特征方程特征根法求解数列通项公式
特征根法求数列的通项公式

数列通项公式的求法 特征根法题型一、设已知数列{}n a 的项满足11,n n a b a ca d +==+,其中0,1,c c ≠≠求这个数列的通项公式。
【解题步骤】Ⅰ、将1n n a ca d +=+中的下标去掉(剃光头),即为a ca d =+,由此可以解得1d a c=–,这个“a ”的值就叫做“特征根”。
Ⅱ、在1n n a ca d +=+的左右两边同时减去“特征根”a ,即 111n n d d a ca d c c+-=+-–– 将上式变形得 ()111n n d d a c a c c +-=-–– 即 111n n da c c d a c +-=-–– 此时,你就会得到一个以c 为公比的等比数列{}111n n n d a c b d a c +⎧⎫-⎪⎪=⎨⎬-⎪⎪⎩⎭–– Ⅲ、求出数列{}n b 的通项公式,由此求出数列{}n a 的通项公式。
注意:第Ⅰ步的过程只能在草稿纸上进行,决不可写在试卷上,否则老师会扣分。
【典例1】已知数列{}n a 的项满足115,23n n a a a +==+,求这个数列的通项公式。
解、在123n n a a +=+的两边同时减去3–得1236n n a a +=++则有 1323n n a a ++=+ 又因为 1+3=8a 所以 1+2+3=82=2n n n a -因此数列{}n a 的通项公式+2=23n n a –注意在草稿纸上进行此过程由题意得23a a =+,可以解得a =-3草稿纸题型二、已知数列{}n a 满足21n n n a pa qa ++=+,其中12,a a αβ==,求数列{}n a 的通项公式。
【解题步骤】Ⅰ、将21n n n a pa qa ++=+中的下标去掉(剃光头),即2a pa q =+,为了方便把a 替换为x ,则有2=0x p x q --此时,我们把2=0x p x q --叫做数列{}n a 的“特征方程”。
特征方程重根 通项公式

特征方程重根通项公式比如说,一个线性齐次递推数列的特征多项式为P(某)=(某-1)^2(某+2),其中(某-1)重复出现了两次。
这种情况下,就需要使用通项公式来求解递推数列。
通项公式的求解方法是先使用常规的特征方程解法求出P(某)的所有根和它们的重数,然后根据不同的重数计算出相应的通项公式。
对于重根,需要使用一些特殊的方法来求解。
假设线性齐次递推数列的特征方程为P(某)=(某-a)^kq(某),其中a是一个根,k是它的重数,q(某)是另一个多项式,它的根都不等于a。
根据特征方程的定义,它的通项公式可以写成:f(n) = c1 a^n + c2 n a^n + ··· + ck-1 n^(k-2) a^n + pk(n) q(n),其中 pk(n) 是一个多项式,它的次数小于 k-1。
上式的第一项是由根 a 的贡献引起的,第二项是由根 a 和它的一阶导数引起的,依此类推,最后一项是由其它根引起的。
pk(n) q(n) 是由q(某) 的根引起的。
将通项公式的各项展开,可以得到:f(n) = c1 a^n + c2 n a^n + ··· + ck-1 n^(k-2) a^n + pk(n) Σbi q_i^n,i≠a其中 bi 表示 q(某) 的根除了 a 之外的每个根 i,q_i 表示以 i为根的项式。
