不动点法(特征根法)求数列通项的原理教案资料
求递推数列通项的特征根法与不动点法

求递推数列通项的特征根法与不动点法一、形如21(,n n n a pa qa p q ++=+是常数)的数列形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a .例1.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+.例2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭, 由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=. 二、形如2n n n Aa B a Ca D++=+的数列 对于数列2n n n Aa B a Ca D ++=+,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠) 其特征方程为Ax B x Cx D+=+,变形为2()0Cx D A x B +--=…②若②有二异根,αβ,则可令11n n n n a a c a a ααββ++--=⋅--(其中c 是待定常数),代入12,a a 的值可求得c 值. 这样数列n n a a αβ⎧⎫-⎨⎬-⎩⎭是首项为11a a αβ--,公比为c 的等比数列,于是这样可求得n a . 若②有二重根αβ=,则可令111n n c a a αα+=+--(其中c 是待定常数),代入12,a a 的值可求得c 值. 这样数列1n a α⎧⎫⎨⎬-⎩⎭是首项为1n a α-,公差为c 的等差数列,于是这样可求得n a . 此方法又称不动点法.例3.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a . 解:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++ 由12,a =得245a =,可得13c =-, ∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n nn n na --∴=+-.例4.已知数列{}n a 满足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a . 解:其特征方程为2146x x x -=+,即24410x x ++=,解得1212x x ==-,令1111122n n c a a +=+++ 由12,a =得2314a =,求得1c =, ∴数列112n a ⎧⎫⎪⎪⎨⎬⎪⎪+⎩⎭是以112152a =+为首项,以1为公差的等差数列,123(1)11552n n n a ∴=+-⋅=-+, 135106n n a n -∴=-.。
用不动点法求数列的通项

用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为 p 是)(x f 的不动点p b ap =+∴ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列. 定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则q a p a k q a p a n n n n --⋅=----11 (这里qca pca k --=)(2):若)(x f 只有唯一不动点p ,则k p a p a n n +-=--111 (这里da c k +=2)证明:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx(1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以 q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qc a pca k --=,则q a p a k q a p a n n n n --=----11(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp 所以ap cp pd b -=-2,cda p 2-=所以 dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令da ck +=2,则k p a p a n n +-=--111 例1:设}{n a 满足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式 解:作函数xx x f 2)(+=,解方程x x f =)(求出不动点1,2-==q p ,于是 12212221211+-⋅-=++-+=+-++n n n n n n n n a a a a a a a a ,逐次迭代得n n n na a a a )21(12)21(12111-=+-⋅-=+-- 由此解得nn n n n a )1(2)1(21---+=+ 例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式解:作函数xa a x f 22)(-=,解方程x x f =)(求出不动点a p =,于是a a a a a a a a aa a a a a aa n n n nn n 11)(1211221+-=-=-=--=-+ 所以}1{a a n -是以a a a 111=-为首项,公差为a1的等差数列 所以a n a n a a n a a a a n =⋅-+=⋅-+-=-1)1(11)1(111,所以naa a n +=定理3:设函数)0,0()(2≠≠+++=e a fex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证明: k x 是)(x f 的两个不动点∴fex c bx ax x k k k k +++=2即k k k bx x a e f x c --=-2)()2,1(=k∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,2212111)(x u x u x u x u n n n n --=--++⇔22222112222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+ ⇔22222112222221211222)()(x u x u x u x u abx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+-+--+-+ ⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221122x aex b x aex b ⇔⎩⎨⎧=-+=-+0)2(0)2(21x e a b x e a b 11 21x x 0≠ ∴方程组有唯一解a e b 2,0== 例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.解:作函数为xx x f 22)(2+=,解方程x x f =)(得)(x f 的两个不动点为2±2222211)22(22222222222222+-=++-+=++-+=+-++n n nn n n nn n n n n a a a a a a a a a a a a再经过反复迭代,得1122211222211)2222()22()22()22(22--+-=+-=⋅⋅⋅⋅⋅⋅=+-=+-=+-----n n a a a a a a a a n n n n n n由此解得11112222)22()22()22()22(2------+-++⋅=n n n n n a其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解: 作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换: 423423422422411)11(146414641)1(4161)1(41611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n。
