2019届高考数学模拟试题三理
2019届高三第三次模拟考试卷理科数学(三)Word版含答案

仅有四个不同的点 C ,使得 △ ABC 的面积为 5,则实数 a 的取值范围是 ____ .
三、解答题:本大题共
6 个大题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.( 12 分) [2019 ·江南十校 ] 已知数列 an 与 bn 满足: a1 a2 a3
an 2bn n N * ,且 an
3 ,则 cos2
(
)
2
3
1 A.
2
1 B.
3
1 C.
3
6. [2019 ·临川一中 ]函数 f x
1 2x 1 2x
sin x 的图象大致为(
1 D.
2 )
A.
B.
C.
D.
7. [2019 ·南昌一模 ]如图所示算法框图,当输入的 x 为 1 时,输出的结果为(
)
A.3
B. 4
C.5
D. 6
8.[2019 ·宜宾二诊 ] 已知 △ ABC 中, A , B ,C 的对边分别是 a ,b ,c ,且 b 3 , c 3 3 , B 30 ,
D. 16 8 2 4 5
10. [2019 ·汕尾质检 ] 已知 A , B , C , D 是球 O 的球面上四个不同的点,若
AB AC DB DC BC 2 ,且平面 DBC 平面 ABC ,则球 O 的表面积为(
)
A . 20π 3
B. 15π 2
C. 6π
x2 y2 11. [2019 ·临川一中 ]如图所示, A1 , A2 是椭圆 C :
2
4
15.[2019 ·赣州期末 ]若曲线 y x ln x 在 x 1 处的切线 l 与直线 l : ax y 1 0 垂直,则切线 l 、直线 l 与 y 轴围成的三角形的面积为 _______. 16. [2019 南·通期末 ] 在平面直角坐标系 xOy 中,已知 A 0, a , B 3, a 4 ,若圆 x 2 y2 9 上有且
2019届高三数学下学期三模试题理(含解析)

2019届高三数学下学期三模试题理(含解析)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,那么( )A. B.C. D.【答案】B【解析】【分析】先求出集合A,B,由此能求出A∩B.【详解】解:∵集合A={x|x=2k,k∈Z},B={x|x2≤5}={x|},∴A∩B={﹣2,0,2}.故选B.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.若复数满足,则等于()A. B. C. D.【答案】C【解析】试题分析:.故应选C.考点:1、复数的概念;2、复数的运算.3.执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为()A. 5B. 6C. 7D. 8【答案】B【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得:m=1满足条件m∈(0,100),执行循环体,n=3,输出n的值为3,m=3满足条件m∈(0,100),执行循环体,n=7,输出n的值为7,m=7满足条件m∈(0,100),执行循环体,n=15,输出n的值为15,m=15满足条件m∈(0,100),执行循环体,n=31,输出n的值为31,m=31满足条件m∈(0,100),执行循环体,n=63,输出n的值为63,m=63满足条件m∈(0,100),执行循环体,n=127,输出n的值为127,m=127此时,不满足条件m∈(0,100),退出循环,结束.可得输出数据的总个数为6.故选B.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.设满足约束条件则下列不等式恒成立的是A. B.C. D.【答案】C【解析】作出约束条件所表示的平面区域,如图所示,由,解得,同理可得,设目标函数,则,当直线过点时取得最小值,最小值,所以恒成立,故选C.5.为非零向量,“”为“共线”的()A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 即不充分也不必要条件【答案】B【解析】【分析】共线,方向相同或相反,共线的单位向量不一定相等,结合充分必要条件的判断,即可得出结论.【详解】分别表示与同方向的单位向量,,则有共线,而共线,则是相等向量或相反向量,“”为“共线”的充分不必要条件.故选:B.【点睛】本题考查命题充分不必要条件的判定,考查共线向量和单位向量的间的关系,属于基础题.6. 一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A. 12种B. 15种C. 17种D. 19种【答案】D【解析】试题分析:分三类:第一类,有一次取到3号球,共有取法;第二类,有两次取到3号球,共有取法;第三类,三次都取到3号球,共有1种取法;共有19种取法.考点:排列组合,分类分步记数原理.7.已知函数,若函数在区间内没有零点,则最大值是( )A. B. C. D.【答案】C【解析】【分析】利用三角恒等变换化简,结合正弦函数图象,即可求解.【详解】,令,函数在区间内没有零点,解得,,的最大值是.故选:C.【点睛】本题考查三角函数恒等变换化简,以及三角函数的性质,意在考查直观想象、逻辑推理能力,属于中档题.8.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】【分析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.双曲线的渐近线为,则该双曲线的离心率为________.【答案】【解析】【分析】由双曲线方程和渐近线方程,求出值,进而求出,即可求解.【详解】设双曲线的焦距为,双曲线得,渐近线方程的斜率为,.故答案为:.【点睛】本题考查双曲线标准方程、双曲线的简单几何性质,注意焦点的位置,属于基础题.10.在平面直角坐标系xOy中,直线l的参数方程是,(t为参数),以O为极点,x轴正方向为极轴的极坐标系中,圆C的极坐标方程是.则圆心到直线的距离是________.【答案】【解析】【分析】将直线参数方程化为普通方程,圆极坐标方程化为直角坐标方程,应用点到直线距离公式即可求解.【详解】消去参数化为,化为,即,圆心,圆心到直线的距离为.故答案为:.【点睛】本题考查参数方程与普通方程互化、极坐标方程和直角坐标方程互化、点到直线的距离等知识,属于基础题11.已知某四棱锥的三视图如图所示,则该几何体的体积为________.【答案】【解析】【分析】根据三视图还原为底面为菱形高为四棱锥,即可求出结论.【详解】由三视图可知四棱锥的底面为边长为,有一对角为的菱形,高为,所以体积为.故答案为:.【点睛】本题考查三视图求直观图的体积,解题的关键要还原出几何体直观图,属于基础题.12.在各项均为正数的等比数列中,,且.(1)数列通项公式是________.(2)设数列的前n项和为,则的最小值是________.【答案】 (1). (2). .【解析】【分析】由求出,即可求出通项公式,根据等比数列与等差数列的关系,可得为等差数列,求出所有的负数或0项,即可求出结论.【详解】设等比数列的公比为,,,或(舍去),,,当,数列的前n项和的最小值是.故答案为:;-6.【点睛】本题考查等比数列的基本量计算、等比数列与等差数列的关系、等差数列前项和最小值等知识,属于中档题.13.写出一组使“”为假命题的一组x,y________.【答案】1,1(答案不唯一)【解析】【分析】即求命题的否定“”为真命题的一组值,可以应用基本不等式求出满足不等式的充分条件,从中取出一组即可.【详解】“”为假命题,其命题否定“”为真命题,,命题的否定为真的充分条件为,取.故答案为:1,1(答案不唯一)【点睛】本题考查全称命题的真假求参数,属于基础题.14.血药浓度(Serum Drug Concentration)是指药物吸收后在血浆内的总浓度(单位:mg/ml),通常用血药浓度来研究药物的作用强度.下图为服用同等剂量的三种新药后血药浓度的变化情况,其中点的横坐标表示服用第种药后血药浓度达到峰值时所用的时间,其它点的横坐标分别表示服用三种新药后血药浓度第二次达到峰值一半时所用的时间(单位:h),点的纵坐标表示第种药的血药浓度的峰值.()①记为服用第种药后达到血药浓度峰值时,血药浓度提高的平均速度,则中最大的是_______;②记为服用第种药后血药浓度从峰值降到峰值的一半所用的时间,则中最大的是_______【答案】 (1). (2).【解析】【分析】①根据平均的含义进行判断,②根据两次横坐标距离大小确定选择.【详解】①设,则,由于,,所以,,即最大;②根据峰值的一半对应关系得三个点从左到右依次对应A1,A2,A3在第二次达到峰值一半时对应点,由图可知A3经历的时间最长,所以中最大的是【点睛】本题考查数学实际应用以及图像识别,考查基本分析判断能力,属基础题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.16.2019年北京市百项疏堵工程基本完成.有关部门为了解疏堵工程完成前后早高峰时段公交车运行情况,调取某路公交车早高峰时段全程所用时间(单位:分钟)数据,从疏堵工程完成前的数据中随机抽取5个数据,记为A组,从疏堵工程完成后的数据中随机抽取5个数据,记为B组.A组:128,100,151,125,120B组:100,102,96,101,己知B组数据的中位数为100,且从中随机抽取一个数不小于100的概率是.(1)求a的值;(2)该路公交车全程所用时间不超过100分钟,称为“正点运行”从A,B两组数据中各随机抽取一个数据,记两次运行中正点运行的次数为X,求X的分布列及期望;(3)试比较A,B两组数据方差的大小(不要求计算),并说明其实际意义.【答案】(1);(2)分布列详见解答,期望为;(3)详见解答.【解析】【分析】(1)由已知中位数100,确定的范围,再求出不小于100的数的个数,即可求出;(2)随机变量X可能值为,根据每组车“正点运行”概率求出X可能值为的概率,即可求出随机变量的分布列,进而求出期望;(3)利用方差表示数据集中的程度,说明疏堵工程完成后公交车的稳定程度.【详解】(1)B组数据的中位数为100,根据B组的数据,从B组中随机抽取一个数不小于100的概率是,B组中不小于100的有4个数,所以;(2)从A,B两组数据中各随机抽取一个数据,“正点运行”概率分别为,从A,B两组数据中各随机抽取一个数据,记两次运行中正点运行的次数为X,X可能值为,,,,X的分布列为:,X期望为;(3)对比两组数据,组数据方差更小,说明疏堵工程完成后公交车运行时间更为稳定.【点睛】本题考查中位数和概率求参数,考查随机变量的分布列和期望,属于基础题.17.如图,在四棱锥P-ABCD中,是等腰三角形,且.四边形ABCD是直角梯形,,,,,.(1)求证:平面PDC.(2)请在图中所给五个点P,A,B,C,D中找出两个点,使得这两点所在直线与直线BC垂直,并给出证明.(3)当平面平面ABCD时,求直线PC与平面PAB所成角的正弦值.【答案】(1)详见解答;(2),证明见解答;(3).【解析】【分析】(1)由已知,即可证明结论;(2)根据已知条件排除,只有可能与垂直,根据已知可证;(3)利用垂直关系,建立空间直角坐标系,求出坐标和平面PAB的法向量,即可求解.【详解】(1)平面平面,平面;(2),证明如下:取中点,连,,,,平面平面,平面,;(3)平面平面ABCD,平面平面ABCD,平面平面,.四边形ABCD是直角梯形,,,,,,以为坐标原点,以,过点与平行的直线分别为轴,建立空间直角坐标系,则,,设平面的法向量为,则,即,,令,则,平面一个法向量为,设直线PC与平面PAB所成角为,,直线直线PC与平面PAB所成角的正弦值为.【点睛】本题考查线面平行、线线垂直的证明,要注意空间垂直间的转化,考查用空间向量法求线面角,考查计算求解能力,属于中档题.18.已知椭圆C:的离心率为,左、右顶点分别为A,B,点M是椭圆C上异于A,B的一点,直线AM与y 轴交于点P.(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且∠PFQ=90°,求证:AQ∥BM.