高考数学复习小题提速练6“12选择+4填空”80分练理

合集下载

高考数学二轮复习小题提速练1“12选择+4填空”80分练文

高考数学二轮复习小题提速练1“12选择+4填空”80分练文

小题提速练(一) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( )A .3,-2B .3,2C .3,-3D .-1,4[答案] A2.设集合A ={y |y =2x,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( )A .(-1,1)B .(0,1)C .(-1,+∞)D .(0,+∞)[答案] C3.在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为( )【导学号:04024172】A.π6B.π4C.π3D.56π [答案] A4.设函数f (x )=ln(1+|x |)-11+x2,则使得f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,1 B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ [答案] A5.点O 为坐标原点,点F 为抛物线C :y 2=42x 的焦点,点P 为C 上一点.若|PF |=42,则△POF 的面积为( ) A .2 B .2 2 C .2 3 D .4[答案] C6.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 200等于( ) A .100 B .101 C .200 D .201[答案] A7.某空间几何体的三视图如图1所示,则该几何体的表面积为( )图1A .12+4 2B .18+8 2C .28D .20+8 2[答案] D8.将函数f (x )=cos(π+x )(cos x -2sin x )+sin 2x 的图象向左平移π8个单位长度后得到函数g (x )的图象,则g (x )具有性质( )【导学号:04024173】A .最大值为2,图象关于直线x =π2对称B .周期为π,图象关于⎝⎛⎭⎪⎫π4,0对称C .在⎝ ⎛⎭⎪⎫-π2,0上单调递增,为偶函数D .在⎝⎛⎭⎪⎫0,π4上单调递增,为奇函数[答案] D9.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图2所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )图2A .9B .18C .20D .35[答案] B10.(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130[答案] C11.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2[答案] D12.函数f (x )=x cos x 2在区间[0,4]上的零点个数为( )【导学号:04024174】A .4B .5C .6D .7[答案] C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若圆x 2+y 2=r 2(r >0)上有且只有两个点到直线x -y -2=0的距离为1,则实数r 的取值范围是________.[解析] 注意到与直线x -y -2=0平行且距离为1的直线方程分别是x -y -2+2=0和x -y -2-2=0,要使圆上有且只有两个点到直线x -y -2=0的距离为1,需满足在两条直线x -y -2+2=0和x -y -2-2=0中,一条与该圆相交且另一条与该圆相离,所以|2-2|2<r <|-2-2|2,即2-1<r <2+1.[答案] (2-1,2+1)14.如图3,在矩形ABCD 中,AB =1,BC =a (a >0),PA ⊥平面AC ,BC 边上存在点Q ,使得PQ ⊥QD ,则实数a 的取值范围是________.【导学号:04024175】图3[解析] 如图,连接AQ .∵PA ⊥平面AC ,∴PA ⊥QD ,又PQ ⊥QD ,PQ ∩PA =P ,∴QD ⊥平面PQA ,于是QD ⊥AQ ,∴在线段BC 上存在一点Q ,使得QD ⊥AQ ,等价于以AD 为直径的圆与线段BC 有交点,∴a2≥1,a ≥2.[答案] [2,+∞)15.已知函数f (x )=x 2+mx +ln x 是单调递增函数,则m 的取值范围是________.[解析] 依题意知,x >0,f ′(x )=2x 2+mx +1x,令g (x )=2x 2+mx +1,x ∈(0,+∞). 当-m4≤0时,g (0)=1>0恒成立,∴m ≥0时,g (x )>0恒成立, 当-m4>0时,则Δ=m 2-8≤0,∴-22≤m <0,综上,m 的取值范围是m ≥-2 2. [答案] -22,+∞)16.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.[解析] 设生产产品A x 件,产品B y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元). [答案] 216 000。