高中数学 用不动点法求数列的通项论

用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为 p 是)(x f 的不动点p b ap =+∴ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列. 定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则q a p a k q a p a n n n n --⋅=----11 (这里qca pca k --=)(2):若)(x f 只有唯一不动点p ,则k p a p a n n +-=--111 (这里da c k +=2)证明:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx(1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以 q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qca pca k --=,则q a p a k q a p a n n n n--=----11(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp 所以ap cp pd b -=-2,cda p 2-=所以 dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令da ck +=2,则k p a p a n n +-=--111 例1:设}{n a 满足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式 解:作函数xx x f 2)(+=,解方程x x f =)(求出不动点1,2-==q p ,于是 12212221211+-⋅-=++-+=+-++n n n n n n n n a a a a a a a a ,逐次迭代得n n n na a a a )21(12)21(12111-=+-⋅-=+-- 由此解得nn n n n a )1(2)1(21---+=+ 例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式解:作函数xa a x f 22)(-=,解方程x x f =)(求出不动点a p =,于是a a a a a a a a aa a a a a aa n n n nn n 11)(1211221+-=-=-=--=-+ 所以}1{a a n -是以a a a 111=-为首项,公差为a1的等差数列 所以a n a n a a n a a a a n =⋅-+=⋅-+-=-1)1(11)1(111,所以naa a n +=定理3:设函数)0,0()(2≠≠+++=e a fex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证明: k x 是)(x f 的两个不动点∴fex c bx ax x k k k k +++=2即k k k bx x a e f x c --=-2)()2,1(=k∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,2212111)(x u x u x u x u n n n n --=--++⇔22222112222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+ ⇔22222112222221211222)()(x u x u x u x u abx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+-+--+-+ ⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221122x aex b x aex b ⇔⎩⎨⎧=-+=-+0)2(0)2(21x e a b x e a b 11 21x x 0≠ ∴方程组有唯一解a e b 2,0== 例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.解:作函数为xx x f 22)(2+=,解方程x x f =)(得)(x f 的两个不动点为2±2222211)22(22222222222222+-=++-+=++-+=+-++n n nn n n nn n n n n a a a a a a a a a a a a再经过反复迭代,得1122211222211)2222()22()22()22(22--+-=+-=⋅⋅⋅⋅⋅⋅=+-=+-=+-----n n a a a a a a a a n n n n n n由此解得11112222)22()22()22()22(2------+-++⋅=n n n n n a其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解: 作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换: 423423422422411)11(146414641)1(4161)1(41611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n(本资料素材和资料部分来自网络,仅供参考。
高考数学复习--不动点法求数列通项

即数列
1
an
是公差为
1 2
,首项为
1 a1
1
的等差数列,
所以 1 1 1 n 1 1 n 1
an a1 2
22
an
2 n 1
.
思考:递推函数具有什么结构,能够用取倒数? 是不是递推函数是分式函数都可以取倒数!
典型例题:
变式 1:数列an 中, a1 1
an1
1 2 an
,求 an 的通项公式.
变式 1:数列an 中, a1 1
an1
1 2 an
,求 an 的通项公式.
解:由条件 an1
1 2 an
得: an1 1
1 2 an
1
an 1 2 an
两端同时取倒数得: 1 2 an 1 1 an1 1 an 1 an 1
即数列
1 an
1
是公差为
1
,首项为
1 a1
1
高考数学复习
不动点法求数列通项
知识梳理:函数不动点的定义 函数的不动点是被这个函数映射到其自身的一个点,即如果 x0 ,使 f (x0 ) x0 ,
则称 x0 为 f (x) 的一个不动点.
⑴代数意义:若方程 f (x) x 有实数根 x0 ,则函数 f x 有不动点 x0 .
