201x-201x学年八年级数学上册 第十五章 分式 15.3 分式方程(1)课时练习 新人教版
渭南市实验中学八年级数学上册 第十五章 分式 15.3 分式方程 课时2 分式方程与实际问题的综合教

第十五章分式15.3 分式方程课时2 分式方程的应用【知识与技能】(1)进一步熟练地解可化为一元一次方程的分式方程.(2)熟练地列可化为一元一次方程的分式方程解应用题.【过程与方法】建立分式方程模型的过程,体会建模思想.【情感态度与价值观】在探索分式方程解决实际问题的过程中,体会数学在实际生活中的广泛应用.在不同的实际问题中审清题意设未知数,列分式方程,解决实际问题.在不同的实际问题中,设未知数列分式方程.多媒体课件.教师出示问题:1.列方程解应用题的一般步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)验;(6)答.(教师板书)2.由学生讨论,我们现在所学过的应用题有哪些类型?学生举手回答上面的两个问题,教师点评.在学生讨论的基础上,教师归纳、总结,基本上有五种:(出示投影)(1)行程问题:路程=速度×时间,而行程问题中又分相遇问题和追及问题.(2)数字问题:在数字问题中,要掌握十进制数的表示法.(3)工程问题:工作量=工作时间×工作效率.(4)顺水、逆水问题:v顺水=v静水+v水,v逆水=v静水-v水.(5)利润问题:售价-进价=利润率×进价.教师引入:有一些实际问题,我们可以通过列分式方程解决.(板书课题)教师:同学们,我们一起来看几个例子(教师依次出示教材P152例3、P153例4):例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?分析:甲队1个月完成总工程的,设乙队单独施工1个月能完成总工程的,那么甲队半个月完成总工程的(),乙队半个月完成总工程的(),两队半个月完成总工程的().教师引导学生在用式子表示上述的量之后,再根据“甲、乙两个工程队的工程总量=总工程量”这一相等关系建立方程.教师示范解答过程,强调必须检验这一过程.例4某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度为多少?学生讨论,教师引导.先指导学生读题,理清速度、路程和时间所对应的式子,再抓住“相同的时间”这一关键词,得出相等的数量关系,即“提速前的路程÷提速前的速度=提速后的路程÷提速后的速度”,从而建立方程.学生自己独立完成解答过程,教师再演示解答过程.注意:教师帮助学生解决含有字母的计算问题,求出关于x的方程的解.教师提醒:表达问题时,用字母不仅可以表示未知数(量),也可以表示已知数(量).最后教师总结:(1)在实际问题中,有时题目中包含多个相等数量关系,在列方程时一定要选择一个能够体现全部(或大部分)题意的相等关系.(2)在检验过程中,不仅要检验所得的根是否为原分式方程的根,还要检验这个根在实际问题中是否具有实际意义,如时间非负、人数为正数等.(3)在一些实际问题中,有时直接设问题所求的量为未知数可能比较麻烦,可以间接地设未知数.接着教师让学生独立完成教材P154练习第1,2题,同桌之间互相检查.列分式方程解应用题按下列步骤进行:(1)审题,了解已知量与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部(或大部分)含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验所求得的根是不是增根,以及是否符合实际意义;(6)写出答案.第十一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列长度的三条线段能组成三角形的是( D )A.1,2,3 B.1, 2 ,3 C.3,4,8 D.4,5,62.正十边形的一个内角的度数是( D )A.108°B.120°C.135°D.144°3.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( A )A.40°B.60°C.80°D.90°4.如图,D,B,C,E四点共线,∠ABD+∠ACE=230°,则∠A的度数为( A )A.50°B.60°C.70°D.80°(第4题图)(第6题图)(第7题图)5.