高考理科数学二轮复习练习:小题提速练6“12选择+4填空”80分练

高考理科数学二轮复习练习:小题提速练6“12选择+4填空”80分练

一、选择题(本大题共小题加速练 (六 ) “12选择+ 4 填空 ”80分练(时间: 45 分钟分值: 80 分)12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.若 (1+ i)+ (2- 3i)= a + bi(a , b ∈ R , i是虚数单位),则a ,b 的值分别等于( )A .3,- 2C . 3,- 3B . 3,2D .- 1,4A [∵ (1+ i)+ (2- 3i) =a + bi ,∴ a = 3, b =- 2,应选 A.]2.设会合 A = { y|y = 2 x , x ∈ R } , B = { x|x 2- 1< 0} ,则 A ∪ B 等于 ()A . (- 1,1)B . (0,1)C . (- 1,+ ∞)D . (0,+ ∞)C[∵ A = { y|y = 2x , x ∈ R } = (0 ,+ ∞),B = { x|x 2- 1< 0} = { x|- 1< x <1} ,∴A ∪ B = (- 1,+ ∞),应选 C.]3.(2017 广·东惠州二模 ) 以下函数中,与函数 y =- 3|x|的奇偶性同样,且在 (- ∞,0)上单一性也相同的是 ( )A . y = 1- x 2B . y = log 2|x|C . y =- 1D . y = x 3- 1xA [函数 y =- 3|x|为偶函数,在 (- ∞, 0)上为增函数.选项B 中的函数是偶函数,但其单一性不切合; 选项 C 中的函数为奇函数, 不切合要求; 选项 D 中的函数为非奇非偶函数,不符合要求.只有选项A 切合要求.应选 A.]4.在 △ABC 中, a = 5, 5cos(B + C) +3= 0,则角 B 的大小为 ()4, b = 2【导学号: 07804217】π πA. 6B . 4π 5 C.3D . 6π5A [由 5cos(B +C)+ 3= 0 得 cos A =3,则 A ∈ 0, π, sin A = 4, 4= 2 ,5 2 5 4 sin B5 1sin B =2.又 a > b ,B 必为锐角,π因此 B =.]65.已知 m ,n 是两条不一样的直线, α, β是两个不一样的平面,以下命题中真命题的个数是 ()①若 m ⊥ α,m ⊥β,则 α∥ β; ②若 m ∥ n , m ⊥ α,则 n ⊥α; ③若 m ∥ α,α∩β= n ,则 m ∥ n ; ④若 m ⊥ α,m? β,则 α⊥ β.A . 1B . 2C . 3D . 4C [对于①,因为垂直于同一条直线的两个平面相互平行,故①为真命题;对于②,两条平行线中的一条直线垂直于一个平面,则另一条也垂直于这个平面,故②为真命题;对于③,直线 m 与直线 n 可能异面,也可能平行,故③为假命题;对于④,由面面垂直的判断定理可知④为真命题.应选C.]6.某四周体的三视图如图15 所示,此中正视图、俯视图都是腰长为2 的等腰直角三角形,侧视图是边长为 2 的正方形,则此四周体的四个面中的最大面的面积为 ( )图 15 A . 2 2 B . 4 C . 2 3D .2 6C [将几何体放在正方体中考虑, 可知该几何体为三棱锥 S-ABD ,它的四个面中面 SBD 的面积最大,三角形 SBD 是边长为 2 2的等边三角形,因此此四周体的四个面中的最大面的面积为3 ×8= 2 3.]4π7.