【答案】(Ⅰ)(-,0)(0,)(Ⅱ)详见解析【解析】【分析】(Ⅰ)根据题意可得得c2=a2﹣2,由e,解得即可出椭圆的方程,再根据点在其内部,即可线AM的斜率的取值范围,(Ⅱ)题意F(,0),设Q(0,y1),M(x0,y0),其中x0≠±2,则1,可得直线AM的方程y(x+2),求出点Q的坐标,根据向量的数量积和斜率公式,即可求出kBM﹣kAQ=0,问题得以证明【详解】解:(Ⅰ)由题意可得c2=a2-2,∵e==,∴a=2,c=,∴椭圆的方程为+=1,设P(0,m),由点P在椭圆C的内部,得-<m<,又∵A(-2,0),∴直线AM的斜率kAM==∈(-,),又M为椭圆C上异于A,B的一点,∴kAM∈(-,0),(0,),(Ⅱ)由题意F(,0),设Q(0,y1),M(x0,y0),其中x0≠±2,则+=1,直线AM的方程为y=(x+2),令x=0,得点P的坐标为(0,),由∠PFQ=90°,可得•=0,∴(-,)•(-,y1)=0,即2+•y1=0,解得y1=-,∴Q(0,-),∵kBM=,kAQ=-,∴kBM-kAQ=+=0,故kBM=kAQ,即AQ∥BM【点睛】本题考查直线与椭圆的位置关系的应用,考查转化思想以及计算能力,属于中档题19.已知函数.(1)已知函数在点处的切线与x轴平行,求切点的纵坐标.(2)求函数在区间上的最小值;(3)证明:,,使得.【答案】(1);(2);(3)详见解析.【解析】【分析】(1)求的导函数,令,即可求解;(2)求出在单调区间,极值点,即可求解;(3)转化为函数,与直线恒有交点,即可证明结论.【详解】(1),在点处的切线与x轴平行,,;(2)由(1)得,当时,,,递减区间是,的增区间是,当时,取得极小值,也是最小值为,函数在区间上的最小值;(3)由(2)得递减区间是,,令,当时,函数图像与直线有唯一的交点,且交点的横坐标,,,使得.【点睛】本题考查导数的几何意义以及导数的综合应用,涉及到函数的单调性、极值最值、零点等知识,意在考查直观想象、逻辑推理能力,属于中档题.20.数列:满足:,或1().对任意,都存在,使得.,其中且两两不相等.(I)若.写出下列三个数列中所有符合题目条件的数列的序号;①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2(Ⅱ)记.若,证明:;(Ⅲ)若,求的最小值.【答案】(Ⅰ)②③(Ⅱ)见解析(Ⅲ)的最小值为【解析】试题分析:(Ⅰ)依据定义检验给出的数列是否满足要求条件.(Ⅱ)当时,都在数列中出现,可以证明至少出现4次,2至少出现2次,这样.(Ⅲ)设出现频数依次为.同(Ⅱ)的证明,可得:,,,┄,,,,则,我们再构造数列:,证明该数列满足题设条件,从而的最小值为.解析:(Ⅰ)对于①,,对于,或,不满足要求;对于②,若,则,且彼此相异,若,则,且彼此相异,若,则,且彼此相异,故②符合题目条件;同理③也符合题目条件,故符合题目条件的数列的序号为②③.注:只得到②或只得到③给[ 1分],有错解不给分.(Ⅱ)当时,设数列中出现频数依次为,由题意.①假设,则有(对任意),与已知矛盾,所以.同理可证:.②假设,则存在唯一的,使得.那么,对,有(两两不相等),与已知矛盾,所以.综上:,,,所以.(Ⅲ)设出现频数依次为.同(Ⅱ)的证明,可得:,,,┄,,,,则.取得到的数列为:下面证明满足题目要求.对,不妨令,①如果或,由于,所以符合条件;②如果或,由于,所以也成立;③如果,则可选取;同样的,如果,则可选取,使得,且两两不相等;④如果,则可选取,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意,总存在,使得,其中且两两不相等.因此满足题目要求,所以的最小值为.点睛:此类问题为组合最值问题,通常的做法是先找出变量的一个范围,再构造一个数列,使得前述范围的等号成立,这样就求出了最值.2019届高三数学下学期三模试题理(含解析)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,那么( )A. B.C. D.【答案】B【解析】【分析】先求出集合A,B,由此能求出A∩B.【详解】解:∵集合A={x|x=2k,k∈Z},B={x|x2≤5}={x|},∴A∩B={﹣2,0,2}.故选B.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.若复数满足,则等于()A. B. C. D.【答案】C【解析】试题分析:.故应选C.考点:1、复数的概念;2、复数的运算.3.执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为()A. 5B. 6C. 7D. 8【答案】B【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得:m=1满足条件m∈(0,100),执行循环体,n=3,输出n的值为3,m=3满足条件m∈(0,100),执行循环体,n=7,输出n的值为7,m=7满足条件m∈(0,100),执行循环体,n=15,输出n的值为15,m=15满足条件m∈(0,100),执行循环体,n=31,输出n的值为31,m=31满足条件m∈(0,100),执行循环体,n=63,输出n的值为63,m=63满足条件m∈(0,100),执行循环体,n=127,输出n的值为127,m=127此时,不满足条件m∈(0,100),退出循环,结束.可得输出数据的总个数为6.故选B.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.设满足约束条件则下列不等式恒成立的是A. B.C. D.【答案】C【解析】作出约束条件所表示的平面区域,如图所示,由,解得,同理可得,设目标函数,则,当直线过点时取得最小值,最小值,所以恒成立,故选C.5.为非零向量,“”为“共线”的()A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 即不充分也不必要条件【答案】B【解析】【分析】共线,方向相同或相反,共线的单位向量不一定相等,结合充分必要条件的判断,即可得出结论.【详解】分别表示与同方向的单位向量,,则有共线,而共线,则是相等向量或相反向量,“”为“共线”的充分不必要条件.故选:B.【点睛】本题考查命题充分不必要条件的判定,考查共线向量和单位向量的间的关系,属于基础题.6. 一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A. 12种B. 15种C. 17种D. 19种【答案】D【解析】试题分析:分三类:第一类,有一次取到3号球,共有取法;第二类,有两次取到3号球,共有取法;第三类,三次都取到3号球,共有1种取法;共有19种取法.考点:排列组合,分类分步记数原理.7.已知函数,若函数在区间内没有零点,则最大值是( )A. B. C. D.【答案】C【解析】【分析】利用三角恒等变换化简,结合正弦函数图象,即可求解.【详解】,令,函数在区间内没有零点,解得,,的最大值是.故选:C.【点睛】本题考查三角函数恒等变换化简,以及三角函数的性质,意在考查直观想象、逻辑推理能力,属于中档题.8.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】【分析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.双曲线的渐近线为,则该双曲线的离心率为________.【答案】【解析】【分析】由双曲线方程和渐近线方程,求出值,进而求出,即可求解.【详解】设双曲线的焦距为,双曲线得,渐近线方程的斜率为,.故答案为:.【点睛】本题考查双曲线标准方程、双曲线的简单几何性质,注意焦点的位置,属于基础题.10.在平面直角坐标系xOy中,直线l的参数方程是,(t为参数),以O为极点,x轴正方向为极轴的极坐标系中,圆C的极坐标方程是.则圆心到直线的距离是________.【答案】【解析】【分析】将直线参数方程化为普通方程,圆极坐标方程化为直角坐标方程,应用点到直线距离公式即可求解.【详解】消去参数化为,化为,即,圆心,圆心到直线的距离为.故答案为:.【点睛】本题考查参数方程与普通方程互化、极坐标方程和直角坐标方程互化、点到直线的距离等知识,属于基础题11.已知某四棱锥的三视图如图所示,则该几何体的体积为________.【答案】【解析】【分析】根据三视图还原为底面为菱形高为四棱锥,即可求出结论.【详解】由三视图可知四棱锥的底面为边长为,有一对角为的菱形,高为,所以体积为.故答案为:.【点睛】本题考查三视图求直观图的体积,解题的关键要还原出几何体直观图,属于基础题.12.在各项均为正数的等比数列中,,且.(1)数列通项公式是________.(2)设数列的前n项和为,则的最小值是________.【答案】 (1). (2). .【解析】【分析】由求出,即可求出通项公式,根据等比数列与等差数列的关系,可得为等差数列,求出所有的负数或0项,即可求出结论.【详解】设等比数列的公比为,,,或(舍去),,,当,数列的前n项和的最小值是.故答案为:;-6.【点睛】本题考查等比数列的基本量计算、等比数列与等差数列的关系、等差数列前项和最小值等知识,属于中档题.13.写出一组使“”为假命题的一组x,y________.【答案】1,1(答案不唯一)【解析】【分析】即求命题的否定“”为真命题的一组值,可以应用基本不等式求出满足不等式的充分条件,从中取出一组即可.【详解】“”为假命题,其命题否定“”为真命题,,命题的否定为真的充分条件为,取.故答案为:1,1(答案不唯一)【点睛】本题考查全称命题的真假求参数,属于基础题.14.血药浓度(Serum Drug Concentration)是指药物吸收后在血浆内的总浓度(单位:mg/ml),通常用血药浓度来研究药物的作用强度.下图为服用同等剂量的三种新药后血药浓度的变化情况,其中点的横坐标表示服用第种药后血药浓度达到峰值时所用的时间,其它点的横坐标分别表示服用三种新药后血药浓度第二次达到峰值一半时所用的时间(单位:h),点的纵坐标表示第种药的血药浓度的峰值.()①记为服用第种药后达到血药浓度峰值时,血药浓度提高的平均速度,则中最大的是_______;②记为服用第种药后血药浓度从峰值降到峰值的一半所用的时间,则中最大的是_______【答案】 (1). (2).【解析】【分析】①根据平均的含义进行判断,②根据两次横坐标距离大小确定选择.【详解】①设,则,由于,,所以,,即最大;②根据峰值的一半对应关系得三个点从左到右依次对应A1,A2,A3在第二次达到峰值一半时对应点,由图可知A3经历的时间最长,所以中最大的是【点睛】本题考查数学实际应用以及图像识别,考查基本分析判断能力,属基础题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.16.2019年北京市百项疏堵工程基本完成.有关部门为了解疏堵工程完成前后早高峰时段公交车运行情况,调取某路公交车早高峰时段全程所用时间(单位:分钟)数据,从疏堵工程完成前的数据中随机抽取5个数据,记为A组,从疏堵工程完成后的数据中随机抽取5个数据,记为B组.A组:128,100,151,125,120B组:100,102,96,101,己知B组数据的中位数为100,且从中随机抽取一个数不小于100的概率是.(1)求a的值;(2)该路公交车全程所用时间不超过100分钟,称为“正点运行”从A,B两组数据中各随机抽取一个数据,记两次运行中正点运行的次数为X,求X的分布列及期望;(3)试比较A,B两组数据方差的大小(不要求计算),并说明其实际意义.【答案】(1);(2)分布列详见解答,期望为;(3)详见解答.。
2019届全国高考高三模拟考试卷数学(理)试题(三)(解析版)

5 6
A.1 个
(2)190 是数列 an 中的项
(4)当 n 7 时, an 21 取最小值 n
B.2 个
C.3 个
D.4 个
第Ⅱ卷
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
2x y 0
13.[2019·深圳期末]已知不等式组
x
2
y
0
所表示的平面区域为
该多面体的表面积为( )
A. 28 4 5
B. 28 8 2
C.16 4 2 8 5
D.16 8 2 4 5
10.[2019·汕尾质检]已知 A ,B ,C ,D 是球 O 的球面上四个不同的点,若 AB AC DB DC BC 2 ,
且平面 DBC 平面 ABC ,则球 O 的表面积为( )
图1
图2
(1)证明: AF 平面 MEF ;
(2)求二面角 M AE F 的大小.
