上是单调函数;②在上的值域是,则称区间是函],[b a )(x f ],[b a ]2,2[b a ],[b a 数的“和谐区间”.下列结论错误的是………………………………………( ))(x f A .函数()存在“和谐区间”2)(x x f =0≥x B .函数()不存在“和谐区间”x e x f =)(R ∈x C .函数)存在“和谐区间”14)(2+=x x x f (0≥x D .函数(,)不存在“和谐区间”⎪⎭⎫ ⎝⎛-=81log )(x a a x f 0>a 1≠a 18.D (长宁区2014届高三1月一模,理)18、函数的定义域为,值域为,变动时,方程表示的图形可2x y =[,]a b [1,16]a ()b g a =以是 ()A .B .C .D .18、B (普陀区2014届高三1月一模,理)23.(本题满分18分) 本大题共有3小题,第1小题满分4分,第2小题满分6分 ,第3小题满分8分.定义在上的函数,如果对任意,恒有(,)成()0,+∞()f x ()0,x ∈+∞()()f kx kf x =2k ≥*k N ∈立,则称为阶缩放函数.()f x k (1)已知函数为二阶缩放函数,且当时,,求的值;()f x (]1,2x ∈()121log f x x=+(f (2)已知函数为二阶缩放函数,且当时,()f x (]1,2x ∈()f x =在上无零点;()y f x x =-()1,+∞(3)已知函数为阶缩放函数,且当时,的取值范围是,求在()f x k (]1,x k ∈()f x [)0,1()f x ()上的取值范围.(10,n k +⎤⎦n N ∈23. (本题满分18分) 本大题共有3小题,第1小题满分4分,第2小题满分6分 ,第3小题满分8分.解:(1)由得,………………2分]2,1(2∈212log 1)2(21=+=f 由题中条件得……………………4分1212)2(2)22(=⨯==f f (2)当()时,,依题意可得:]2,2(1+∈i i x i N ∈(]1,22i x ∈分()222222222i i x x x f x f f f ⎛⎫⎛⎫⎛⎫====== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 方程或,与均不属于……8分0)(=-x x f ⇔x =⇔0x =2i x =0i 2]2,2(1+i i 当()时,方程无实数解。
上海市2014届普通高中学生学业水平考试数学模拟试卷1--.

•4S Ke I -u a l /c t T A ・・r B 2T“ g A elx .w g------------・A・P &M・ :T・P ?・ 2・lr A z -・・•=*-?■:■■/ ll・S a i >t e s x <-•・,■■•■■■■■•••I A « 2ni4 存住夕业康•号试”fUP ・・ G 二)q"g ,・:B *•••< i u.- arc •・・!!■ ■■■■■9,・•■-”・■»t-….X 0亠・ ___________< ♦■“•.—IMBA ________________,■•"・(U ・MA<Q. $・|U^,•上 _________________ -tteFX*・”・o. x ・打"32金・■IPJJA ,・i w . U.■配・・ knt ・・ca ・-•»!2• ••■ ♦••■{代|・}!•■・ ••”gi.t4』・・・ •》-・WX —. ■■!•-. e«a<«•»««»*. q ・d. Wifa.1T*-■・■ <XMMrN*・・t«an ・ f •・■■ ・♦■■・• •・ mt> » i& ■・•朋•・■/>••••・ ■•awnii ♦卯•・—-• >■ •・・#。
*|』・卜■•人・■,3 >r *> e»4AftCAA• «AM4D •石•豪・4 <t.fl.ER . »• AA . «>w rc» • ■•・■:■••♦«<C.n ・•只・■怡・ • -^-ii/«t ・・b・R4・*刍・4>.»:■乂f >・•・二・・■ < ♦ ■ —I M «. «<«*・•).臥*eljt •耳“a.aim. « <■•> *<■«*!:#・・l 1-MH9*-• ■■■•Mql*・ »VM- ••"■心 <•♦・[・■ S«HN </«<:><««««・•■食• «<i* txau«•・叫 ・・・・■ ••! J -24・•>鼻•俺.伍).■ b ・运).e 14.1) ■*.D .m jyjx — L».〜■•»・■,“♦•MUI ・■!!■・ Hjkl-VJ ・■■,!!▼・■♦・・1・4IMM 21 (!«»«•«•|<uU•<?.nM|«• (|9. MkMeAH■ IM »・・W ・♦•专■ nst^en<r* ■・・・w )勺儿・*■•«•・■■・・•・•*♦*>息・•・;f WI• II •■・・■ Mirn ・・・■■••■■■A.. OMU ・•!>•三)l/M' V# 枫“—,■■ ________ “ ________ g __________ _________-XU a ■■■■■!<•— ■■・■ ・9*・ •■-・•・■ I» ol V ・■、<>«AW4» «:4■・♦•» >>•<■.«! ・x 「.•■・•”£• C ・“4冲舟f) £©・「・ « < 7»» t |1»« •卜八i. u» ・・■ a«t{*JavK*< «JI */••!«<»•・«•*. >•・io raRi»j (rt ・ v j. vs-・°・“•■・▲■■代C*«an・・••■«!■・1 > ■ ■ F*>・A-"卜SJS> ■・“7dKjS ,T c ■•卜』・Q »t*. 7 %■,杯>4 U■• -U• GfT2・〒一l»MA !•!