一个正多边形的外角等于45°,则这个正多边形的内角和是( B )A.1 440°B.1 080°C.900°D.720°6.如图,AD是△ABC的中线,已知△ABD的周长为22 cm,AB比AC长3 cm,则△ACD 的周长为( A )A.19 cm B.22 cm C.25 cm D.31 cm7.小明同学把自己的一副三角板(两个直角三角形)按如图所示的位置将相等的边叠放在一起,则α的度数为( C )A.135°B.120°C.105°D.75°8.已知n是正整数,若一个三角形的三边长分别是n+2,n+8,3n,则满足条件的n 的值有( D )A.4个B.5个C.6个D.7个9.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是( B )A.45°B.50°C.55°D.80°(第9题图)(第10题图)10.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是( B )A.36°B.72°C.50°D.46°二、填空题(每小题3分,共18分)11.工人师傅盖房子时,常将房梁设计成如图所示的图形,使其牢固不变形,这是利用三角形的稳定性.(第11题图) (第14题图) (第16题图)12.若三角形两边长分别是2,4,第三边长为偶数,则第三边长为4. 13.若一个n 边形的外角和与它的内角和之和为1 800°,则边数n =10.14.如图,在△ABC 中,∠ACB =90°,AD 平分∠CAB,交边BC 于点D ,过点D 作DE⊥AB,垂足为点E.若∠CAD=20°,则∠EDB 的度数是40°.15.已知a ,b ,c 是三角形的三条边,则化简|a -b +c|-|c -a -b|=2c -2b .16.如图,在△ABC 中,∠A =84°,点O 是∠ABC,∠ACB 平分线的交点,点P 是∠BOC,∠OCB 平分线的交点,若∠P=100°,则∠ACB 的度数是56°.三、解答题(共72分)17.(6分)求图中∠α的度数.(1)解:∠α=360°-65°-70°-(180°-40°)=85°.(2)解:∠α=180°-(360°-90°-90°-40°)=40°.18.(6分)若三角形的三边长分别是2,x ,10,且x 是不等式x +14 <1-1-x 5的正偶数解,试求第三边的长x.解:原不等式可化为5(x +1)<20-4(1-x),解得x <11,又根据三角形的三边关系,得10-2<x <10+2,解得8<x <12,∵x 是正偶数,∴x =10,∴第三边的长为10.19.(6分)如图,AD 是△ABC 的高,AE 是△ABC 的角平分线,若∠BAC∶∠B∶∠C=6∶3∶1,求∠DAE 的度数.解:∵∠BAC∶∠B∶∠C=6∶3∶1,∴设∠BAC=6α,则∠B=3α,∠C =α,∵∠BAC +∠B+∠C=180°,∴6α+3α+α=180°,解得α=18°,∴∠BAC =108°,∠B =54°,∠C =18°.∵AD 是△ABC 的高,∴∠ADB =90°,∴∠BAD =180°-90°-54°=36°,∵AE 是△ABC 的角平分线,∴∠BAE =12 ∠BAC=12×108°=54°,∴∠DAE =∠BAE -∠BAD=54°-36°=18°.20. (8分)如图,在Rt △ABC 中,∠ACB =90°,∠A =34°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E.(1)求∠CBE 的度数;(2)过点D 作DF∥BE,交AC 的延长线于点F ,求∠F 的度数.解:(1)∵∠ACB=90°,∠A =34°,∴∠CBD =∠ACB+∠A=124°,∵BE 是∠CBD 的平分线,∴∠CBE=12∠CBD=62°.(2)∵∠ECB=90°,∠CBE =62°,∴∠CEB =90°-∠CBE=28°,∵DF ∥BE ,∴∠F =∠CEB=28°.21.(8分)如图,D 是△ABC 的边BC 上的一点,且∠1=∠2,∠3=∠4,∠BAC =66°,求∠DAC 的度数.解:∵∠4=∠1+∠2,∠1=∠2,∴∠4=2∠1,∵∠3=∠4,∴∠3=2∠1,∵∠BAC =66°,∴180°-∠2-∠3=180°-∠1-2∠1=66°,解得∠1=38°,∴∠DAC =∠BAC-∠1=66°-38°=28°.22.