20.(12 分)[2019·临沂质检]已知抛物线 C : y2 2 px p 0 的焦点为 F , P 为抛物线上一点,
O 为坐标原点, △OFP 的外接圆与抛物线的准线相切,且外接圆的周长为 3π . (1)求抛物线 C 的方程; (2)设直线 l 交 C 于 A , B 两点, M 是 AB 的中点,若 AB 12 ,求点 M 到 y 轴的距离的最小值,并求 此时 l 的方程.
B. 2 3
C. 9 4
D. 4 9
12.[2019·江西九校联考]设 x 为不超过 x 的最大整数, an 为 xx x 0,n 可能取到所有值的
个数,
Sn
是数列
2019年高考数学(理)模拟试题(三)含答案及解析

2019年高考数学(理)模拟试题(三)含答案及解析2019年高考数学(理)模拟试题(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z满足(1-i)z=2+i,则z的共轭复数在复平面内对应的点在()A。
第一象限B。
第二象限C。
第三象限D。
第四象限2.设集合M={x|x<36},N={2,4,6,8},则M∩N=()A。
{2,4}B。
{2,4,6}C。
{2,6}D。
{2,4,6,8}3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A。
1/4B。
1/3C。
1/2D。
2/34.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A。
42种B。
48种C。
54种D。
60种5.如图所示是一个几何体的三视图,则这个几何体外接球的体积为()A。
32π/3B。
64π/3C。
32πD。
64π/26.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),AC=BC,则△ABC的欧拉线方程为()A。
2x+y-3=0B。
2x-y+3=0C。
x-2y-3=0D。
x-2y+3=07.执行如图所示的程序框图,则输出S的值为()A。
2019年高考数学三模试题 理(含解析)

2019高考数学三模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若复数(a∈R,i是虚数单位)是纯虚数,则实数a的值为()A.﹣2 B.﹣6 C.4 D.62.设[x]表示不大于x(x∈R)的最大整数,集合A={x|[x]=1},B={1,2},则A∪B=()A.{1} B.{1,2} C.[1,2)D.[1,2]3.某学生一个学期的数学测试成绩一共记录了6个数据:x1=52,x2=70,x3=68,x4=55,x5=85,x6=90,执行如图所示的程序框图,那么输出的S是()A.1 B.2 C.3 D.44.若函数的图象上某一点处的切线过点(2,1),则切线的斜率为()A.0 B.0或C.D.5.已知x,y满足,若存在x,y使得2x+y≤a成立,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.[4,+∞)D.[10,+∞)6.某几何体的三视图如图所示,则该几何体的体积为()A.4 B.2 C.6 D.7.数列{a n}满足a n+1(a n﹣1﹣a n)=a n﹣1(a n﹣a n+1),若a1=2,a2=1,则a20=()A. B.C.D.8.长为的线段AB在双曲线x2﹣y2=1的一条渐近线上移动,C为抛物线y=﹣x2﹣2上的点,则△ABC面积的最小值是()A.B.C.D.79.在区间[0,4]上随机取两个数x,y,则xy∈[0,4]的概率是()A.B.C.D.10.将函数的图象向右平移θ(θ>0)个单位长度后关于y轴对称,则θ的最小值是()A.B.C.D.11.已知三棱锥S﹣ABC的底面△ABC为正三角形,顶点在底面上的射影为底面的中心,M,N分别是棱SC,BC的中点,且MN⊥AM,若侧棱,则三棱锥S﹣ABC的外接球的表面积是()A.12π B.32π C.36π D.48π12.已知函数f(x),g(x)满足关系式f(x)=g(|x﹣1|)(x∈R).若方程f(x)﹣cosπx=0恰有7个根,则7个根之和为()A.3 B.5 C.7 D.9二、填空题:本大题共4小题,每小题5分,共20分.13.已知,若存在向量使,则= .14.若展开式中存在常数项,则n的最小值为.15.非零实数a,b满足tanx=x,且a2≠b2,则(a﹣b)sin(a+b)﹣(a+b)sin(a﹣b)= .16.已知椭圆的左、右焦点分别为F1,F2,左右顶点分别为A1,A2,P为椭圆上任意一点(不包括椭圆的顶点),则以线段PF i(i=1,2)为直径的圆与以A1A2为直径的圆的位置关系为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知三角形ABC中,角A,B,C成等差数列,且为角A的内角平分线,.(1)求三角形内角C的大小;(2)求△ABC面积的S.18.如图,ABC﹣A'B'C'为三棱柱,M为CC的中点,N为AB的中点,AA'=2,AB=2,BC=1,∠ABC=60°.(1)求证:CN∥平面AB'M;(2)求平面AB'M与平面BB'C所成的锐二面角的余弦值.19.为推行“新课改”教学法,某数学老师分别用传统教学和“新课改”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中个随机抽取20名学生的成绩进行统计,结果如表:记成绩不低于105分者为“成绩优良”.(1)由以上统计数据填写下面的2×2列联表,并判断能否有97.5%的把握认为“成绩优良”与教学方式有关?(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列和数学期望.附:K2=,(n=a+b+c+d)临界值表:20.一张坐标纸上涂着圆E:(x+1)2+y2=8及点P(1,0),折叠此纸片,使P与圆周上某点P'重合,每次折叠都会留下折痕,设折痕与EP'的交点为M.(1)求M的轨迹C的方程;(2)直线l:y=kx+m与C的两个不同交点为A,B,且l与以EP为直径的圆相切,若,求△ABO的面积的取值范围.21.已知f(x)=且a≠1),f(x)是增函数,导函数f'(x)存在零点.(1)求a的值;(2)设A(x1,y1),B(x2,y2)(x1<x2)是函数f(x)图象上的两点,x0是AB中点的横坐标,是否存在x0,使得f'(x0)=成立?若存在,请证明;若不存在,请说明理由.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系xoy中,以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为,且曲线C在极坐标系中过点(2,π).(1)求曲线C的直角坐标方程;(2)设直线(t为参数)与曲线C相交于A,B两点,直线m过线段AB 的中点,且倾斜角是直线l的倾斜角的2倍,求m的极坐标方程.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|x﹣a|(a>0),其最小值为3.(1)求实数a的值;(2)若关于x的不等式f(x)+|x|>m2﹣2m对于任意的x∈R恒成立,求实数m的取值范围.2017年河南省八市中评高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若复数(a∈R,i是虚数单位)是纯虚数,则实数a的值为()A.﹣2 B.﹣6 C.4 D.6【考点】A5:复数代数形式的乘除运算.【分析】复数==+i是纯虚数,可得=0,≠0,解出即可得出.【解答】解:复数==+i是纯虚数,则=0,≠0,解得a=﹣2.故选:A.2.设[x]表示不大于x(x∈R)的最大整数,集合A={x|[x]=1},B={1,2},则A∪B=()A.{1} B.{1,2} C.[1,2)D.[1,2]【考点】1D:并集及其运算.【分析】根据[x]的定义用区间表示集合A,再根据并集的定义写出A∪B.【解答】解:根据题意,集合A={x|[x]=1}={x|1≤x<2}=[1,2),集合B={1,2},所以A∪B=[1,2].故选:D.3.某学生一个学期的数学测试成绩一共记录了6个数据:x1=52,x2=70,x3=68,x4=55,x5=85,x6=90,执行如图所示的程序框图,那么输出的S是()A.1 B.2 C.3 D.4【考点】EF:程序框图.【分析】由模拟程序框图的运行过程,得出输出的S是记录六次数学测试成绩中得分60以上的次数,由数据得出S的值.【解答】解:模拟程序框图的运行过程,知输出的S是记录六次数学测试成绩中得分60以上的次数;∴比较数据:x1=52,x2=70,x3=68,x4=55,x5=85,x6=90,得出S=4;故选:D.4.若函数的图象上某一点处的切线过点(2,1),则切线的斜率为()A.0 B.0或C.D.【考点】6H:利用导数研究曲线上某点切线方程.【分析】设切点为(m,n),(﹣1≤m≤1,n≥0),由于f(x)的图象为单位圆的上半圆,求得切线的斜率和方程,代入(2,1),解方程可得m,n,进而得到所求切线的斜率.【解答】解:设切点为(m,n),(﹣1≤m≤1,n≥0),由于函数的图象为单位圆的上半圆,可得切线的斜率为﹣,即有切线的方程为y﹣n=﹣(x﹣m),代入m2+n2=1,可得mx+ny=1,代入(2,1),可得2m+n=1,解得m=,n=﹣,(舍去)或m=0,n=1,即为切线的斜率为﹣=0.故选:A.5.已知x,y满足,若存在x,y使得2x+y≤a成立,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.[4,+∞)D.[10,+∞)【考点】7C:简单线性规划.【分析】画出x,y满足的平面区域,求出可行域各角点的坐标,然后利用角点法,求出目标函数的最大值和最小值,即可得到a的取值范围.【解答】解:令z=2x+y,画出x,y满足,的可行域,由可行域知:目标函数过点A时取最大值,由,可得x=3,y=4,可得A(3,4)时,z的最大值为:10.所以要使2x+y≤a恒成立,只需使目标函数的最大值小于等于a 即可,所以a的取值范围为a≥10.故答案为:a≥10.故选:D.6.某几何体的三视图如图所示,则该几何体的体积为()A.4 B.2 C.6 D.【考点】L!:由三视图求面积、体积.【分析】由三视图还原原几何体,该几何体为四棱锥,底面ABCD为直角梯形,AB∥CD,AB ⊥BC,PC⊥平面ABCD.