⑵几何意义:若函数 y f (x) 的图像与 y x 的图像有公共点 (x0 , y0 ) ,则 x0 为 y f (x) 的不动点.
分析:这个题目两端同时取倒数还可以吗?
1 an1 2 an
那么 an1
2an 2 an
为什么能够行?
具有什么结构特点可以取倒数?
an1
1 2 an
数列特征根和不动点法解题原理

数列特征根和不动点法解题原理一、数列特征根法。
1. 原理。
- 对于二阶线性递推数列a_n + 2=pa_n+1+qa_n(p,q为常数,n∈ N^*),其特征方程为x^2=px + q。
- 设特征方程的两个根为x_1,x_2。
- 当x_1≠ x_2时,数列a_n的通项公式为a_n=C_1x_1^n+C_2x_2^n,其中C_1,C_2由初始条件a_1,a_2确定。
- 当x_1 = x_2时,数列a_n的通项公式为a_n=(C_1+C_2n)x_1^n,同样C_1,C_2由初始条件确定。
2. 例题。
- 例1:已知数列{a_n}满足a_n + 2=3a_n+1-2a_n,且a_1=1,a_2=3,求数列{a_n}的通项公式。
- 解:特征方程为x^2=3x - 2,即x^2-3x + 2=0。
- 分解因式得(x - 1)(x - 2)=0,解得x_1=1,x_2=2。
- 所以a_n=C_1×1^n+C_2×2^n=C_1+C_2×2^n。
- 由a_1=1,a_2=3可得C_1+2C_2=1 C_1+4C_2=3。
- 用第二个方程减去第一个方程得2C_2=2,解得C_2 = 1。
- 把C_2=1代入C_1+2C_2=1得C_1=-1。
- 所以a_n=-1 + 2^n。
- 例2:已知数列{a_n}满足a_n + 2=2a_n+1-a_n,a_1=1,a_2=2,求a_n。
- 解:特征方程为x^2=2x - 1,即x^2-2x + 1 = 0。
- 解得x_1=x_2=1。
- 所以a_n=(C_1+C_2n)×1^n=C_1+C_2n。
- 由a_1=1,a_2=2可得C_1+C_2=1 C_1+2C_2=2。
- 用第二个方程减去第一个方程得C_2=1。
- 把C_2=1代入C_1+C_2=1得C_1=0。
- 所以a_n=n。
二、数列不动点法。
1. 原理。
- 对于一阶分式递推数列a_n + 1=frac{pa_n+q}{ra_n+s}(p,q,r,s为常数,r≠0),令x=(px + q)/(rx + s),这个方程称为不动点方程。
不动点方法求数列通项

对于有理函数和多项式迭代什么时候可以用不动点方式写出通向公式。可以从以下定理中得出结论。
定义:设 EMBED Equation.DSMT4 为有理函数, EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ,称序列 EMBED Equation.DSMT4 为 EMBED Equation.DSMT4 在点 EMBED Equation.DSMT4 的轨道,记作 EMBED Equation.DSMT4 。
不动点方法求数列通项
第一章:引言
本文主要是讨论用不动点的方法来解决数列通项问题。当我们知道了数列的递推公式,然后最关心的就是如何求出数列的通项公式。这个也是竞赛,高考中最常见的问题。本文特别关注用分式函数,“耐克”函数,多项式函数作为非线性数列递推关系的数列通项。不动点方法是大学动力系统的研究中的一种核心方法。本文就是通过结合不动点方法来解决已知某项递推公式的通项公式。主要参考了多项式和有理函数的例外点集的处理方法,给出了一种解决数列迭代通项的问题。同时指出,如果在竞赛和高考命题中,如果利用耐克函数 EMBED Equation.DSMT4 EMBED Equation.DSMT4 迭代形式只有当 EMBED Equation.DSMT4 时,才能写出通项。
参考书目
任福尧等, 复动力解析系统, 1997年第一版
历年高考考卷
历年希望杯竞赛试例2. EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ,求 EMBED Equation.DSMT4 的通项。