函数 f(x)= Asin(ωx+ φ)(A > 0,ω> 0)的最小正周期为 π,其图象对于直线 x = 3对称,则 |φ|的最小值为()π πA. 12B . 65π5π C. 6D . 12π B [由题意,得 ω= 2,因此 f(x)= Asin(2x + φ).因为函数f(x)的图象对于直线对称,所x =3π π ππ以 2× + φ=k π+(k ∈ Z ),即 φ= k π- (k ∈ Z ),当 k = 0 时, |φ|获得最小值,应选 B.]3 2 66x2y2→8.已知A,B 是双曲线C:a2-b2= 1(a> 0,b>0) 的两个焦点,若在双曲线上存在点P 知足2|PA →→)+ PB|≤|AB|,则双曲线 C 的离心率 e 的取值范围是 (A . 1< e≤2B. e≥2C. 1< e≤ 2D. e≥ 2B[设点 P 是双曲线左支上的点,并设双曲线左极点为→E,则 2|PA→→→→1+PB| ≤|AB,可化为 4|PO| ≤2c(2c 为双曲线的焦距 ), |PO| ≤c,易证2→1|PO| ≥a,于是 a≤ c,因此 e≥ 2故.选 B.]29.若曲线 y= f(x)= ln x+ax2(a 为常数 )不存在斜率为负数的切线,则实数 a 的取值范围是 ()A.-1,+∞B.-1,+∞22 C. (0,+∞)D. [0,+∞)D[f ′(x)=1+ 2ax=2ax2+1(x> 0),依据题意有f′(x)≥ 0(x> 0)恒成立,因此2ax2+ 1≥0(x>0) x x恒成立,即2a≥-12 (x> 0)恒成立,因此a≥0,故实数 a 的取值范围为 [0,+∞).应选 D.]x10.从 1,2,3,4,5 中挑出三个不一样数字构成一个五位数,则此中有两个数字各用两次(比如, 12332)的概率为 ()【导学号: 07804218】23A. 5B.545C.7D.7B [从 1,2,3,4,5 中挑出三个不一样数字构成一个五位数,共有 C53 (C31C53A 22+ C31C51C42C22)= 1 500(种 )不一样选法,此中有两个数字各用两次的选法有31122900 C5C3C5C4 C2= 900(种 ),因此所求概率 P= 1 500=3 .] 511.如图 16 所示, ABCD - A1B1C1D 1是棱长为1 的正方体, S-ABCD 是高为 1 的正四棱锥,若点 S,A1,B1, C1,D 1在同一个球面上,则该球的表面积为()图 16925A. 16πB.16π4981C.16πD.16πD[连结 AC, BD 交于点 G,连结 A1C1, B1D1交于点 G1,易知 S, G,G1在同向来线上,连结SG1.设 O 为球心, OG 1= x,连结 OB1,则 OB1=SO=2- x,由正方体的性质知B1 G1=2,22则在 Rt△ OB1G1中, OB12= G1B12+ OG 12,即 (2-x)2= x2+ 2 ,2解得 x=7 8,因此球的半径 R=OB 1=9,因此球的表面积 S= 4πR2=81π .] 816x22312.已知椭圆+ y = 1,设直线 l 与椭圆 C 交于 A,B 两点,坐标原点 O 到直线 l 的距离为,C:32则△AOB 面积的最大值为 ()33A. 4B.2C. 3D.2 3B[设 A(x1, y1), B(x2, y2).(1)当 AB⊥ x 轴时, |AB|= 3.(2)当 AB 与 x 轴不垂直时,设直线AB 的方程为 y= kx+ m.由已知得|m|2=32321+ k2,则 m =(k + 1).4把 y= kx+ m 代入椭圆方程,整理得(3k2+ 1)x2+ 6kmx+ 3m2- 3= 0,- 6km m2-.