(8分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D.(1)求证:∠ACD=∠B;(2)若AF 平分∠CAB,且分别交CD ,BC 于点E ,F ,求证:∠CEF=∠CFE.证明:(1)∵∠ACB=90°,∴∠ACD +∠DCB=90°,又∵CD⊥AB 于点D ,∴∠DCB +∠B=90°,∴∠ACD =∠B.(2)∵∠CEF=∠CAF+∠ACD,∠CFE =∠B+∠FAB,又∵AF 平分∠CAB,∴∠CAF =∠FAB,由(1)知∠ACD=∠B,∴∠CEF =∠CFE.23.(9分)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.(1)已知一个“特征三角形”的“特征角”为100°,求这个“特征三角形”的最小内角的度数;(2)是否存在“特征角”为120°的三角形?若存在,请举例说明.解:设三角形的另一个内角为γ.(1)∵α=2β,且α+β+γ=180°,∴当α=100°时,β=50°,则γ=30°,∴这个“特征三角形”的最小内角的度数是30°.(2)不存在.∵α=2β,且α+β+γ=180°,∴当α=120°时,β=60°,则γ=0°,此时不能构成三角形,∴不存在“特征角”为120°的三角形.24.(9分)如图,在△ABC 中(AC >AB),AC =2BC ,BC 边上的中线AD 把△ABC 的周长分成60 cm 和40 cm 两部分,求边AC 和AB 的长.(提示:设CD =x cm )解:∵AD 是BC 边上的中线,∴BD =CD ,设BD =CD =x cm ,AB =y cm ,∵AC =2BC ,∴AC =4x cm ,分为两种情况:①若AC +CD =60 cm ,AB +BD =40 cm 时,则⎩⎪⎨⎪⎧4x +x =60,x +y =40, 解得⎩⎪⎨⎪⎧x =12,y =28, 即AC =4×12=48(cm ),AB =28 cm ,BC =2×12=24(cm ),此时符合AC >AB 和三角形三边关系;②若AC +CD =40 cm ,AB +BD =60 cm 时,则⎩⎪⎨⎪⎧4x +x =40,x +y =60, 解得⎩⎪⎨⎪⎧x =8,y =52,即AC =4×8=32(cm ),AB =52 cm ,不符合AC >AB ,舍去.综上所述,AC 的长为48 cm ,AB 的长为28 cm .25.(12分) “转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化成具体的问题.(1)请你根据已经学过的知识求出下面星形图①中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图①中星形截去一个角,如图②,请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图②中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图③中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?(只需写出结论,不需要写出解题过程)解:(1)如图①,∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A +∠B+∠C+∠D+∠E=180°.(2)如图②,∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A +∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.(3)根据题(2)可得出规律:图①中,∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了(180×5)度,则∠A+∠B+∠C+∠D+∠E +∠F+∠G+∠H+∠M+∠N=180°×5+180°=1 080°.2.5 等腰三角形的轴对称性同步测试题(满分120分;时间:120分钟)班级____________姓名___________成绩_________一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 已知等腰三角形中,腰=,底=,则这个三角形的周长为()A. B. C. D.2. 