然后由棱锥体积公式得答案.【解答】解:由三视图还原原几何体如图:该几何体为四棱锥,底面ABCD为直角梯形,AB∥CD,AB⊥BC,PC⊥平面ABCD.∴该几何体的体积V=.故选:B.7.数列{a n}满足a n+1(a n﹣1﹣a n)=a n﹣1(a n﹣a n+1),若a1=2,a2=1,则a20=()A. B.C.D.【考点】8H:数列递推式.【分析】数列{a n}满足a n+1(a n﹣1﹣a n)=a n﹣1(a n﹣a n+1),展开化为: +=.利用等差数列的通项公式得出.【解答】解:数列{a n}满足a n+1(a n﹣1﹣a n)=a n﹣1(a n﹣a n+1),展开化为: +=.∴数列是等差数列,公差为=,首项为1.∴=1+=,解得a20=.故选:C.8.长为的线段AB在双曲线x2﹣y2=1的一条渐近线上移动,C为抛物线y=﹣x2﹣2上的点,则△ABC面积的最小值是()A.B.C.D.7【考点】KC:双曲线的简单性质.【分析】求出双曲线的渐近线方程,设C(m,﹣m2﹣2),运用点到直线的距离公式,以及二次函数的最值的求法,再由三角形的面积公式,即可得到三角形的面积的最小值.【解答】解:双曲线x2﹣y2=1的一条渐近线方程为y=x,C为抛物线y=﹣x2﹣2上的点,设C(m,﹣m2﹣2),C到直线y=x的距离为d==≥,当m=﹣时,d的最小值为,可得△ABC的面积的最小值为S=×4×=.故选:A.9.在区间[0,4]上随机取两个数x,y,则xy∈[0,4]的概率是()A.B.C.D.【考点】CF:几何概型.【分析】由题意把两个数为x,y看作点P(x,y),作出Ω={(x,y)|}表示的平面区域,把xy∈[0,4]转化为0≤y≤,求出满足0≤y≤的区域面积,计算所求的概率值.【解答】解:由题意把两个数为x,y看作点P(x,y),则Ω={(x,y)|},它所表示的平面区域是边长为4的正方形,面积为42=16;xy∈[0,4]转化为0≤y≤,如图所示;且满足0≤y≤的区域面积是:16﹣(4﹣)dx=16﹣(4x﹣4lnx)=4+4ln4,则xy∈[0,4]的概率为:P==.故选:C.10.将函数的图象向右平移θ(θ>0)个单位长度后关于y轴对称,则θ的最小值是()A.B.C.D.【考点】GL:三角函数中的恒等变换应用;HJ:函数y=Asin(ωx+φ)的图象变换.【分析】将函数f(x)化简,根据三角函数的平移变换规律即可求解.【解答】解:函数=sin(x+),图象向右平移θ(θ>0)个单位长度后,可得sin(x﹣θ+),关于y轴对称,∴,k∈Z.即θ=﹣∵θ>0,当k=﹣1时,可得θ的最小值为,故选:D.11.已知三棱锥S﹣ABC的底面△ABC为正三角形,顶点在底面上的射影为底面的中心,M,N分别是棱SC,BC的中点,且MN⊥AM,若侧棱,则三棱锥S﹣ABC的外接球的表面积是()A.12π B.32π C.36π D.48π【考点】LG:球的体积和表面积.【分析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积积.【解答】解:∵M,N分别为棱SC,BC的中点,∴MN∥SB∵三棱锥S﹣ABC为正棱锥,∴SB⊥AC(对棱互相垂直),∴MN⊥AC又∵MN⊥AM,而AM∩AC=A,∴MN⊥平面SAC,∴SB⊥平面SAC∴∠ASB=∠BSC=∠ASC=90°以SA,SB,SC为从同一定点S出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径.∴2R=SA=6,∴R=3,∴S=4πR2=36π.故选:C12.已知函数f(x),g(x)满足关系式f(x)=g(|x﹣1|)(x∈R).若方程f(x)﹣cosπx=0恰有7个根,则7个根之和为()A.3 B.5 C.7 D.9【考点】54:根的存在性及根的个数判断.【分析】函数y=g(|x|)是偶函数,y=g(|x﹣1|)是把y=g(|x|)向右平移1个单位得到的,可得y=f(x)的图象关于直线x=1对称.再由x=1是f(x)=cosπx的一条对称轴,可得y=f(x)的图象与y=cosπx的图象有3对交点关于直线x=1对称,有1个交点为(1,1).结合中点坐标公式得答案.【解答】解:函数y=g(|x|)是偶函数,其图象关于直线x=0对称,而y=g(|x﹣1|)是把y=g(|x|)向右平移1个单位得到的,∴y=g(|x﹣1|)的图象关于直线x=1对称.即y=f(x)的图象关于直线x=1对称.方程f(x)﹣cosπx=0恰有7个根,即方程f(x)=cosπx恰有7个根,也就是y=f(x)的图象与y=cosπx的图象有7个交点,而x=1是f(x)=cosπx的一条对称轴,∴y=f(x)的图象与y=cosπx的图象有3对交点关于直线x=1对称,有1个交点为(1,1).由中点坐标公式可得:y=f(x)的图象与y=cosπx的图象交点的横坐标和为3×2+1=7.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.已知,若存在向量使,则= .【考点】9J:平面向量的坐标运算.【分析】设=(x,y),由,可得,解出x,y.即可得出.【解答】解:设=(x,y),∵,∴,解得x=3,y=﹣2.则==.故答案为:14.若展开式中存在常数项,则n的最小值为 5 .【考点】DB:二项式系数的性质.【分析】根据二项式展开式的通项公式,令x的指数等于0,求出n、r的关系,即可求出n 的最小值.【解答】解:展开式中通项公式为T r+1=••=•(﹣1)r•,令=0,解得n=,其中r=0,1,2,…,n;当r=3时,n=5;所以n的最小值为5.故答案为:5.15.非零实数a,b满足tanx=x,且a2≠b2,则(a﹣b)sin(a+b)﹣(a+b)sin(a﹣b)= 0 .【考点】HP:正弦定理;HR:余弦定理.【分析】由已知可得b=tanb,a=tana,利用两角和与差的正弦函数公式化简所求可得2acosasinb﹣2bsinacosb,利用同角三角函数基本关系式化简即可得解.【解答】解:∵非零实数a,b满足tanx=x,且a2≠b2,∴可得:b=tanb,a=tana,∴原式=(a﹣b)(sinacosb+cosasinb)﹣(a+b)(sinacosb﹣cosasinb)=2acosasinb﹣2bsinacosb=2tanacosasinb﹣2tanbsinacosb=2sinasinb﹣2sinasinb=0.故答案为:0.16.已知椭圆的左、右焦点分别为F1,F2,左右顶点分别为A1,A2,P为椭圆上任意一点(不包括椭圆的顶点),则以线段PF i(i=1,2)为直径的圆与以A1A2为直径的圆的位置关系为内切.【考点】K4:椭圆的简单性质.【分析】设PF1的中点为M,可得以线段PF i(i=1,2)为直径的圆与以A1A2为直径的圆的圆心距为OM,根据中位线的性质得OM==a﹣,即可【解答】解:如图,设PF1的中点为M,可得以线段PF i(i=1,2)为直径的圆与以A1A2为直径的圆的圆心距为OM,根据中位线的性质得OM==a﹣,a﹣就是两圆的半径之差,故两圆内切.故答案为:内切.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知三角形ABC中,角A,B,C成等差数列,且为角A的内角平分线,.(1)求三角形内角C的大小;(2)求△ABC面积的S.【考点】HT:三角形中的几何计算.【分析】(1)根据角A,B,C成等差数列,可得2B=A+C,利用三角形内角和定理带入化简可得C的大小;(2)根据C的大小和2B=A+C,可得A,B的大小.利用正弦定理即可求解.【解答】解:(1)∵角A,B,C成等差数列,∴2B=A+C,∴B=,∵=2sin(A+C),∴2sinCcosA+sinA=2sinAcosC+2cosAsinC,∴sinA=2sinAcosC,∵A∈(0,π),sinA≠0,∴cosC=,∵C∈(0,π),∴.(2).由(1)值A=,C=,由正弦定理得,得AB=,同理得AC=,∴△ABC面积的S=.18.如图,ABC﹣A'B'C'为三棱柱,M为CC的中点,N为AB的中点,AA'=2,AB=2,BC=1,∠ABC=60°.(1)求证:CN∥平面AB'M;(2)求平面AB'M与平面BB'C所成的锐二面角的余弦值.【考点】MT:二面角的平面角及求法;LS:直线与平面平行的判定.【分析】(1)取A′B′的中点E,连接EC′,EN,由已知可得AB′,EN共面,设AB′∩EN=F,连接FM,可得NF∥CM,NF=CM,从而得到CN∥FM,然后利用线面平行的判定可得CN∥平面AB'M;(2)在三角形ABC中,由余弦定理可得AC2,由AC2+BC2=AB2,得AC⊥CB,建立如图所示空间直角坐标系,求出所用点的坐标,得到平面AB′M与平面BCC′B′的一个法向量,利用两法向量所成角的余弦值可得平面AB'M与平面BB'C所成的锐二面角的余弦值.【解答】(1)证明:如图,取A′B′的中点E,连接EC′,EN,∵ABC﹣A′B′C′为直三棱柱,∴ABB′A′为矩形,则AB′,EN共面,设AB′∩EN=F,连接FM,则EN∥BB′∥CC′,且F为AB′的中点.又∵M为CC′的中点,∴NF∥CM,NF=CM,则CN∥FM,而MF⊂平面AB'M,CN⊄平面AB'M,∴CN∥平面AB'M;(2)解:在三角形ABC中,由余弦定理可得:AC2=AB2+BC2﹣2AB×BC×cosB=22+12﹣2×2×1×cos60°=3.∴AC2+BC2=AB2,则AC⊥CB.建立如图所示空间直角坐标系,则C(0,0,0),A(),B′(0,1,2),M(0,0,1),∴,,设平面AB′M的一个法向量为.由,取x=1,得.∵AC⊥平面BCC′B′,∴可取平面BCC′B′的一个法向量.∴cos<>=∴平面AB'M与平面BB'C所成的锐二面角的余弦值为.19.为推行“新课改”教学法,某数学老师分别用传统教学和“新课改”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中个随机抽取20名学生的成绩进行统计,结果如表:记成绩不低于105分者为“成绩优良”.(1)由以上统计数据填写下面的2×2列联表,并判断能否有97.5%的把握认为“成绩优良”与教学方式有关?(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列和数学期望.