因此 x1+ x2=2, x1x2=2+13k+13k所以 |AB|2= (1+ k2)(x2-x1)2= (1+ k2 ) ·36k2m22-m2-=2+2k3k + 12 +222+2 +12k 2k k+ 1- mk k = 3+k 2+2=k 2+ 29k 4+ 6k 2+ 1.当 k ≠0时, |AB|2= 3+12≤3+ 12= 4,212×3+ 69k + 2+ 6k当且仅当 9k 2= k 12,即 k = ±33时等号成立.综上所述 |AB|max = 2,因此当 |AB|最大时,13= 3△AOB 面积取最大值 S = 2×|AB|max ×22 .]二、填空题 (本大题共 4 小题,每题5 分,共 20 分.把答案填在题中横线上 )13.某校 1 000 名高三学生参加了一次数学考试, 此次考试考生的分数听从正态散布2N(90,σ).若分数在 (70,110] 内的概率为 0.7,预计此次考试分数不超出 70 的人数为 ________.[分析 ] 记考试成绩为 ξ,则考试成绩的正态曲线对于直线ξ= 90 对称.因为 P(70< ξ≤ 110)=0.7,因此 P( ξ≤70)= P(ξ> 110)= 1×(1- 0.7)= 0.15,因此此次考试分数不超出70 的人数为21 000 ×0.15=150.[答案 ]15014.在矩形 ABCD 中,AB =1,AD =→ 3 →→→3,P 为矩形内一点, 且 |AP|= ,若 AP = λAB + μAD (λ,μ∈ R ),2则 λ+ 3μ的最大值为 ________.[分析 ] 以 A 为原点, AB 所在直线为 x 轴, AD 所在直线为 y 轴成立如下图的平面直角坐标系,则A(0,0) ,B(1,0), C(1, 3),D (0, 3).→ →→ 设 P(x , y),则 AP = (x , y), AB = (1,0), AD = (0, 3).→ → →由AP = λAB +μAD (λ, μ∈ R ),0≤x ≤1,x = λ,3,得又因为0≤y ≤2y = 3μ.x 2+ y 2=3,4因此 λ+ 3μ= x +y ≤22=66.x +y 2 当且仅当 x = y =4 时获得最大值[答案 ]62y≥x,15.已知 x, y 知足 x+ y≤2,若 z=2x+ y 的最大值是最小值的 3 倍,则 a 的值是 ________.x≥a,y≥x,[分析 ]画出 x+ y≤2,表示的可行域如下图:x≥ay= x,由得 A(1,1) ,x+ y= 2由x= a,得 B(a,a).y= x当直线 z= 2x+ y 过点 A(1,1)时,目标函数z= 2x+ y 获得最大值,最大值为3;当直线 z= 2x+ y 过点 B(a, a)时,目标函数z= 2x+y 获得最小值,最小值为3a.因为 3= 3×3a,因此 a=1. 31[答案]3316.已知△ ABC 中,角 A,2B,C 成等差数列,且△ ABC的面积为1+2,则 AC 边长的最小值是 ________.【导学号: 07804219】[分析 ]设内角A,B,C所对的边分别为a, b,c.3∵A,2B, C 成等差数列,∴A+ C= 3B.又∵ A+ B+ C=π,π∴B=.4由 S△ABC=12acsin B= 1+2,高考理科数学二轮复习练习:小题加速练6“12选择+4填空”80分练得 ac= 2×(2+ 2).∵b2=a2+ c2-2accos B=a2+ c2- 2ac≥(2- 2)ac= 4,当且仅当 a= c 时,等号成立,∴ b≥2,∴b 的最小值为 2.[答案] 2。