••••* J >*t> » u|»-n»*Yc ・ |s|«-U»^>CZ) Q (t|s-«»4<-ir^.kCZ|:l t»WA l> ・0 •■劭•■■・n ■■育 IfMS ・・,1 、w ,・—w ・V■卜•口.«• —T . ・■・iR F . «4>CA4AC\a — M 1> ・・■輛l«WWKBRkJ*-r*・ 3>e ・・». «. it •配■•參・・・、・■■ ••••CMII « •・ o«a・■"■・ < i A lug»|J U-I ^J I c l-i. it P0二 ・■■ KAMtTM#・・•・ m«MMMM^Me9K«AW<f«■!!*• »» < e ・•a ・b 》・k^o-cjk•«!>n.A r •!・2・》♦»A me* B<n c <• D rr.・A ■ G" c (J.J IU(J^1 D IjJiln t M| mA •> -3 e £■・, D ・J<>• i・••介M・0|厶・0丿2砂.剑▲•■}舅・P «・卜丄72・» KMlMtiria I t^Mtrl * ・ a :lr»・・H ■•冋•冋l,・■・ I •»> 4<«*MAN. l>«F»S f.R4RAOfM9lA/l\.AXRs.h»・■帝•砂•莎•a-・ «,--!・94v « ________<■4<Vl ・0C_・・ ________ .i. Si•■2》F ・duh____________>•■*•:♦>■.・l tMIM#・・:KKItW ■•汗•»□«»■•♦/•II—1 H A -K ••- 5・B •切|1^.-4.-jOM 4< It*.人丹••》}」・•■・・、■■•州人―・,r i«4sctcx■■・・rrte^it ・■•殺 a>t»勺・««•p3・・ s« 211.,«•<> ・ «> MF AitB. F «|1A>-1>4. U« U».・■”用3・...H 乙 ________ A■f ___________ .•-・ > >«■ •■・・•• S«>W0•■舄• *2 •M ________ tt 4.M*4MwTMMei rmu _________________ ii eM<i.r («><K<0A te<«• /0).ir. w.r 4(->|.2・■・•■八■八••・ awrufiDRMnei^ «.■・仏、”4忖•少卜•"Z«住•勺•?• •习.—• 5“ I < AA*. •幺■><・■■快・人・» 二 IMtYMB. E M*».»«•-・tt (7*■•・•攵•卜卜・>«!«!•<・—》q. •■・•* •••» •儒・C94・©»・<\ •♦・貝•斗•・$・K«l•・ n^nt-t*i■卜—) A• |*UU>| A. l -u.-*)2- ■■・••tUMK— i iA. ■•{•II •配"・■tA<HI«->!>.> •/mi ・【“d 叭A 卜卜”9“|M.HWCMJMMM LM. MlIMflIM**■■■■臨1*1乂3fi)03i< 3八 D. 1|JM«•M< >ata ■ Wf”IWK ・ 5)"Mi " x« A*e I?- u>I-潅D;・aei^rerh■ •blfTiAQ 9 KAMimr MU »^ W•».«•-.2WOF0«w*oq«<•■■• .uU<Hd*tr i»« •, "厶冷Pll>«BA4MH«X. ■利MX G <AA 0・F■!<’•・•・■••・r aet. 4i«A;<>*M4・,•事4TG・ K44<,M,-4nS] •!・«*•<*<«). ♦厂・,・:,•1OJMG Hl■■- •・ xua. ■■■■■■■••A■■■・・9・.•■一”> !• eW^vR«Q«« •> -4X «W*B ______________•« ■■••• an■■■:>・▲• a<a.f • ai^n.・ __________________ .佻aav.rMMUM ______________4. «fl V«W:. A»«MI■ ■・■■•■____________ •t. ■■・■2d>ja0eQ t・. ___ -•*・・ _____________ ,9.i»^・—y・・■■•- __________ •t. ewwanKhi. s・#。
数学理卷·2014届上海市十三校高三12月联考(2013.12)

(C)充要
(D)非充分非必要
Mቤተ መጻሕፍቲ ባይዱ
17.如图,点 P 在边长为 1 的正方形的边上运动, M 是 CD 的中点, D
C
则当 P 沿 A − B − C − M 运动时,点 P 经过的路程 x 与 ∆APM 的面积
P
y 的函数 y = f ( x) 的图像的形状大致是下图中的( ).
A
B
y
y
y
y
O 1 2 2.5 x O 1 2 2.5 x O
2
2
2
4
fmax =
2 A = 4 ,所以 A = 4 2 2
………1 分
(2)向左移 π 得 y = 4sin(2x − π ) ,………2 分
12
12
横坐标变为原来 2 倍得 g ( x) = 4 sin(x − π ) ………1 分
12
因为 x ∈ (− π ,11π ) ,所以 x − π ∈ (− π , 5π ) ………1 分
=
4 5
,则
cos(α − π ) + 2sin(π 2
2 tan(π + α ) + cot(π
−α) +α)
=______________.
2
4.计算: lim [n2 ( 2 − 1 − 1 )] =_________. n→+∞ n n +1 n + 2
5.已知二元一次方程组的增广矩阵是
m 1
4 m
m+ m
2
,若该方程组无解,则实数
m
的值为
___________.
6.已知流程图如图所示,为使输出的 b 值为 16,则判断框内①处可以填数字