附:K2=,(n=a+b+c+d)临界值表:【考点】CG:离散型随机变量及其分布列;BO:独立性检验的应用;CH:离散型随机变量的期望与方差.【分析】(1)根据以上统计数据填写2×2列联表,根据列联表计算K2,对照临界值得出结论;(2)由题意知X的可能取值,计算对应的概率值,写出X的分布列,计算数学期望值.【解答】解:(1)根据以上统计数据填写2×2列联表,如下;根据列联表,计算K2==≈5.227>5.024,对照临界值知,有97.5%的把握认为“成绩优良”与教学方式有关;(2)由表可知,8人中成绩不优良的人数为3,则X的可能取值为0、1、2、3,则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==;所以X的分布列为:数学期望为E(X)=0×+1×+2×+3×==.20.一张坐标纸上涂着圆E:(x+1)2+y2=8及点P(1,0),折叠此纸片,使P与圆周上某点P'重合,每次折叠都会留下折痕,设折痕与EP'的交点为M.(1)求M的轨迹C的方程;(2)直线l:y=kx+m与C的两个不同交点为A,B,且l与以EP为直径的圆相切,若,求△ABO的面积的取值范围.【考点】J9:直线与圆的位置关系.【分析】(1)折痕为PP′的垂直平分线,则|MP|=|MP′|,推导出E的轨迹是以E、P为焦点的椭圆,且a=,c=1,由此能求出M的轨迹C的方程.(2)l与以EP为直径的圆x2+y2=1相切,从而m2=k2+1,由,得(1+2k2)x2+4kmx+2m2﹣2=0,由此利用根的判别式、韦达定理、向量的数量积、弦长公式、三角形面积公式,能求出△AOB的面积的取值范围.【解答】解:(1)折痕为PP′的垂直平分线,则|MP|=|MP′|,由题意知圆E的半径为2,∴|ME|+|MP|=|ME|+|MP′|=2>|EP|,∴E的轨迹是以E、P为焦点的椭圆,且a=,c=1,∴b2=a2﹣c2=1,∴M的轨迹C的方程为=1.(2)l与以EP为直径的圆x2+y2=1相切,则O到l即直线AB的距离:=1,即m2=k2+1,由,消去y,得(1+2k2)x2+4kmx+2m2﹣2=0,∵直线l与椭圆交于两个不同点,∴△=16k2m2﹣8(1+2k2)(m2﹣1)=8k2>0,k2>0,设A(x1,y1),B(x2,y2),则,,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=,又=x1x2+y1y2=,∴,∴,==,设μ=k4+k2,则,∴=,,∵S△AOB关于μ在[,2]单调递增,∴,∴△AOB的面积的取值范围是[,].21.已知f(x)=且a≠1),f(x)是增函数,导函数f'(x)存在零点.(1)求a的值;(2)设A(x1,y1),B(x2,y2)(x1<x2)是函数f(x)图象上的两点,x0是AB中点的横坐标,是否存在x0,使得f'(x0)=成立?若存在,请证明;若不存在,请说明理由.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出函数的导数,从而可得△=4ln2a﹣4lna=0,从而解得;(2)求导,得到(x2+x1)﹣2+=(x2+x1)﹣2+,化简得ln﹣=0,即ln﹣=0,令t=>1,g(t)=lnt﹣,根据函数的单调性判断即可.【解答】解:(1)∵f(x)=x2﹣2x+log a x,∴f′(x)=x﹣2+=,∵f(x)在(0,+∞)上是增函数,且f′(x)存在零点,∴△=4ln2a﹣4lna=0,解得,lna=1或lna=0;故a=e或a=1(舍去);故a=e;(2)假设存在x0,使得f′(x0)=成立,由(1)得:f(x)=x2﹣2x+lnx,(x>0),f′(x)=x﹣2+,f′(x0)=x0﹣2+=(x2+x1)﹣2+,又==(x2+x1)﹣2+,故(x2+x1)﹣2+=(x2+x1)﹣2+,化简得ln﹣=0,即ln﹣=0,令t=>1,g(t)=lnt﹣,则g′(t)=﹣=>0,g(t)在(1,+∞)递增,则g(t)>g(1)=0,故不存在x0,使得f'(x0)=成立.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系xoy中,以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为,且曲线C在极坐标系中过点(2,π).(1)求曲线C的直角坐标方程;(2)设直线(t为参数)与曲线C相交于A,B两点,直线m过线段AB 的中点,且倾斜角是直线l的倾斜角的2倍,求m的极坐标方程.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)由曲线C在极坐标系中过点(2,π),得到曲线C的极坐标方程为4ρ2sin2θ+ρ2cos2θ=4,由此能求出曲线C的直角坐标方程.(2)直线l消去参数t,得直线l的普通方程为x﹣2y+2=0,联立,得x2+2x=0,求出AB的中点为M(﹣1,),从而直线l的斜率为,由此求出直线m的斜率为.从而求出直线m的直角坐标方程,进而求出m的极坐标方程.【解答】解:(1)∵曲线C在极坐标系中过点(2,π),∴把(2,π)代入曲线C的极坐标方程,得:4=,解得a=4,∴曲线C的极坐标方程为,即4ρ2sin2θ+ρ2cos2θ=4,∴曲线C的直角坐标方程为x2+4y2=4,即=1.(2)∵直线(t为参数),∴消去参数t,得直线l的普通方程为x﹣2y+2=0,联立,得x2+2x=0,解得x=﹣2或x=0,∴A(﹣2,0),B(0,1),∴AB的中点为M(﹣1,),∵直线l的斜率为,即tanα=,∴tan2α==.∴直线m的方程为y﹣=(x+1),即8x﹣6y+11=0,∴m的极坐标方程为8ρcosθ﹣6ρsinθ+11=0.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|x﹣a|(a>0),其最小值为3.(1)求实数a的值;(2)若关于x的不等式f(x)+|x|>m2﹣2m对于任意的x∈R恒成立,求实数m的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)求出f(x)的最小值,得到关于a的方程,求出a的值即可;(2)根据不等式的性质,问题转化为m2﹣2m<3,解出即可.【解答】解:(1)f(x)=|x﹣1|+|x﹣a|≥|a﹣1|,故|a﹣1|=3,解得:a=﹣2或4,由a>0,得a=4;(2)由(1)得f(x)=|x﹣1|+|x﹣4|,x≥4时,f(x)=x﹣1+x﹣4=2x﹣5≥3,1<x<4时,f(x)=x﹣1﹣x+4=3,x≤1时,f(x)=1﹣x﹣x+4=﹣2x+5≥3,∴f(x)+|x|≥3,当x=0时”=“成立,故m2﹣2m<3即(m+1)(m﹣3)<0,解得:﹣1<m<3,故m的范围是(﹣1,3).。
2019年山东省潍坊市高考数学三模试卷(理科)

2019年山东省潍坊市高考数学三模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足iz=2+4i,则z在复平面内对应的点的坐标是()A.(4,2)B.(2,﹣4)C.(2,4)D.(4,﹣2)2.(5分)已知集合M={x|2x﹣x2>0},N={﹣2,﹣1,0,1,2},则等于M∩N=()A.∅B.{1}C.{0,1}D.{﹣1,0,1} 3.(5分)已知a=1.90.4,b=log0.41.9,c=0.41.9,则()A.a>b>c B.b>c>a C.a>c>b D.c>a>b4.(5分)某几何体的三视图(如图),则该几何体的体积是()A.B.C.D.5.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的图象与直线y=b(0<b<A)的三个相邻交点的横坐标分别是2、4、8,则f(x)的单调递增区间为()A.[4k,4k+3](k∈Z)B.[6k,6k+3](k∈Z)C.[4k,4k+5](k∈Z)D.[6k,6k+5](k∈Z)6.(5分)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了()A.60里B.48里C.36里D.24里7.(5分)a为如图所示的程序框图中输出的结果,则化简cos(aπ﹣θ)的结果是()A.cosθB.﹣cosθC.sinθD.﹣sinθ8.(5分)如图,在圆心角为直角的扇形OAB区域中,M、N分别为OA、OB的中点,在M、N两点处各有一个通信基站,其信号的覆盖范围分别为以OA、OB为直径的圆,在扇形OAB内随机取一点,则此点无信号的概率是()A.1﹣B.﹣C.+D.9.(5分)在(1+)(1+)…(1+)(n∈N+,n≥2)的展开式中,x的系数为,则x2的系数为()A.B.C.D.10.(5分)已知实数x,y满足,若z=(x﹣1)2+y2,则z的最小值为()A.1B.C.2D.11.(5分)设F1,F2是双曲线的左、右两个焦点,若双曲线右支上存在一点P,使(O为坐标原点),且,则双曲线的离心率为()A.B.C.D.12.(5分)已知函数与g(x)=2elnx+mx的图象有4个不同的交点,则实数m的取值范围是()A.(﹣4,0)B.C.D.(0,2)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设,,为向量,若+与的夹角为,+与的夹角为,则=.14.(5分)过点M(1,2)的直线l与圆C:(x﹣3)2+(y﹣4)2=25交于A,B两点,C 为圆心,当∠ACB最小时,直线l的方程是.15.(5分)用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如下表),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有种.16.(5分)对于函数,有下列4个结论:①任x1,x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2恒成立;②f(x)=2kf(x+2k)(k∈N*),对于一切x∈[0,+∞)恒成立;③函数y=f(x)﹣ln(x﹣1)有3个零点;④对任意x>0,不等式恒成立,则实数是的取值范围是.则其中所有正确结论的序号是.三、解答题:本大题共5小题.共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和为S n,a1=,2S n=S n﹣1+1(n≥2,n∈N*).(1)求数列{a n}的通项公式;(2)记,求的前n项和T n.18.