需要注意的是,在求解通项公式的过程中,需要考虑到根a和它的k-1阶导数的算法。
对于一个给定的k,可以使用递推的方法将它们的值都算出来,然后代入公式中求解即可。
总之,特征方程重根的通项公式是一种比较复杂的求解递推数列的方法,需要对数学知识有比较深入的了解和掌握。
在实际应用中,需要依据具体情况来选择恰当的解法,才能达到最优的效果。
用特征根法与不动点法求递推数列的通项公式

用特征根法与不动点法求递推数列的通项公式特征根法和不动点法是两种常用的方法来求解递推数列的通项公式。
本文将从这两个角度详细介绍这两种求解方法,并举例说明其应用。
一、特征根法(Characteristic Root Method)特征根法是一种基于代数方法的求解递推数列通项公式的方法,它通过寻找递推关系式的特征根来获取通项公式。
1.步骤:(1)建立递推关系式:根据问题描述,建立递推数列的递推关系式。
(2)设通项公式:假设递推数列的通项公式为Un=a^n。
(3)代入递推关系式:将通项公式Un=a^n代入递推关系式,得到方程Un=P(Un-1,Un-2,...,Un-k),其中P为k个变量的多项式函数。
(4)寻找特征根:解方程Un=0,得到特征根r1,r2,...,rk。
(5)确定通项公式:根据特征根,得到通项公式Un=C1*r1^n+C2*r2^n+...+Ck*rk^n,其中C1,C2,...,Ck为待定系数。
(6)确定待定系数:利用已知序列的初始条件,求解待定系数,得到最终的通项公式。
2.示例:求解递推数列Un=3Un-1-2Un-2,已知U0=1,U1=2(1)建立递推关系式:Un=3Un-1-2Un-2(2)设通项公式:Un=a^n。
(3)代入递推关系式:a^n=3a^(n-1)-2a^(n-2)。
(4)寻找特征根:解方程a^n=3a^(n-1)-2a^(n-2),得到特征根a=2,a=1(5)确定通项公式:Un=C1*2^n+C2*1^n。
(6)确定待定系数:利用初始条件U0=1,U1=2,得到方程组C1+C2=1,2C1+C2=2,解得C1=1,C2=0。
最终的通项公式为Un=2^n。
二、不动点法(Fixed Point Method)不动点法是一种基于迭代的求解递推数列通项公式的方法,它通过设定一个迭代公式,求解极限来获得通项公式。
1.步骤:(1)建立递推关系式:根据问题描述,建立递推数列的递推关系式。
特征根法求数列的通项公式

.
1−
证明:因为 ≠ 0、1, 由特征方程得 =
作换元 = − ,则
−1 = −1 − = −2 + −
= −2 −
1−
1−
= −2 − = −2 .
故数列 是以为公比的等比数列, =
1 −1 , 1 = 1 − .
已知数列 满足:1 = 4,+1 =
1
− − 2, ∈ , 求 的通项公式.
3
3
1
3
+1 + = − 性递推式型题目的做题方法
概念:一阶线性递推式:+1 = + .
1、做出方程 = + ,称之为特征方程;解
出的值称之为特征根.
2、 = + ,其中数列 是以为公比
的等比数列, = 1 −1 , 1 = 1 − .
证明
证明:若数列 满足1 = ,+1 =
+ , 其中 ≠ 0、1,证明:这个数列的通项
公式为 = + ,其中数列 是以为公比
的等比数列, = 1 −1 , 1 = 1 − .
解:做方程 =
1 = 4
=
3
−
2
1
−
3
− 2,解得 =
3
− .