解:作函数 EMBED Equation.DSMT4 ,求不动点 EMBED Equation.DSMT4 可得 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 。显然构造 EMBED Equation.DSMT4 不改变原来递推形式。尝试 EMBED Equation.DSMT4 或者 EMBED Equation.DSMT4 发现 EMBED Equation.DSMT4 可以求出 EMBED Equation.DSMT4 ,因此 EMBED Equation.DSMT4 。故 EMBED Equation.DSMT4 ,即 EMBED Equation.DSMT4 。
不动点法求数列的通项(演示文稿)
cn+
c a c
即数列{cn}的递推式总可化为“cn+1=acn+b (a, b 为常数)型” ,又一次运用不动点法求得 数列{cn}的通项,从而求数列{an}的通项。
例3:在数列{a }中,a =1, a
解:令 x= 设 bn=
2x
例3:在数列{an}中,an=1, a n 1 = ,得 x1=x2=0 2x
一、递推式为 an+1=aan+b(a 0,a 1,a,b 均为常数)型的数列
由递推式 an+1=aan+b 总可变形为 an+1- =a(an- )…………………………(1) (1) 式中的 与系数 a,b 存在怎样的关系呢? 由(1)得 an+1=aan+ -a ∴b= -a 即 =a +b…………………………(2) 关于 的方程(2)刚好是递推式 an+1=aan+b 中的 an, an+1 都换成 得到的不动点方程。 令 bn=an- 代入(1)得 bn+1=abn
( a c 2 )( a n 2 ) ca n d a c 1 a c 2
an+1- 2=
a n 1 1 a n 1 2
∴
=
a n 1 an 2 a c 1 a c 2
令 bn =
a n 1 an 2
有 bn+1=
由 an+1- =
ca n d ( a c )( a n )
( a c )( a n ) ca n d
得
1 a n 1
d c
=
=
c a c
用“不动点法”求数列的通项公式
用“不动点法”求数列的通项公式用“不动点法”求数列的通项公式对于一个函数f(x),我们把满足f(m)=m的值x=m称为函数f(x)的“不动点”.利用“不动点法”可以构造新数列,求数列的通项公式.例(1)在数列{an}中,a1=1,an+1=an+1,求数列{an}的通项公式.解设f(x)=x+1,令f(x)=x,即x+1=x,得x=2,∴x=2是函数f(x)=x+1的不动点,∴an+1-2=(an-2),∴数列{an-2}是以-1为首项,以为公比的等比数列,∴an-2=-1×n-1,∴an=2-n-1,n∈N.(2)已知数列{an}满足a1=3,an+1=,求该数列的通项公式.解由方程x=,得数列{an}的不动点为1和2,===·,所以是首项为=2,公比为的等比数列,所以=2·n-1,解得an=+2=,n∈N.(1)若f(x)=ax+b(a≠0,1),p 是f(x)的不动点.数列{an}满足an+1=f(an),则an+1-p=a(an-p),即{an-p}是公比为a的等比数列.(2)设f(x)=(c≠0,ad-bc≠0),数列{an}满足an+1=f(an),a1≠f(a1).若f(x)有两个相异的不动点p,q,则=k·.1.已知数列{an}满足an+1=-an-2,a1=4,求数列{an}的通项公式.解设f(x)=-x -2,由f(x)=x,得x=-.∴an+1+=-,又a1=4,∴是以为首项,以-为公比的等比数列,∴an+=×n-1,∴an=-+·n-1,n∈N.2.已知数列{an}满足a1=2,an=(n≥2),求数列{an}的通项公式.解解方程x=,化简得2x2-2=0,解得x1=1,x2=-1,令=c·,由a1=2,得a2=,可得c=-,∴数列是以=为首项,以-为公比的等比数列,∴=·n-1,∴an=.3.设数列{an}满足8an+1an-16an+1+2an+5=0(n≥1,n∈N),且a1=1,记bn=(n≥1).求数列{bn}的通项公式.解由已知得an+1=,由方程x=,得不动点x1=,x2=.所以==·,所以数列是首项为-2,公比为的等比数列,所以=-2×n-1=-,解得an=.故bn==,n∈N.。
不动点法求数列通项详细推导过程
不动点法求数列通项详细推导过程不动点法求数列通项详细推导过程:不动点法是一种用于求解数列的方法,它要求找出一个函数,使得该函数的图像在某一区间上是“不动的”(不随x的变化而变化)。