的三边长分别,,,且=,则是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形3. 下列条件中,不能得到等边三角形的是()A.有两个内角是的三角形B.有两边相等且是轴对称的三角形C.有一个角是且是轴对称的三角形D.三边都相等的三角形4. 在等腰中,,、分别是底角的平分线,,图中等腰三角形有()A.个B.个C.个D.个5. 已知等腰三角形的一个外角等于,则这个三角形的三个内角的度数分别是()A.、、B.、、C.、、D.、、或、、6. 如图,在中,,,以为圆心,的长为半径作圆弧,交于点,连接,则等于()10A. B.C. D.7. 下列说法:①在中,若,则为等边三角形;②在中,若,则为等边三角形;③有两个角都是的三角形是等边三角形;④一个角为的等腰三角形是等边三角形.其中正确的个数为()A.个B.个C.个D.个8. 已知,,为的各边边长,当时,则的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形9. 如图,正方形网格中,网格线的交点称为格点,已知,是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是()A. B. C. D.二、填空题(本题共计 8 小题,每题 3 分,共计24分,)10. 已知等腰三角形的一个外角为,则它的顶角的度数为________.11 已知一个等腰三角形的一个角是,其顶角的度数为________.12. 有一个角是________的等腰三角形是等边三角形.13. 如果一个三角形的两条角分线又是它的两条高线,则这个三角形是________三角形.14 如图,在的正方形网格中,点、分别在格点上,在图中确定格点,则以、、为顶点的等腰三角形有________个.15 如图,已知在矩形中,对角线,相交于点,且,,则图中长度为的线段有________条.16 如图,已知,,,,…,以此类推,若,则________.三、解答题(本题共计 8 小题,共计72分,)17. 画一个,在射线上任选一点,画,与交于点,试判断的形状.18. 如图,在中,=,于点,平分交于点,交于点,求证:=.19 如图,在中,,,,,求的度数.20. 如图,在等边中,点,分別在边,上,,过点作丄,交的延长线于点.求的度数;若,求,的长.21 如图,在中,=,点,点分别是,上一点,且.若=,=,求的度数.22. 如图,已知等边三角形,是边上一点,作交于点,交延长线于点,求证:=.23 如图,等边边长为,点是等边的中心,连接.将线段绕点顺时针旋转,设旋转角为._________;如图,当时,线段旋转到,求证在旋转过程中,当时,直接写出点经过的路径长.。
人教版八年级上册数学教案:15.3分式方程

设计教师
工作单位
学科
数学
课型
新授课
所教内容
新人教版数学八年级上册第十五章第三节第一课时
课程标准
讨论分式方程的概念及解法,主要涉及可以化为一元一次方程的分式方程.从章引言中的实际问题出发,分析分式方程的特点,给出分式方程的概念,接着从分式方程的特点入手,引出解分式方程的基本思路,即通过去分母将分式方程化为整式方程,再解出未知数.
教材分析
《分式方程》是人教版八年级数学《分式方程》第三节内容,从知识上讲,分式方程是在掌握方程、分式相关概念基础上的一次知识拓展,本节课为分式方程第一课时,让学生初步感知分式方程,认识分式方程,初步掌握分式方程的一般解法,为以后学习解打基础。从思想方法上讲,分式方程的求解是转化为已经学习的整式方程的解法,从而找到解分式方程的途径,让学生逐步理解并掌握应用转化的思想方法。
(师总结新的根的检验方法:将整式方程的解代入最简公分母,如果最简公分母不为0,则整式方程的解是原分式方程的解,否则,就不是原分式方程的解。
问:你能概括出解分式方程的基本思路和一般步骤吗?解分式方程应该注意什么?
观察分式方程的两种检验方法,你发现了什么?
学生自愿上讲台解题,其他学生在下面独立完成.
学生自愿举手评价板书学生的解题过程.
1、如何把它化成整式方程?
2、如何去分母?
3、在方程两边乘什么样的式子才能把每一个分母都约去?
4、这样做的依据是什么?
师生共同分析解法,微视频展示系统地分析过程,师按照严格的格式板书详细的解方程过程)
再次展示规范的解题过程:
追问:x=6是原分式方程的解吗?怎样检验?