2
11
11
1 −1
= , =
−
2
2
3
3
11
1 −1
= − +
−
,
2
2
3
1
−
3
= 1 −1
3
+
2
+
特征根法求通项公式

特征方程法 解递推关系中 通项公式一、(一阶线性递推式)若已知数列}{n a 的项满足d ca a b a n n +==+11,,其中求这个,1,0≠≠c c 数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,这里提出一种易于掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程称之为,d cx x +=特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中是以为}{n b c 公比的等比数列,即01111,x a b c b b n n -==-.证明:因为由特征,1,0≠c 方程得作换.10cdx -=元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列是以为}{n b c 公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说说说说明定理1的应用.例1.已知数列满}{n a 足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列是以为}{n b 31-公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列满}{n a 足递推关系:,N ,)32(1∈+=+n i a a n n 其中为虚数i 单位。
特征方程特征根法求解数列通项公式

特征方程特征根法求解数列通项公式
1、将数列的前两项给出,在此基础上推雅可比数列,得到数列的递
推公式;
2、将递推公式化为特征方程,且特征方程只包含未知数x;
3、求解特征方程的特征根,得到特征根为{r1,r2,…,rm};
4、使用特征根构造数列的通项公式:利用特征根构造出原数列的通
项公式,即an = A1*r1^(n-1) + A2*r2^(n-1) + … + Am*rm^(n-1)(此
处n>=1);
5、求解参数A1,A2,…,Am,即将特征根对应的数列项代入原数列,解方程组求出所有参数;
6、给出最终的数列通项公式:将前面求出的所有参数代入数列通项
公式中,得到最终的数列通项公式。
二、实例演示
下面以解决下列特征方程求数列的通项公式为例,详细介绍特征方程
特征根法的求解:
原特征方程:x^2-x-6=0;特征根:r1=3,r2=2;推出数列:a1=4,
a2=10;
求数列通项公式:
1、根据特征方程求出特征根:
原特征方程:x^2-x-6=0;
解之,得:x=3,2;
即特征根为r1=3,r2=2;。
特征根法求数列的通项公式

特征根法求数列的通项公式求数列通项公式的方法很多,利用特征方程的特征根的方法是求一类数列通项公式的一种有效途径.1.已知数列{}n a 满足1n n n a a ba c a d+⋅+=⋅+......①其中*0,,c ad bc n N ≠≠∈.定义1:方程ax bx cx d+=+为①的特征方程,该方程的根称为数列{}n a 的特征根,记为,αβ.定理1:若1,a αβ≠且αβ≠,则11n n n n a a a c a a c a αααβββ++−−−=⋅−−−.证明:2()0,ax b a d bx cx d a x b cx d c cαβαβ+−=⇒+−−=⇒+==−+(),d a c b cαβαβ∴=−+=−11()()()()()()()()n n n n n n nn n n n n aa ba ca d aab ca d ac a bd aa b a aa b ca d a c a b d ca d αααααβββββ+++−−++−+−+−∴===+−+−+−+−−+()[()]()()()[()]()()n n n n a c a c a c c a c a a c a c a c a c c a c a a c ααβαβααααβαβαβββββ−+−−−−−−−==−+−−−−−−−n n a a c a c a ααββ−−=⋅−−证毕定理2:若1a αβ=≠且0a d +≠,则1121n n c a a d a αα+=+−+−.证明:22,d a c b cαα=−=−∵111()()()n n n n n n n n ca d ca daa b a aa b ca d a c a b dca dααααα+++∴===+−+−+−+−−+22222()(2)()()()2n n n n n nca a c ca a c ca a ca d a c a c a c a c a a αααααααααα+−+−+−===+−−+−−−−2242(2)2()()()()()()()()n n n n n n ca a c ca a c d c a a d a d a a d a a d a αααααα+−+−+−++===+−+−+−21n c a d a α=++−证毕例1.(09·江西·理·22)各项均为正数的数列{}n a ,12,a a a b ==,且对满足m n p q +=+的正数,,,m n p q 都有(1)(1)(1)(1)p q m nm n p q a a a a a a a a ++=++++.(1)当14,25a b ==时,求通项n a ;(2)略.解:由(1)(1)(1)(1)p q m n m n p q a a a a a a a a ++=++++得121121(1)(1)(1)(1)n n n n a a a a a a a a −−++=++++将14,25a b ==代入上式化简得11212n n n a a a −−+=+考虑特征方程212x x x +=+得特征根1x =±所以11111121112112113112n n n n n n n n a a a a a a a a −−−−−−+−−+−==⋅+++++所以数列11n n a a ⎧⎫−⎨⎬+⎩⎭是以111113a a −=−+为首项,公比为13的等比数列故11111()()1333n nn n a a −−=−⋅=−+即3131n n na −=+例2.