2020年高考数学(理)二轮复习练习:小题提速练8 “12选择+4填空”80分练 Word版含答案

2020年高考数学(理)二轮复习练习:小题提速练8 “12选择+4填空”80分练 Word版含答案

小题提速练(八) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数3i1-i对应的点在( )【导学号:07804222】A .第一象限B .第二象限C .第三象限D .第四象限B [3i1-i=+-+=-3+3i 2,故其对应的点在第二象限,选B.]2.已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.]3.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.27%,P (μ-2σ<ξ<μ+2σ)=95.45%,P (μ-3σ<ξ<μ+3σ)=99.73%)A .17B .23C .34D .46B [P (ξ>320)=12×[1-P (280<ξ<320)]=12×(1-95.45%)≈0.023, 0.023×1 000=23,∴用电量在320度以上的户数约为23.故选B.]4.将函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象向左平移π3个单位长度,所得图象对应的函数解析式为( ) A .y =sin ⎝⎛⎭⎪⎫2x +5π6 B .y =-cos 2xC .y =cos 2xD .y =sin ⎝⎛⎭⎪⎫2x -π6 A [依题意得,y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+π6=sin ⎝ ⎛⎭⎪⎫2x +2π3+π6=sin ⎝ ⎛⎭⎪⎫2x +5π6.故选A.]5.已知向量a =(1,cos α),b =(sin α,1),且0<α<π,若a ⊥b ,则α=( )A.2π3 B .3π4C.π4D .π6B [∵a ⊥b ,∴a ·b =0, ∴sin α+cos α=0,∴tan α=-1.又α∈(0,π), ∴α=3π4.故选B.]6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 3 B . 2 C .2D .3A [设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e =3,选A.]7.已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .19D .20D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0.又由(2x -1)10的展开式的通项可得a 1=-20, 所以a 2+a 3+…+a 9+a 10=20.]8.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1B [S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.] 9.某几何体的三视图如图20所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )图20A .48B .54C .64D .60D [根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.]10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0x -2y -2≤02x -y +2≥0,若2x +y +k ≥0恒成立,则直线2x +y +k =0被圆(x -1)2+(y -2)2=25截得的弦长的最大值为( )【导学号:07804223】A .10B .2 5C .4 5D .3 5B [作出约束条件表示的平面区域,如图中阴影部分所示,不等式2x +y +k ≥0恒成立等价于k ≥(-2x -y )max ,设z =-2x -y ,则由图可知,当直线y =-2x -z 经过点A (-2,-2)时,z 取得最大值,即z max =-2×(-2)-(-2)=6,所以k ≥6.因为圆心(1,2)到直线2x +y +k =0的距离d =|2+2+k |22+12=|4+k |5,记题中圆的半径为r ,则r =5,所以直线被圆截得的弦长L =2r 2-d 2=2-k +2+1255,所以当k =6时,L 取得最大值,最大值为25,故选B.]11.已知过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A ,B 两点,且AF →=3FB →,抛物线的准线l 与x 轴交于点C ,AA 1⊥l 于点A 1,若四边形AA 1CF 的面积为123,则准线l 的方程为( ) A .x =- 2 B .x =-2 2 C .x =-2D .x =-1A [由题意,知F ⎝ ⎛⎭⎪⎫p 2,0,准线l 的方程为x =-p 2.