师总结道:在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想(分式方程转化为整式方程----化分为整)。
八年级数学上册 第十五章《分式》15.2 分式的运算 15.2.1 分式的乘除 15.2.1.1 分

15.2分式的运算15.2.1分式的乘除第1课时分式的乘除◇教学目标◇【知识与技能】理解并掌握分式的乘除法那么,运用法那么进展运算,能解决一些与分式有关的实际问题.【过程与方法】经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识.【情感、态度与价值观】通过让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验.◇教学重难点◇【教学重点】掌握分式的乘除运算.【教学难点】分子、分母为多项式的分式乘除法运算.◇教学过程◇一、情境导入观察以下运算:.猜一猜=?=?二、合作探究探究点1分式的乘法典例1化简分式的结果是()A. B. C. D.[解析]进展分式乘除法运算时,先约分,再化简即可..[答案] B变式训练计算的结果是()A.-1B.0[解析]原式==1.[答案] C探究点2分式的除法典例2化简的结果是()A.a2B.C. D.[解析]先将分子因式分解,再将除法转化为乘法后约分即可.原式=.[答案] D变式训练计算:,其结果正确的选项是()A. B.C. D.[答案] D探究点3分式乘除混合运算典例3计算的结果是()A. B.-C. D.-[解析]先将除法转化为乘法,再根据分式的乘法法那么计算、约分即可.=-.[答案] B【技巧点拨】做分式乘除混合运算时,一般是先统一为乘法运算,所以分式乘除法的运算,归根到底是乘法的运算,运算的最后结果是最简分式或整式.计算÷(y-x)·.[解析]÷(y-x)·.三、板书设计分式的乘除分式的乘除◇教学反思◇在分式的乘除法这一课的教学中,仍然采用类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法那么与分数的乘除法法那么类似,要求他们用语言描述分式的乘除法法那么.学生反响较好,能根本上完整地讲出分式的乘除法法那么;要让学生明确分式乘除运算的结果是最简分式或整式,最后的结果是要化简的.如有侵权请联系告知删除,感谢你们的配合!。
初中数学人教版八年级上册第十五章 分式15.3 分式方程-章节测试习题(11)

章节测试题1.【题文】某工程队修建一条1200m的道路,采用新的施工方式,工效提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前两天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【答案】解:(1)设这个工程队原计划每天修建道路x米.由题意,得.解得x=100.经检验,x=100是所列方程的根.答:这个工程队原计划每天修建100米.(2)设实际平均每天修建道路的工效比原计划增加y%.据题意,得解得y=20.经检验,y=20是所列方程的根.答:实际平均每天修建道路的工效比原计划增加20%.【分析】【解答】2.【题文】某公司需在一个月(31天)内完成新建办公楼装修工程.如果由甲、乙两队合做,12天可以完成;如果由甲、乙两队单独做,甲队单独完成所用的时间是乙队单独完成所用时间的.(1)求甲、乙两队单独完成此工程所需的时间;(2)若请甲队施工,公司每日需付费用2000元;若请乙队施工,公司每日需付费用1400元.在规定时间内,有下列三种方案;方案一:请甲队单独施工完成此工程;方案二:请乙队单独施工完成此工程;方案三:甲、乙两队合作完成此工程.以上三种方案哪一种费用最少?【答案】解:(1)设乙队单独完成此工程所需的时间为x天.根据题意,得.解这个方程得x=30.经检验,x=30是所列方程的根.则(天).所以,甲队单独完成此工程所需时间为20天,乙队单独完成此工程所需的时间为30天.(2)方案一,费用为2000×20=40000(元);方案二,费用为1400×30=42000(元);方案三,费用为(2000+1400)×12=40800(元).所以,方案一费用最少.【分析】【解答】3.【题文】某校进行期末体育达标测试,甲、乙两班的学生人数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.【答案】解:设乙班的达标率为x,则甲班的达标率为(x+6%)根据题意,得.解这个方程,得x=0.9.经检验,x=0.9是所列方程的根.故乙班的达标率为90%.【分析】【解答】4.【题文】端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同.