(12分)如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(Ⅰ)证明:GH∥平面ACD;(Ⅱ)若AC=BC=BE=2,求二面角O﹣CE﹣B的余弦值.19.(12分)已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,若椭圆经过点P(,﹣1),且△PF1F2的面积为2(Ⅰ)求椭圆C的标准方程(Ⅱ)设斜率为1的直线l与以原点为圆心,半径为的圆交于A,B两点,与椭圆C 交于C,D两点,且|CD|=λ|AB|(λ∈R),当λ取得最小值时,求直线l的方程20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21.(12分)已知函数f(x)=ax2﹣(a﹣1)x﹣lnx(a∈R且a≠0).(I)求函数f(x)的单调递增区间;(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值和谐切线”.当a=2时,函数f (x)是否存在“中值和谐切线”,请说明理由.选考题:共10分.请考生在22,23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C的极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(I)写出直线l的一般方程与曲线C的直角坐标方程,并判断它们的位置关系;(II)将曲线C向左平移2个单位长度,向上平移3个单位长度,得到曲线D,设曲线D 经过伸缩变换得到曲线E,设曲线E上任一点为M(x,y),求的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|+|2x+a|,a∈R.(Ⅰ)当a=1时,解不等式f(x)≥5;(Ⅱ)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.。
2019届高三三模数学(理)试卷附答案

1. 已知集合 M y y x2 1, x R , N x y 3 x 2 , x R ,则 M N 为
A. [ 3, 3 ]
B . [ 1, 3] C .
D . ( 1, 3]
2. 下列命题中,正确的是
① 已知 a n 是等差数列, Sn是其前 n项和,则 Sn, S2n Sn , S3n S2n也成等差数列 ;
4an 2Sn 1(n N ) ,则 f (a 3) f (a6 ) = ________.
三、解答题:本大题共 6 小题,共 70 分 . 解答应写出文字说明、证明过程或演算步骤
.
17.(本小题满分 12 分)
在 ABC 中,角 A, B, C 所对的边分别为 a,b,c . 已知 A (Ⅰ)求 a 的值;
i i1
i 10 ?
否 输出
S
结束
i 2i 1 是
关于 y 轴对称.若 tan
3 ,则 tan
5
的值为
A .0
B
. 15
C
.9
17
16
D
. 15
Байду номын сангаас
8
6. 已知边长为 2 的正方形 ABCD ,在正方形 ABCD 内随机取一点, 则取到的点到正方形四个顶点
的距离都大于 1的概率为
A, B, C,D
A.
B.
②“事件 A 与事件 B 对立”是“事件 A 与事件 B 互斥”的充分不必要条件;
③复数 Z 1 , Z 2 , Z 3 ,若 Z1 Z 2 2
2
Z2 Z3
0 ,则 Z1 Z 3 ;
④命题“
x0
R,
x
2 0
x0 2
2019年潍坊三模理科考试试卷(数学)

2019年山东省潍坊市高考(理科)数学三模试卷一、选择题:本大题共12个小题,每小题5分,共60分.1.(5分)若复数z满足iz=2+4i,则z在复平面内对应的点的坐标是()A.(4,2)B.(2,﹣4)C.(2,4)D.(4,﹣2)2.(5分)已知集合M={x|2x﹣x2>0},N={﹣2,﹣1,0,1,2},则等于M∩N=()A.∅B.{1}C.{0,1}D.{﹣1,0,1} 3.(5分)已知a=1.90.4,b=log0.41.9,c=0.41.9,则()A.a>b>c B.b>c>a C.a>c>b D.c>a>b4.(5分)某几何体的三视图(如图),则该几何体的体积是()A.B.C.D.5.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的图象与直线y=b(0<b<A)的三个相邻交点的横坐标分别是2、4、8,则f(x)的单调递增区间为()A.[4k,4k+3](k∈Z)B.[6k,6k+3](k∈Z)C.[4k,4k+5](k∈Z)D.[6k,6k+5](k∈Z)6.(5分)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了()A.60里B.48里C.36里D.24里7.(5分)a为如图所示的程序框图中输出的结果,则化简cos(aπ﹣θ)的结果是()A.cosθB.﹣cosθC.sinθD.﹣sinθ8.(5分)如图,在圆心角为直角的扇形OAB区域中,M、N分别为OA、OB的中点,在M、N两点处各有一个通信基站,其信号的覆盖范围分别为以OA、OB为直径的圆,在扇形OAB内随机取一点,则此点无信号的概率是()A.1﹣B.﹣C.+D.9.(5分)在(1+)(1+)…(1+)(n∈N+,n≥2)的展开式中,x的系数为,则x2的系数为()A.B.C.D.10.(5分)已知实数x,y满足,若z=(x﹣1)2+y2,则z的最小值为()A.1B.C.2D.11.(5分)设F1,F2是双曲线的左、右两个焦点,若双曲线右支上存在一点P,使(O为坐标原点),且,则双曲线的离心率为()A.B.C.D.12.(5分)已知函数与g(x)=2elnx+mx的图象有4个不同的交点,则实数m的取值范围是()A.(﹣4,0)B.C.D.(0,2)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设,,为向量,若+与的夹角为,+与的夹角为,则=.14.(5分)过点M(1,2)的直线l与圆C:(x﹣3)2+(y﹣4)2=25交于A,B两点,C 为圆心,当∠ACB最小时,直线l的方程是.15.(5分)用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如下表),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有种.12345678916.(5分)对于函数,有下列4个结论:①任x1,x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2恒成立;②f(x)=2kf(x+2k)(k∈N*),对于一切x∈[0,+∞)恒成立;③函数y=f(x)﹣ln(x﹣1)有3个零点;④对任意x>0,不等式恒成立,则实数是的取值范围是.则其中所有正确结论的序号是.三、解答题:本大题共5小题.共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和为S n,a1=,2S n=S n﹣1+1(n≥2,n∈N*).(1)求数列{a n}的通项公式;(2)记,求的前n项和T n.18.(12分)如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(Ⅰ)证明:GH∥平面ACD;(Ⅱ)若AC=BC=BE=2,求二面角O﹣CE﹣B的余弦值.19.(12分)已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,若椭圆经过点P(,﹣1),且△PF1F2的面积为2(Ⅰ)求椭圆C的标准方程(Ⅱ)设斜率为1的直线l与以原点为圆心,半径为的圆交于A,B两点,与椭圆C 交于C,D两点,且|CD|=λ|AB|(λ∈R),当λ取得最小值时,求直线l的方程20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21.(12分)已知函数f(x)=ax2﹣(a﹣1)x﹣lnx(a∈R且a≠0).(I)求函数f(x)的单调递增区间;(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值和谐切线”.当a=2时,函数f (x)是否存在“中值和谐切线”,请说明理由.选考题:共10分.请考生在22,23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C的极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(I)写出直线l的一般方程与曲线C的直角坐标方程,并判断它们的位置关系;(II)将曲线C向左平移2个单位长度,向上平移3个单位长度,得到曲线D,设曲线D 经过伸缩变换得到曲线E,设曲线E上任一点为M(x,y),求的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|+|2x+a|,a∈R.(Ⅰ)当a=1时,解不等式f(x)≥5;(Ⅱ)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.2019年山东省潍坊市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】把已知的等式变形,利用复数代数形式的乘除运算化简得答案.【解答】解:由iz=2+4i,得.∴则z在复平面内对应的点的坐标是:(4,﹣2).故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.2.【分析】可求出集合M,然后进行交集的运算即可.【解答】解:M={x|0<x<2};∴M∩N={1}.故选:B.【点评】考查描述法、列举法的定义,一元二次不等式的解法,以及交集的运算.3.【分析】利用指数函数、对数函数的单调性直接求解.【解答】解:a=1.90.4>1.90=1,b=log0.41.9<log0.41=0,0<c=0.41.9<0.40=1,∴a>c>b.故选:C.【点评】本题考查三个数的大小的比较,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.【分析】由三视图知几何体是左边为一半圆锥,右边为半圆柱的组合体,根据三视图的数据判断圆锥与圆柱的底面圆直径为2,圆柱的高为3,圆锥的高为2,利用体积公式计算可得答案.