设A (x 1,y 1),B (x 2,y 2),则AF →=⎝ ⎛⎭⎪⎫p 2-x 1,-y 1,FB →=⎝⎛⎭⎪⎫x 2-p 2,y 2.由AF →=3FB →,得p 2-x 1=3⎝ ⎛⎭⎪⎫x 2-p 2,即x 2=13(2p -x 1) ①.由题意知直线AB 的斜率存在,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程,消去y ,得k 2x 2-(k 2p +2p )x+k 2p 24=0,所以x 1x 2=p 24 ②.联立①②,得x 1=32p 或x 1=p2(舍去),所以|y 1|=3p .因为S 四边形AA 1CF =|y 1|⎝ ⎛⎭⎪⎫x 1+p2+p 2=123,将x 1,|y 1|的值代入,解得p =22,所以准线l 的方程为x =-2,故选A.] 12.已知函数f (x )=ax +eln x 与g (x )=x 2x -eln x的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .a <-e B .a >1C .a >eD .a <-3或a >1B [由ax +eln x =x 2x -eln x (x >0),得a +eln x x =11-eln x x.令h (x )=eln xx,且t =h (x ),则a +t =11-t,即t 2+(a -1)t -a +1=0 (*).由h ′(x )=-ln xx 2=0,得x =e ,函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,且x →+∞时,h (x )→0,h (x )的大致图象如图所示.由题意知方程(*)有一根t 1必在(0,1)内,另一根t 2=1或t 2=0或t 2∈(-∞,0).当t 2=1时,方程(*)无意义,当t 2=0时,a =1,t 1=0不满足题意,所以t 2∈(-∞,0),令m (t )=t 2+(a -1)t -a +1,由二次函数的图象,有⎩⎪⎨⎪⎧m =02+a --a +1<0m=12+a --a +1>0,解得a >1,故选B.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.运行如图21所示的程序,若结束时输出的结果不小于3,则t 的取值范围为________.图21[解析] 依次运行程序框图中的语句可得n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a =3.此时结束循环,输出的a x =38t ,由38t≥3,得8t ≥1,t ≥18.[答案] ⎣⎢⎡⎭⎪⎫18,+∞ 14.从一架钢琴挑出的10个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).[解析] 依题意共有8类不同的和声,当有k (k =3,4,5,6,7,8,9,10)个键同时按下时,有C k 10种不同的和声,则和声总数为C 310+C 410+C 510+…+C 1010=210-C 010-C 110-C 210=1 024-1-10-45=968. [答案] 96815.已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)·OA →(λ∈R )(O 是坐标原点),且OA →·OP→=72,则线段OP 在x 轴上的投影长度的最大值为________.[解析] 因为AP →=(λ-1)OA →,所以OP →=λOA →,即O ,A ,P 三点共线,因为OA →·OP →=72,所以OA →·OP →=λ|OA →|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP →||cos θ|=|λ||x |=72|x ||OA →|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15,当且仅当|x |=154时取等号.故线段OP 在x 轴上的投影长度的最大值为15.[答案] 1516.已知三棱锥D ­ABC 的体积为2,△ABC 是等腰直角三角形,其斜边AC =2,且三棱锥D ­ABC 的外接球的球心O 恰好是AD 的中点,则球O 的体积为________.【导学号:07804224】[解析] 设球O 的半径为R ,球心O 到平面ABC 的距离为d ,则由O 是AD 的中点得,点D 到平面ABC 的距离等于2d ,所以V D ­ABC =2V O ­ABC =23×12×2×2×d =2,解得d =3,记AC 的中点为O ′,则OO ′⊥平面ABC .在Rt△OO ′A 中,OA 2=OO ′2+O ′A 2,即R 2=d 2+12=10,所以球O 的体积V =43πR 3=43π×1010=40103π.[答案] 40103π。