求粽子与咸鸭蛋的价格各是多少.【答案】解:设咸鸭蛋的价格是x元,则粽子的价格是(x+1.8)元,根据题意,得.解得x=1.2.经检验,x=1.2是所列分式方程的根.∴x+1.8=3.答:粽子的价格是3元,咸鸭蛋的价格是1.2元.【分析】【解答】5.【题文】某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔.毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支.求钢笔、毛笔的单价分别是多少元.【答案】解:设钢笔的单价为x元/支,则毛笔的单价为1.5x元/支.据题意,得.解得x=10.经检验,x=10是原方程的根.当x=10时,1.5x=15.答:钢笔的单价为10元/支,毛笔的单价为15元/支.【分析】【解答】6.【题文】近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A,B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B 种设备的数量相同.(1)求A种、B种设备每台各多少万元.(2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台.【答案】解:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元.根据题意,得.解得x=0.5.经检验,x=0.5是所列方程的根,且符合题意.∴x+0.7=1.2.答:每台A种设备0.5万元,每台B种设备1.2万元.(2)设购买A种设备m台,则购买B种设备(20-m)台.根据题意,得0.5m+1.2(20-m)≤15.解得.∵m为整数,∴m≥13.答:A种设备至少要购买13台.【分析】【解答】7.【题文】烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,是进价的2倍价格销售,剩下的小苹果以高于进价的10%销售.乙超市销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其他成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.【答案】解:(1)设苹果进价为每千克x元,由题意,得.解得x=5.经检验,x=5是原方程的根.答:苹果进价为每千克5元.(2)由(1)知每个超市苹果总量为(千克).大、小苹果售价分别为10元和5.5元.∴乙超市获利(元)∵甲超市获利2100>1650,∴甲超市的销售方式更合算.【分析】【解答】8.【答题】下列方程中,是分式方程的是()A. B.C. D. 6x2+4x+1=0【答案】B【分析】【解答】9.【答题】解分式方程时,去分母后可得到()A. x(2+x)-2(3+x)=1B. x(2+x)-2=2+xC. x(2+x)-2(3+x)=(2+x)(3+x)D. x-2(3+x)=3+x【答案】C【分析】【解答】10.【答题】分式方程的解为()A. x=1B. x=-1C. 无解D. x=-2【答案】C【分析】【解答】去分母,得x(x+2)-(x-1)(x+2)=3.解得x=1.检验:把x=1代入(x-1)(x+2)=0.所以分式方程的无解.11.【答题】关于z的分式方程的解为x=4,则常数a的值为()A. a=1B. a=2C. a=4D. a=10【答案】D【分析】【解答】把x=4代入方程,得.解得a=10.选D12.【答题】某加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件).设安排x人加工A零件,由题意列方程得()A. B.C. D.【答案】A【分析】【解答】13.【答题】关于x的分式方程的解为负数,则a的取值范围是()A. a>1B. a<1C. a<1日a≠-2D. a>1且a≠2【答案】D【分析】【解答】解分式方程得x=1-a.根据分式方程解为负数,得1-a<0,且1-a≠-1.解得a >1且a≠2.选D.14.【答题】已知x=1是分式方程的根,则实数k=______.【答案】【分析】【解答】把x=1代入分式方程,得.所以.15.【答题】若关于x的方程有增根,则m的值是______.【答案】0【分析】【解答】由x-2=0得方程的增根x=2..方程两边都乘x-2,得2-x-m=2x-4.将x=2代入,得2-2-m=2×2-4.解得m=0.16.【答题】端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个.