【解答】解:由三视图知几何体是左边为一半圆锥,右边为半圆柱的组合体,且圆锥与圆柱的底面圆直径为2,圆柱的高为3,圆锥的高为2,∴几何体的体积V=V半圆柱+V半圆锥=π×12×3+××π×12×2=π.故选:B.【点评】本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及相关数据所对应的几何量.5.【分析】由题意可得,第一个交点与第三个交点的差是一个周期;第一个交点与第二个交点的中点的横坐标对应的函数值是最大值.从这两个方面考虑可求得参数ω、φ的值,进而利用三角函数的单调性求区间.【解答】解:与直线y=b(0<b<A)的三个相邻交点的横坐标分别是2,4,8知函数的周期为T==2(﹣),得ω=,再由五点法作图可得•+φ=,求得φ=﹣,∴函数f(x)=A sin(x﹣).令2kπ﹣≤x﹣≤2kπ+,k∈z,求得x∈[6k,6k+3](k∈Z),故选:B.【点评】本题主要考查正弦函数的图象性质,充分体现了转化、数形结合思想,属于基础题.6.【分析】由题意可知,每天走的路程里数构成以为公比的等比数列,由S6=378求得首项,再由等比数列的通项公式求得该人第4天和第5天共走的路程【解答】解:记每天走的路程里数为{a n},可知{a n}是公比q=的等比数列,由S6=378,得S6=,解得:a1=192,∴,此人第4天和第5天共走了24+12=36里.故选:C.【点评】本题考查了函数模型的选择及等比数列的通项公式、等比数列的前n项和,是基础的计算题.7.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出a值,即可求得cos(aπ﹣θ).【解答】解:程序运行过程中,各变量的值如下表示:a i是否继续循环循环前a=2 i=1第一圈a=﹣1,i=2 是循环第二圈a=,i=3 是循环第三圈a=2,i=4 是循环第四圈a=﹣1,5 是循环…第3n+1圈,a=﹣1 i=3n+2 是循环第3n+2圈a=i=3n+3 是循环第3n+3圈a=2 i=3n+4 是循环…第2012圈a=,i=2013 是循环第2013圈a=2 i=2014 否,退出循环故最后输出的a值为2.故有:cos(2π﹣θ)=cosθ.故选:A.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.【分析】OA的中点是M,则∠CMO=90°,这样就可以求出弧OC与弦OC围成的弓形的面积,从而可求出两个圆的弧OC围成的阴影部分的面积,用扇形OAB的面积减去三角形的面积,减去加上两个弧OC围成的面积就是无信号部分的面积,最后根据几何概型的概率公式解之即可.【解答】解:OA的中点是M,则∠CMO=90°,半径为OA=rS扇形OAB=πr2,S半圆OAC=π()2=πr2,S△OmC=××=r2,S弧OC=S半圆OAC﹣S△ODC=πr2﹣r2,两个圆的弧OC围成的阴影部分的面积为πr2﹣r2,图中无信号部分的面积为πr2﹣r2﹣(πr2﹣r2)=πr2﹣r2,∴无信号部分的概率是:.故选:B.【点评】本题主要考查了几何概型,解题的关键是求无信号部分的面积,不规则图形的面积可以转化为几个不规则的图形的面积的和或差的计算,属于中档题.9.【分析】在(1+)(1+)…(1+)(n∈N+,n≥2)的展开式中,x的系数=+…+,可得1﹣=,解得n=4.因此(1+)(1+)的展开式中x2的系数=+×+×+×,即可得出.【解答】解:在(1+)(1+)…(1+)(n∈N+,n≥2)的展开式中,x的系数=+…+==1﹣,∴1﹣=,解得n=4.(1+)的展开式中x2的系数为:+∴(1+)×+×+×=.故选:C.【点评】本题考查了二项式定理的应用、多项式的乘法运算性质,考查了推理能力与计算能力,属于中档题.10.【分析】作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.【解答】解:作出不等式组对应的平面区域,则z的几何意义为区域内的点到点(1,0)距离的平方,则由图象可知,当点(1,0)到直点A的距离最小,由,解得x=2,y=1,即A(2,1),∴z=(2﹣1)2+12=2,故选:C.【点评】本题主要考查线性规划的应用,利用z的几何意义,结合数形结合是解决本题的关键.11.【分析】利用向量的加减法可得,故有OP=OF2=c=OF1,可得PF1⊥PF2,由条件可得∠PF1F2=30°,由sin30°==求出离心率.【解答】解:∵,∴,∴﹣=0,OP=OF2=c=OF1,∴PF1⊥PF2,Rt△PF 1F2中,∵,∴∠PF1F2=30°.由双曲线的定义得PF1﹣PF2=2a,∴PF2=,sin30°====,∴2a=c(﹣1),∴=+1,故选:D.【点评】本题考查双曲线的定义和双曲线的简单性质的应用,其中,判断△PF1F2是直角三角形是解题的关键.12.【分析】由题意可得m=﹣(x>0且x≠e)有4个不等实根,设h(x)=﹣,求得导数和极值点、最值,考虑x→+∞,→0,可得h(x)的极限,即可得到所求m的范围.【解答】解:函数与g(x)=2elnx+mx的图象有4个不同的交点,即为mx=﹣2elnx,即m=﹣(x>0且x≠e)有4个不等实根,设h(x)=﹣,导数h′(x)=﹣,由h′(x)=0,可得x=2elnx或3x=2elnx或x=e(舍去),由y=的导数为y′=,当x>e时,函数递减,当0<x<e时,函数递增,可得x=e处取得极大值,且为最大值,则x=2elnx有两解,3x=2elnx无解,当x=2elnx,可得m=0,即为h(x)的最小值,由x→+∞,→0,可得﹣=﹣→,可得当0<m<时,m=﹣(x>0且x≠e)有4个不等实根,故选:C.【点评】本题考查函数方程的转化思想,考查分离参数法和构造函数法,以及极限思想,运用导数求单调区间和极值、最值,考查运算能力,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.13.【分析】利用向量加法的平行四边形法则作图,右图可得相应的角,利用正弦定理可求答案.【解答】解:如图所示(其中图中字母表示对应向量),向量+与的夹角为,+与的夹角为,∴∠CAB=,∠ACB=,由正弦定理,得,即,∴==,故答案为:.【点评】本题考查平面向量数量积运算、正弦定理及加法的平行四边形法则,属基础题.14.【分析】研究知点M(1,2)在圆内,过它的直线与圆交于两点A,B,当∠ACB最小时,直线l与CM垂直,故先求直线CM的斜率,再根据充要条件求出直线l的斜率,由点斜式写出其方程.【解答】解:验证知点M(1,2)在圆内,当∠ACB最小时,直线l与CM垂直,由圆的方程,圆心C(3,4)∵k CM==1,∴k l=﹣1∴l:y﹣2=﹣(x﹣1),整理得x+y﹣3=0故答案为:x+y﹣3=0.【点评】本题考点是直线与圆的位置关系,考查到了线线垂直时斜率之积为﹣1,以及用点斜式写出直线的方程.15.【分析】当1,5,9,为其中一种颜色时,2,6共有4种可能,其中2种2,6是涂相同颜色,各有2种可能共6种可能.4,8及7,与2,6及3,一样有6种可能并且与2,6,3,颜色无关,当1,5,9换其他的颜色时也是相同的情况,相乘得到结果.【解答】解:首先看图形中的1,5,9,有3种可能,当1,5,9,为其中一种颜色时,2,6共有4种可能,其中2种2,6是涂相同颜色,各有2种可能共6种可能.4,8及7,与2,6及3,一样有6种可能并且与2,6,3,颜色无关.当1,5,9换其他的颜色时也是相同的情况符合条件的所有涂法共有3×6×6=108种,故答案为:108【点评】本题是一个排列组合的应用,考查分别计数原理,考查分类原理,是一个限制元素比较多的题目,解题时注意分类,做到不重不漏,本题是一个中档题.16.【分析】作出f(x)=的图象,利用图象可得结论.【解答】解:f(x)=的图象如图所示:①f(x)的最大值为1,最小值为﹣1,∴任取x1、x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2恒成立,故①正确;②f()=2f(+2)=4f(+4)=6f(+6)≠8f(+8),故②不正确;③函数y=f(x)﹣ln(x﹣1)的定义域为(1,+∞),当x=2时,y=sin2π﹣ln1=0,而f(x)=sinπx是周期为2的类正线曲线;当x>2时,f(x+2k)=()k f(x),图象只发生振幅变化,y=ln(x﹣1)为对数函数y=lnx图象向右平移1个单位得到,过定点(2,0),做上述两函数图象可知:当1<x<2以及x>2时两图象各有一交点,则f(x)=有3个零点正确,故③正确;④对任意x>0,不等式f(x)≤恒成立,则有k≥xf(x),|f(x)|≤1,当x→∞,xf(x)→∞,则实数k→+∞,把(,)代入,可得k≥,故④正确.故答案为:①③④【点评】本题解题的关键是对于函数的理解,能顺利做出函数的草图,利用图象及三角函数值得有界性解题,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题.共70分.解答应写出文字说明、证明过程或演算步骤.17.【分析】(1)通过当n=2时,由2S n=S n﹣1+1及,求出a2,利用数列的递推关系式推出2a n+1=a n,数列{a n}是以为首项,公比为的等比数列,然后求解通项公式.(2)由(1)及(n∈N*),化简,利用裂项消项法求解数列的和即可.【解答】解:(1)当n=2时,由2S n=S n﹣1+1及,得2S2=S1+1,即2a1+2a2=a1+1,解得.又由2S n=S n﹣1+1,①可知2S n+1=S n+1,②②﹣①得2a n+1=a n,即.且n=1时,适合上式,因此数列{a n}是以为首项,公比为的等比数列,故(n∈N*).(2)由(1)及(n∈N*),可知,所以,故==.【点评】本题考查数列的递推关系式的应用,数列求和的方法裂项消项法的应用,考查计算能力.18.【分析】(Ⅰ)连结GO,OH,证明GO∥平面ACD,OH∥平面ACD,利用平面与平面平行的判定定理证明平面GOH∥平面ACD.然后证明GH∥平面ACD.(Ⅱ)以CB为x轴,CB为y轴,CD为z轴,建立如图所示的直角坐标系,求出C,B,A(,O,E的坐标,平面BCE的法向量,平面OCE的法向量.二面角O﹣CE﹣B是锐二面角,记为θ,利用空间向量的数量积求解cosθ即可.