已知数列{}n a 满足*1112,2,n n a a n N a −==−∈,求通项n a .解:考虑特征方程12x x=−得特征根1x =111111111111111(2)11n n n n n n a a a a a a −−−−−====+−−−−−−所以数列11n a ⎧⎫⎨⎬−⎩⎭是以1111a =−为首项,公差为1的等差数列故11n n a =−即1n n a n+=例3.已知数列{}n a 满足11122,(2)21n n n a a a n a −−+==≥+,求数列{}n a 的通项na 解:其特征方程为221x x x +=+,化简得2220x −=,解得121,1x x ==−,令111111n nn n a a c a a ++−−=⋅++由12,a =得245a =,可得13c =−,∴数列11n n a a ⎧⎫−⎨⎬+⎩⎭是以111113a a −=+为首项,以13−为公比的等比数列,1111133n n n a a −−⎛⎞∴=⋅−⎜⎟+⎝⎠,3(1)3(1)n nn n n a −−∴=+−例4.已知数列{}n a 满足*11212,()46n n n a a a n N a +−==∈+,求数列{}n a 的通项na 解:其特征方程为2146x x x −=+,即24410x x ++=,解得1212x x ==−,令1111122n n ca a +=+++由12,a =得2314a =,求得1c =,∴数列112n a ⎧⎫⎪⎪⎨⎬⎪⎪+⎩⎭是以112152a =+为首项,以1为公差的等差数列,123(1)11552n n n a ∴=+−⋅=−+,135106n n a n −∴=−2.已知数列{}n a 满足2112n n n a c a c a ++=+②其中12,c c 为常数,且*20,c n N ≠∈.定义2:方程212x c x c =+为②的特征方程,该方程的根称为数列{}n a 的特征根,记为12,λλ.定理3:若12λλ≠,则1122n n n a b b λλ=+,其中12,b b 常数,且满足111222221122a b b a b b λλλλ=+⎧⎨=+⎩.定理4:若12λλλ==,则12()n n a b b n λ=+,其中12,b b 常数,且满足1122212()(2)a b b a b b λλ=+⎧⎨=+⎩.设)(11−+−=−n n n n ta a s ta a ,则11)(−+−+=n n n sta a t s a ,令⎩⎨⎧−==+qst p t s (*)(1)若方程组(*)有两组不同的解),(),,(2211t s t s ,则)(11111−+−=−n n n n a t a s a t a ,)(12221−+−=−n n n n a t a s a t a ,由等比数列性质可得1111211)(−+−=−n n n s a t a a t a ,1212221)(1−+−=−n n n s a t a a t a ,,21t t ≠∵由上两式消去1+n a 可得()()()n n n s t t s a t a s t t s a t a a 21221221121112..−−−−−=.(2)若方程组(*)有两组相等的解⎩⎨⎧==2121t t s s ,易证此时11t s =,则()()112112112111111)(a t a s a t a s a t a s a t a n n n n n n n −==−=−=−−−−−+…,211121111s a t a s a s a nn n n −=−∴++,即⎭⎬⎫⎩⎨⎧n n s a 1是等差数列,由等差数列性质可知()21112111.1s a t a n s a s a n n −−+=,所以n n s n s a t a s a t a s a a 1211122111211.⎥⎥⎦⎤⎢⎢⎣⎡−+⎟⎟⎠⎞⎜⎜⎝⎛−−=.例5.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===−∈,求数列{}n a 的通项n a 解:其特征方程为232x x =−,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩,112n n a −∴=+例6.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===−∈,求数列{}n a 的通项na 解:其特征方程为2441x x =−,解得1212x x ==,令()1212nn a c nc ⎛⎞=+⎜⎟⎝⎠,由1122121()121(2)24a c c a c c ⎧=+×=⎪⎪⎨⎪=+×=⎪⎩,得1246c c =−⎧⎨=⎩,1322n n n a −−∴=例7.已知数列{}n a 满足12212,8,44n n n a a a a a ++===−,求通项n a .解:考虑特征方程244x x =−得特征根2λ=则12()2n n a b b n =+其中1211222()2024(2)81nn b b b a n b b b +==⎧⎧⇒⇒=⎨⎨+==⎩⎩。
特征根法求数列通项原理

特征根法求数列通项原理
特征根法求数列通项是一种解线性递推数列的方法,其原理如下:
1.对于递推数列$a_n$,可以写成线性递推方程$a_n=a_{n-1}+b_{n-1}$的形式,其中$b_n$是已知数列。
2.将递推方程转化为特征方程,令$a_n=r^n$,带入递推方程,得到:$r^n=r^{n-1}+b_{n-1}$。
3. 令特征方程的根为 $r_i$,则 $a_n$ 的通项公式为
$a_n=\sum_{i=1}^k C_ir_i^n$,其中 $C_i$ 是由初始条件求出的常数。
4.当特征方程的根为实数时,通项公式中的系数$C_i$可以通过初始
条件和根的值求解。
当特征方程的根为复数时,通项公式中的系数
$C_i$可以通过欧拉公式求解。
5.对于非齐次递推数列,通项公式需要加上一个特解,其形式可以根
据非齐次项的不同而不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征方程特征根法求解数列通项公式
一:A(n+1)=pAn+q, p,q为常数.