2018版高考数学二轮复习 小题提速练812选择+4填空80分练 理

2018版高考数学二轮复习 小题提速练812选择+4填空80分练 理

小题提速练(八) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数3i1-i对应的点在( )【导学号:07804222】A .第一象限B .第二象限C .第三象限D .第四象限B [3i1-i=+-+=-3+3i 2,故其对应的点在第二象限,选B.]2.已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.]3.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( ) (参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.27%,P (μ-2σ<ξ<μ+2σ)=95.45%,P (μ-3σ<ξ<μ+3σ)=99.73%) A .17 B .23 C .34D .46B [P (ξ>320)=12×[1-P (280<ξ<320)]=12×(1-95.45%)≈0.023, 0.023×1 000=23,∴用电量在320度以上的户数约为23.故选B.]4.将函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象向左平移π3个单位长度,所得图象对应的函数解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫2x +5π6B .y =-cos 2xC .y =cos 2xD .y =sin ⎝⎛⎭⎪⎫2x -π6A [依题意得,y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+π6=sin ⎝ ⎛⎭⎪⎫2x +2π3+π6=sin ⎝ ⎛⎭⎪⎫2x +5π6.故选A.]5.已知向量a =(1,cos α),b =(sin α,1),且0<α<π,若a ⊥b ,则α=( )A.2π3 B .3π4C.π4D .π6B [∵a ⊥b ,∴a ·b =0, ∴sin α+cos α=0,∴tan α=-1.又α∈(0,π), ∴α=3π4.故选B.]6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A. 3 B . 2 C .2D .3A [设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e =3,选A.]7.已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .19D .20D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0.又由(2x -1)10的展开式的通项可得a 1=-20, 所以a 2+a 3+…+a 9+a 10=20.]8.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1B [S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.] 9.某几何体的三视图如图20所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )图20A .48B .54C .64D .60D [根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.]10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0x -2y -2≤02x -y +2≥0,若2x +y +k ≥0恒成立,则直线2x +y +k =0被圆(x -1)2+(y -2)2=25截得的弦长的最大值为( )【导学号:07804223】A .10B .2 5C .4 5D .3 5B [作出约束条件表示的平面区域,如图中阴影部分所示,不等式2x +y +k ≥0恒成立等价于k ≥(-2x -y )max ,设z =-2x -y ,则由图可知,当直线y =-2x -z 经过点A (-2,-2)时,z 取得最大值,即z max =-2×(-2)-(-2)=6,所以k ≥6.因为圆心(1,2)到直线2x +y +k =0的距离d =|2+2+k |22+12=|4+k |5,记题中圆的半径为r ,则r =5,所以直线被圆截得的弦长L =2r 2-d 2=2-k +2+1255,所以当k =6时,L 取得最大值,最大值为25,故选B.]11.已知过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A ,B 两点,且AF →=3FB →,抛物线的准线l 与x 轴交于点C ,AA 1⊥l 于点A 1,若四边形AA 1CF 的面积为123,则准线l 的方程为( )A .x =- 2B .x =-2 2C .x =-2D .x =-1A [由题意,知F ⎝ ⎛⎭⎪⎫p 2,0,准线l 的方程为x =-p 2.设A (x 1,y 1),B (x 2,y 2),则AF →=⎝ ⎛⎭⎪⎫p 2-x 1,-y 1,FB →=⎝ ⎛⎭⎪⎫x 2-p 2,y 2.由AF →=3FB →,得p 2-x 1=3⎝⎛⎭⎪⎫x 2-p 2,即x 2=13(2p -x 1) ①.由题意知直线AB 的斜率存在,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程,消去y ,得k 2x 2-(k 2p +2p )x +k 2p 24=0,所以x 1x 2=p 24 ②.联立①②,得x 1=32p 或x 1=p2(舍去),所以|y 1|=3p .因为S 四边形AA 1CF =|y 1|⎝⎛⎭⎪⎫x 1+p2+p 2=123,将x 1,|y 1|的值代入,解得p =22,所以准线l 的方程为x =-2,故选A.] 12.已知函数f (x )=ax +eln x 与g (x )=x 2x -eln x的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .a <-e B .a >1C .a >eD .a <-3或a >1B [由ax +eln x =x 2x -eln x (x >0),得a +eln x x =11-eln x x.令h (x )=eln xx,且t=h (x ),则a +t =11-t,即t 2+(a -1)t -a +1=0 (*).由h ′(x )=-ln xx 2=0,得x =e ,函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,且x →+∞时,h (x )→0,h (x )的大致图象如图所示.由题意知方程(*)有一根t 1必在(0,1)内,另一根t 2=1或t 2=0或t 2∈(-∞,0).当t 2=1时,方程(*)无意义,当t 2=0时,a =1,t 1=0不满足题意,所以t 2∈(-∞,0),令m (t )=t 2+(a -1)t -a +1,由二次函数的图象,有⎩⎪⎨⎪⎧m =02+a --a +1<0m=12+a --a +1>0,解得a >1,故选B.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.运行如图21所示的程序,若结束时输出的结果不小于3,则t 的取值范围为________.图21[解析] 依次运行程序框图中的语句可得n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a =3.此时结束循环,输出的a x=38t, 由38t≥3,得8t ≥1,t ≥18.[答案] ⎣⎢⎡⎭⎪⎫18,+∞ 14.从一架钢琴挑出的10个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).[解析] 依题意共有8类不同的和声,当有k (k =3,4,5,6,7,8,9,10)个键同时按下时,有C k10种不同的和声,则和声总数为C 310+C 410+C 510+…+C 1010=210-C 010-C 110-C 210=1 024-1-10-45=968. [答案] 96815.已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)·OA →(λ∈R )(O 是坐标原点),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________.[解析] 因为AP →=(λ-1)OA →,所以OP →=λOA →,即O ,A ,P 三点共线,因为OA →·OP →=72,所以OA →·OP →=λ|OA →|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP →||cos θ|=|λ||x |=72|x ||OA →|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15,当且仅当|x |=154时取等号.故线段OP 在x 轴上的投影长度的最大值为15. [答案] 1516.已知三棱锥D ­ABC 的体积为2,△ABC 是等腰直角三角形,其斜边AC =2,且三棱锥D ­ABC的外接球的球心O 恰好是AD 的中点,则球O 的体积为________.【导学号:07804224】[解析] 设球O 的半径为R ,球心O 到平面ABC 的距离为d ,则由O 是AD 的中点得,点D 到平面ABC 的距离等于2d ,所以V D ­ABC =2V O ­ABC =23×12×2×2×d =2,解得d =3,记AC 的中点为O ′,则OO ′⊥平面ABC .在Rt△OO ′A 中,OA 2=OO ′2+O ′A 2,即R 2=d 2+12=10,所以球O 的体积V =43πR 3=43π×1010=40103π. [答案] 40103π。