【解答】解:(Ⅰ)证明:连结GO,OH∵GO∥AD,OH∥AC…(2分)∴GO∥平面ACD,OH∥平面ACD,又GO交HO于O…(.4分)∴平面GOH∥平面ACD…(5分)∴GH∥平面ACD…(6分)(Ⅱ)以CB为x轴,CA为y轴,CD为z轴,建立如图所示的直角坐标系则C(0,0,0),B(2,0,0),A(0,2,0),O(1,1,0),E(2,0,2)平面BCE的法向量=(0,1,0),设平面OCE的法向量=(x0.y0.z0).…(8分)=(2,0,2),=(1,1,0).∴则,令x0=﹣1,∴=(﹣1,1,1).…(10分)∵二面角O﹣CE﹣B是锐二面角,记为θ,则cosθ=|cos|===…(12分)【点评】本题考查直线与平面平行的判定定理的证明,二面角的平面角的求法,考查空间想象能力以及计算能力.19.【分析】(I)根据三角形的面积公式,求得c,由a2﹣b2=4,将P代入椭圆方程,即可求得a和b的值,即可求得椭圆方程;(Ⅱ)设直线l的方程,利用点到直线的距离公式及勾股定理求得|AB|,代入椭圆方程,由△>0和d<r,求得m的取值范围,利用韦达定理及弦长公式求得|CD|,根据m的取值范围,即可求得m的值,直线l的方程.【解答】解:(I)由△PF1F2A的面积S=•2c•1=2,则c=2,由a2﹣b2=4,将椭圆C过点P(,﹣1),则,解得:a=2,b=2,∴椭圆的标准方程:;(Ⅱ)设直线l的方程为y=x+m,则原点到直线l的距离d=,由弦长公式|AB|=2=,则,整理得:3x2+4mx+2m2﹣8=0,△=16m2﹣12(2m2﹣8)>0,解得:﹣2<m<2,由直线和圆相交的条件可得d<r,即<,则﹣2<m<2,综上可得m的取值范围为(﹣2,2),设C(x1,y1),D(x2,y2),则x1+x2=﹣,x1x2=,由弦长公式CD|==,由|CD|=λ|AB|,则λ===,由﹣2<m<2,则0<4﹣m2≤4,∴当m=0时,λ取得最小值为,此时直线l的方程为y=x.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理及弦长公式的应用,考查计算能力,属于中档题.20.【分析】(1)求出f(p)=,则=,利用导数性质能求出f(p)的最大值点p0=0.1.(2)(i)由p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),再由X=20×2+25Y,即X=40+25Y,能求出E(X).(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,E(X)=490>400,从而应该对余下的产品进行检验.【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p)=,∴=,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f(p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.【点评】本题考查概率的求法及应用,考查离散型随机变量的数学期望的求法,考查是否该对这箱余下的所有产品作检验的判断与求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.21.【分析】(I)根据对数函数的定义求得函数的定义域,再根据f(x)的解析式求出f(x)的导函数,然后分别令导函数大于0和小于0得到关于x的不等式,求出不等式的解集即可得到相应的x的范围即分别为函数的递增和递减区间;(II)假设函数f(x)的图象上存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”,根据斜率公式求出直线AB的斜率,利用导数的几何意义求出直线AB的斜率,它们相等,再通过构造函数,利用导数研究函数的单调性和最值即可证明结论.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),由已知得,f′(x)=,(1)当a>0时,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以函数f(x)在(1,+∞)上单调递增;(2)当a<0时,①当﹣<1时,即a<﹣1时,令f′(x)>0,解得:﹣<x<1;∴函数f(x)在(﹣,1)上单调递增;②当﹣=1时,即a=﹣1时,显然,函数f(x)在(0,+∞)上单调递减,无增区间;③当﹣>1时,即﹣1<a<0时,令f′(x)>0,解得1<x<﹣∴函数f(x)在(1,﹣)上单调递增;综上所述,(1)当a>0时,函数f(x)在(1,+∞)上单调递增;(2)当a<﹣1时,函数f(x)在(﹣,1)上单调递增;(3)当a=﹣1时,函数f(x)无单调递增区间;(4)当﹣1<a<0时,函数f(x)在(1,﹣)上单调递增;(Ⅱ)假设函数f(x)存在“中值相依切线”.设A(x1,y1),B(x2,y2)是曲线y=f(x)上的不同两点,且0<x1<x2,则y1=﹣x1﹣lnx1,y2=﹣x2﹣lnx2.k AB==x2+x1﹣1﹣,曲线在点M(x0,y0)处的切线斜率:k=f′(x0)=f′()=x1+x2﹣1﹣,x2+x1﹣1﹣=x1+x2﹣1﹣,∴=,即ln﹣=0,令t=>1设h(t)=lnt﹣,则h′(t)=>0,∴h(t)在(0,+∞)递增,∴h(t)>h(1)=0,故h(t)=0在(0,+∞)无解,假设不成立,综上所述,假设不成立,所以,函数f(x)不存在“中值相依切线”.【点评】此题考查学生会利用导函数的正负求出函数的单调区间,灵活运用中点坐标公式化简求值,掌握反证法进行命题证明的方法,是一道综合题,属难题.选考题:共10分.请考生在22,23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.【分析】(I)直线l的参数方程消去数t,能求出直线l的一般方程,由ρcosθ=x,ρsinθ=y,ρ2=x2+y2,能求出曲线C的直角坐标方程,由圆心(2,3)到直线l的距离d=r,得到直线l和曲线C相切.(II)曲线D为x2+y2=1.曲线D经过伸缩变换,得到曲线E的方程为,从而点M的参数方程为(θ为参数),由此能求出的取值范围.【解答】解:(I)∵直线l的参数方程为(t为参数).∴消去数t,得直线l的一般方程为,∵曲线C的极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,∴由ρcosθ=x,ρsinθ=y,ρ2=x2+y2,得曲线C的直角坐标方程为(x﹣2)2+(y﹣3)2=1.∵圆心(2,3)到直线l的距离d==r,∴直线l和曲线C相切.(II)曲线D为x2+y2=1.曲线D经过伸缩变换,得到曲线E的方程为,则点M的参数方程为(θ为参数),∴,∴的取值范围为[﹣2,2].【点评】本题考查直线的一般方程和曲线的直角坐标方程的求法,考查直线与圆的位置关系的判断,考查代数式的取值范围的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.[选修4-5:不等式选讲]23.【分析】(Ⅰ)当a=1时,根据绝对值不等式的解法即可解不等式f(x)≥5;(Ⅱ)求出f(x)+|x﹣2|的最小值,根据不等式的关系转化为(f(x)+|x﹣2|)min<3即可求a的取值范围.【解答】解:(Ⅰ)当a=1时,f(x)=|x﹣2|+|2x+1|,.由f(x)≥5得x﹣2|+|2x+1|≥5.当x≥2时,不等式等价于x﹣2+2x+1≥5,解得x≥2,所以x≥2;…(1分)当﹣<x<2时,不等式等价于2﹣x+2x+1≥5,即x≥2,所以此时不等式无解;…(2分)当x≤﹣时,不等式等价于2﹣x﹣2x﹣1≥5,解得x≤﹣,所以x≤﹣.…(3分)所以原不等式的解集为(﹣∞,﹣]∪[2,+∞).…(5分)(Ⅱ)f(x)+|x﹣2|=2|x﹣2|+|2x+a|=|2x﹣4|+|2x+a|≥|2x+a﹣(2x﹣4)|=|a+4|…(7分)因为原命题等价于(f(x)+|x﹣2|)min<3,…(9分)所以|a+4|<3,所以﹣7<a<﹣1为所求实数a的取值范围.…(10分)【点评】本题主要考查不等式的求解,根据绝对值不等式的解法,利用分类讨论的数学思想进行讨论是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省运城市康杰中学2018届高考数学模拟试题(三)理
【满分150分,考试时间为120分钟】
一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B铅笔涂黑答题纸上对应题目的答案标号)
1.设复数满足,则=
A. B. 2 C. D. 5
2. 已知集合则等于
A. [-1,6]
B. (1,6]
C. [-1,+)
D. [2, 3]
3. 下列说法正确的是
A. 命题“若,则”的否命题是“若,则”.
B. “”是“函数在定义域上单调递增”的充分不必要条件.
C. .
D. 若命题,则.
4. 在等差数列中,已知是函数的两个零点,则的前10项和等于
A. -18
B. 9
C. 18
D. 20
5. 已知函数是定义在R上的奇函数,且函数在上单调递增,则实数的值为
A. -1
B. -2
C. 1
D. 2
6. 已知,若
=,那么自然数
A. 3
B. 4
C. 5
D. 6
7. 如图,网格纸上小正方形的边长1,粗实线和虚线画出的是某几何体的三视图,该几何体的各个面中有若干个是梯形,则这些梯形的面积之和为
A. 28
B. 30
C. 32
D. 36
8. 如图所示是某同学为求2,4,6,…,2016,2018的平均数而设计的程序框
图,则在该程序框图中的空白判断框和处理框中应填入的内容依次是
A. B.
C. D.
9. 已知F是双曲线的右焦点,P是轴正半轴上一点,以OP为直径的圆在第一象限与双曲线的渐近线交于点M(O为坐标原点),若点P,M,F三点共线,且
的面积是的面积的3倍,则双曲线C的离心率为
A. B. C. D. 2
10.将函数的图像先向右平移个单位,再将所得的图像上每个点的横坐标变为原来的倍,得到的图像,则的可能取值为
A. B.
C. D.
11.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为),其中:三棱锥的底面是正三角形(边长为),四棱锥的底面是有一个角为的菱形(边长为),圆锥的体积为,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是
A.,,
B.,,
C.,,。