求平时每个粽子卖多少元.设每个粽子卖x元,列方程为______.【答案】【分析】【解答】17.【答题】已知关于x的分式方程有一个正数解,则k的取值范围为______.【答案】k<6且k≠3【分析】【解答】.方程两边都乘(x-3),得x=2(x-3)+k,x=6-k≠3.关于x 的方程有一个正数解,∴x=6-k>0.∴k<6,且k≠3.18.【题文】解方程:(1);(2).【答案】解:(1)方程两边同乘(x-2)(x+3),得6(x+3)=x(x-2)-(x-2)(x+3),.化简得.当时,(x-2)(x+3)≠0,所以当是原方程的根.(2)整理,得.方程两边都乘(x-3),得2x-x-3=2x-6.解这个方程,得x=3.检验:当x=3时,x-3=0.因此x=3是增根,原方程无解.【分析】【解答】19.【题文】若关于x的方程无解,求m的值.【答案】解:去分母,得x-2=m+2x-10,x=-m+8.因为原方程无解,所以x=-m+8为原方程的增根.又由于原方程的增根为x=5,所以-m+8=5.所以m=3.【分析】【解答】20.【题文】某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.【答案】解:设每人每小时的绿化面积为x平方米.则有.解得x=2.5.经检验,x=2.5是所列分式方程的根.答:每人每小时的绿化面积为2.5平方米.【分析】【解答】。
八年级上册数学第十五章分式方程

第一节:认识分式方程1.1 分式方程的定义分式方程是指含有分式的方程,其中未知数出现在分式中。
1.2 分式方程的性质分式方程的性质包括有理数的性质、分式的性质、方程的性质。
1.3 分式方程的解分式方程的解是指能满足方程的未知数的数值,求解分式方程的过程就是求方程的解的过程。
第二节:分式方程的基本形式2.1 一元一次分式方程一元一次分式方程的形式是a/x+b=c,其中a、b、c是已知数,x是未知数,x≠0。
2.2 一元一次分式不等式一元一次分式不等式是a/x+b<c,其中a、b、c是已知数,x是未知数,x≠0。
第三节:分式方程的解法3.1 通分法对于分式方程中的分式进行通分,使得方程变得更容易计算。
3.2 消去法通过约去分式中的公因式,使得方程变得更简单,从而更容易求解。
第四节:用分式方程解实际问题4.1 问题拆解将实际问题转化为分式方程,对实际问题进行分析和拆解,得到问题的数学表示形式。
4.2 方程求解将转化得到的分式方程进行求解,得到问题的解。
第五节:应用题5.1 填空题给定一元一次分式方程,要求填写方程的解。
5.2 计算题给定一元一次分式方程,要求解出方程的解并进行计算。
结语:分式方程是数学中常见的一种方程形式,掌握分式方程的基本概念、基本形式、基本解法,能够帮助我们更好地理解数学知识,在实际问题中也能够更加灵活地运用数学知识解决问题。
希望同学们能够认真学习分式方程的知识,掌握分式方程的解题方法,提高自己的数学水平。
在进行进一步的学习中,我们将深入探讨分式方程的解法,包括更复杂的情况和实际问题的应用。
同时也会针对一些常见的困惑和错误进行讲解和解答,以帮助同学们更好地掌握分式方程的知识。
第一节:分式方程的解法1.1 假分式方程假分式方程是指分式方程中含有未知数的分母含有未知数的方程形式。
在解假分式方程时,我们需要通过通分的方法将方程转化为一般的分式方程,然后再按照常规的分式方程解法进行求解。
八年级数学上册第十五章分式知识点总结(新版)新人教版

八年级数学下册:第十五章分式一、知识框架:二、知识清单:1.分式:形如AB,A B、是整式,B中含有字母且B不等于0的整式叫做分式.其中A叫做分式的分子,B叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b⎛⎫= ⎪⎝⎭ 8.分式方程的意义:分母中含有未知数的方程叫做分式方程.9.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②解整式方程的步骤求出未知数的值;③检验(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根);④写出分式方程的解.11.列分式方程解应用题:①审题,弄清题意;②设未知数,根据题意,设未知数;③根据题意列方程④解方程求出未知数的值⑤检验,看未知数的值是否符合题意,是否符合方程⑥下结论,写出方程的解.。
人教版八年级数学上册教案:15.3分式方程-分式方程的应用