(1)通常设:A(n+1)-λ=p(An-λ), 则λ=q/(1-p).
(2)此处如果用特征根法:
特征方程为:x=px+q,其根为x=q/(1-p)
注意:若用特征根法,λ的系数要是-1
例一:A(n+1)=2An+1 , 其中q=2,p=1,则
λ=1/(1-2)= -1那么
A(n+1)+1=2(An+1)
二:再来个有点意思的,三项之间的关系:
A(n+2)=pA(n+1)+qAn,p,q为常数
(1)通常设:A(n+2)-mA(n+1)=k[pA(n+1)-mAn],
则m+k=p, mk=q
(2)此处如果用特征根法:
特征方程是y×y=py+q(※)
注意:
①m n为(※)两根。
②m n可以交换位置,但其结果或出现两种截然不同的数列形式,但同样都可以计算An,而且还会有意想不到的惊喜,
③m n交换位置后可以分别构造出两组An和A(n+1)的递推公式,这个时侯你会发现,这是一个关于An和A(n+1)的二元一次方程组,那么不就可以消去A(n+1),留下An,得了,An求出来了。
例二:A1=1,A2=1,A(n+2)= - 5A(n+1)+6An,
特征方程为:y×y= - 5y+6
那么,m=3,n=2,或者m=2,n=3
于是,A(n+2)-3A(n+1)=2[A(n+1)-3A] (1)
A(n+2)-2A(n+1)=3[A(n+1)-2A] (2)
所以,A(n+1)-3A(n)= - 2 ^ n (3)
A(n+1)-2A(n)= - 3 ^ (n-1) (4)
you see 消元消去A(n+1),就是An勒
例三:
【斐波那挈数列通项公式的推导】斐波那契数列:0,1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+)。
那么这句话可以写成如下形式:
F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
三:最后准备好了吗,咱们来看最刺激,最具挑战性的一组:
A(n+1)=(MAn+N)/(CAn+D)M,C不同时为零
此题一般可以避开求通项公式而另辟蹊径的方法,比如数学归纳法一类的等等,但是如果一定要挑战一下自己,那我们现在就开始通项公式之路
(1)此处似乎只能用特征根法:
特征方程:x+(Mx+N)/(Cx+D)
①特征方程有两个不等的实根,设为α,β,
则{(An-α)/(An-β)}为等比数列
注意:α,β可以互换位置
②特征方程有一个实根,α
则{1/(An-α)}伟等差数列
③特征方程没有实数根,
则{An}为循环数列,
每年总要有几个题要来个A2007,A2008,A2009,A20xx
例四:这个例题的数字给的十分有意思——伟强
A(n+1)=(3An+4)/(2An+3)
特征方程:x=(3x+4)/(2x+3),x=±√2
则{(An+√2)/(An-√2)}为等比数列
(A(n+1)+√2)/(A(n+1)-√2)
=[(3An+4)/(2An+3)+√2]/[(3An+4)/(2An+3)-√2] =[(3+√2)An+(3√2+4)]/[(3-2√2)/(4-3√2)]
=(3+2√2)/(3-2√2)×(An+√2)/(An-√2)
=(√2-1)^4×[(An+√2)/(An-√2)]。