也就是说,函数的图像在这个区间上以某一点作为中心,不断地向外扩张或收缩,但其形状不会变化。
首先,我们来看看如何使用不动点法求数列通项。
首先,我们需要找出一个函数f(x),使得它的图像在某一区间上是“不动的”。
然后,我们将该函数的图像画出来,以确定该函数在某一特定点的不动点(即该函数的图像在这个点上不再发生变化)。
根据不动点的定义,当函数的图像在某一点上不再变化时,以该点为中心,函数的图像会以相同的形状、大小和位置无限重复。
接下来,我们可以利用这种“不动”的性质,来证明f(x)是数列的通项公式。
首先,我们需要利用微积分原理,求出f(x)的导数。
具体而言,我们假设,f(x)的导数是g(x),并且我们最终可以得出g(x)=0,这意味着f(x)在某一点上是“不动的”。
接着,我们可以使用定积分法,将g(x)带入原函数f(x),从而求出f(x)的极限。
此时,我们可以发现,f(x)的极限正好是数列的通项公式。
最后,我们进一步证明,f(x)的极限就是数列的通项公式。
为了这样做,我们需要将f(x)的极限代入数列的前n项,并对其进行求和,以确定求和的结果是否与数列的通项公式相等。
如果求和结果与数列的通项公式相等,则说明f(x)就是数列的通项公式。
总之,不动点法求数列通项详细推导过程便是:首先,找出一个函数f(x),使得它的图像在某一区间上是“不动的”;然后,利用微积分原理求出f(x)的导数,并用定积分法将g(x)带入原函数f(x),从而求出f(x)的极限;最后,将f(x)的极限代入数列的前n项,并对其进行求和,以确定求和的结果是否与数列的通项公式相等。
如果求和结果与数列的通项公式相等,则说明f(x)就是数列的通项公式。
用特征根法与不动点法求递推数列的通项公式
用特征根法与不动点法求递推数列的通项公式一、形如21(,n n n a pa qa p q ++=+是常数)的数列形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数)若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数)再利用1122,,a m a m ==可求得12,c c ,进而求得n a .例1. 已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+.例2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=.二、形如2n n n Aa B a Ca D++=+的数列 对于数列2n n n Aa B a Ca D ++=+,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠)其特征方程为Ax B x Cx D +=+,变形为2()0Cx D A x B +--=…② 若②有二异根,αβ,则可令11n n n n a a c a a ααββ++--=⋅--(其中c 是待定常数),代入12,a a 的值可求得c 值. 这样数列n n a a αβ⎧⎫-⎨⎬-⎩⎭是首项为11a a αβ--,公比为c 的等比数列,于是这样可求得n a .若②有二重根αβ=,则可令111n n c a a αα+=+--(其中c 是待定常数),代入12,a a 的值可求得c 值. 这样数列1n a α⎧⎫⎨⎬-⎩⎭是首项为1n a α-,公差为c 的等差数列,于是这样可求得n a .此方法又称不动点法.例3.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n nn n a a c a a ++--=⋅++ 由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n n a --∴=+-.例4.已知数列{}n a 满足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a .解:其特征方程为2146x x x -=+,即24410x x ++=,解得1212x x ==-,令1111122n n c a a +=+++ 由12,a =得2314a =,求得1c =,∴数列112n a ⎧⎫⎪⎪⎨⎬⎪⎪+⎩⎭是以112152a =+为首项,以1为公差的等差数列,123(1)11552n n n a ∴=+-⋅=-+,135106n na n -∴=-.。