我也注意到,在解决分式方程的难点部分,如去分母和移项,学生们的操作还不够熟练。这提示我,在接下来的课程中,需要设计更多的练习来加强这一部分的训练。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果,这些成果将被记录在黑板上或投影仪上。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式方程的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对分式方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
人教版八年级数学上册教案:15.3分式方程分式方程的应用。本节课将围绕以下内容展开:
1.掌握分式方程在实际问题中的应用;
2.学会列出分式方程解决实际问题;
3.能够运用等式性质和分式运算解决分式方程相关问题;
4.举例说明分式方程在生活中的应用,如速度、浓度、比例等问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分式的方程,它能够帮助我们解决涉及比例、速度、浓度等实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设有两人合作完成一项工作,甲工作效率是乙的两倍,他们合作3天完成了任务。我们可以通过分式方程来计算他们各自完成的工作量。
举例:在浓度问题中,若将5克盐溶解在水中得到20%的盐水,求所需水的质量。难点在于如何将“20%的盐水”这一描述转化为数学表达式,并建立正确的分式方程。
在教学过程中,需要针对以上难点进行详细讲解和反复练习,确保学生能够透彻理解分式方程的核心知识,并在实际问题中能够灵活应用。通过对重点和难点的强调,帮助学生建立起分式方程的解题框架,提高解题能力。
八年级上册数学15.3第1课时分式方程及其解法

方法
如何把它转化为整式方程呢?
去分母
怎样去分母?
把方程的两边乘各分母的最简公分母
在方程两边乘什么样的式子才 能把每一个分母都约去?
(30+v)(30-v)
探索新知
知识点2 分式方程的解法
90 60 30 v 30 v
解:方程两边乘(30+v)(30-v),得
90(30-v)=60(30+v).
一元一次方程:
指只含有一个未知数,未知数的最高次数
为1且两边都为整式的等式.
二元一次方程:
指含有两个未知数,并且含有未知数的项
的次数都是1的整式方程.
两者都是整式方程. 方程里面所有的未知数都出现在分子上,分 母只是常数而没有未知数.
复习导入
练一练
解方程: x 2 2x 3 1.
4
6
解:去分母,得3(x+2)-2(2x-3)=12.
a
x x 1
.
探索新知
判断一个式子是否为分式方程的注意事项 (1)分式方程必须满足的条件:①是方程;②含有分母;③分 母中含有未知数.三者缺一不可. (2)分母中含有字母的方程不一定是分式方程,如关于x的方程 x 2 x(m为非0常数), 分母中虽然含有字母m,但m不是未知数,
m
所以该方程是整式方程.
课堂练习
1.下列关于x的方程,是分式方程的是( B )
4
A.
3
x
x
2
5
x
B.
3
1
x
1Leabharlann 2 xC.πx 1 8
x
D. 2x 1 x 75
2.方程 1 1 x 1去分母后的结果正确的是( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
精品 15.3分式方程(1)
1.要使得分式413x x -+的值为0,x 的值应取_____. 2.当x_____时,分式415x x +的值为1. 3.要使得关于x 的方程112a x x
=-的解为正数,a 的取值范围是( ). A .a>12 B .a<12 C .a =12
D .以上答案都不对 4.如果分式2||26x x x -+-的值为零,则x=( ). A .±2 B .-2 C .+2 D .以上结论都不对
5.如果关于x 的方程
2133a x x =---有增根,求a 的值. 【聚集“中考”】
6.解方程:151
x x x x +++=6 7.为适应国民经济持续快速协调地发展,自2004•年4•月18日起,全国铁路实施第五次提速,提速后,火车由天津到上海的时间缩短了7.42小时,若天津到上海的路程为1 326千米,提速前火车的平均速度为x 千米/时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关系式是( ).
1326
1326..7.427.421326132613261326.7.42.7.42A x y B y x C D x y y x
-=
-=-=-= 答案: 1.
14 2.x=1 3.B 4.B 5.-2 6.x=14
7.C 如有侵权请联系告知删除,感谢你们的配合!。