高考数学二轮复习小题提速练4“12选择+4填空”80分练理

高考数学二轮复习小题提速练4“12选择+4填空”80分练理

小题提速练(四) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |3≤3x ≤27,x ∈N *},B ={x |log 2x >1},则A ∩B =( )A .{1,2,3}B .(2,3]C .{3}D .[2,3]C [∵3≤3x≤27,即31≤3x≤33,∴1≤x ≤3,又x ∈N *,∴A ={1,2,3},∵log 2x >1,即log 2x >log 22,∴x >2,∴B ={x |x >2},∴A ∩B ={3},选C.] 2.已知复数z =15i3+4i,则z 的虚部为( )【导学号:07804211】A .-95iB .95iC .-95D .95D [z =15i 3+4i =15i 3-4i 3+4i 3-4i =1525(4+3i)=125+95i ,故选D.]3.设D 是△ABC 所在平面内一点,AB →=2DC →,则( )A.BD →=AC →-32AB →B .BD →=32AC →-AB →C.BD →=12AC →-AB →D .BD →=AC →-12AB →A [BD →=BC →+CD →=BC →-DC →=AC →-AB →-12AB →=AC →-32AB →,选A.]4.(2017·湖南三模)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B .⎝ ⎛⎭⎪⎫712,1 C.⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎭⎪⎫12,1 C [根据题意,学生发球次数为1即一次发球成功的概率为p ,即P (X =1)=p ,发球次数为2即二次发球成功的概率P (X =2)=p (1-p ), 发球次数为3的概率P (X =3)=(1-p )2, 则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75, 解得,p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12,故选C.]5.已知点F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x 轴的直线与双曲线交于M ,N 两点,若MF 1→·NF 1→>0,则该双曲线的离心率e 的取值范围是( ) A .(2,2+1) B .(1,2+1) C .(1,3)D .(3,+∞)B [设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,得到y =±b 2a ,不妨设M ⎝ ⎛⎭⎪⎫c ,b 2a ,N ⎝ ⎛⎭⎪⎫c ,-b 2a ,则MF 1→·NF 1→=⎝⎛⎭⎪⎫-2c ,-b 2a ·⎝ ⎛⎭⎪⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+2,故选B.]6.函数y =f (x )=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图9所示,关于函数y =f (x )(x ∈R ),有下列命题:图9①y =f (x )的图象关于直线x =π6对称;②y =f (x )的图象可由y =2sin 2x 的图象向右平移π6个单位长度得到;③y =f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称; ④y =f (x )在⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增.其中正确命题的个数是( )A .1B .2C .3D .4C [依题意可得T =2×⎝⎛⎭⎪⎫11π12-5π12=π,故T =2πω=π,解得ω=2,所以f (x )=2sin(2x +φ),由f (x )=2sin(2x +φ)的图象经过点⎝⎛⎭⎪⎫5π12,2可得2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2,即sin ⎝ ⎛⎭⎪⎫56π+φ=1,又-π2<φ<π2,故φ=-π3,即f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3,因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=0,所以①不对;y =2sin 2x 的图象向右平移π6个单位长度得到y =2sin 2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫2x -π3的图象,②正确;因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=0,所以③正确;由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,取k =0,得-π12≤x ≤5π12,即y =f (x )在⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增,④正确,故选C.]7.某几何体的三视图如图10所示,则该几何体的体积为( )【导学号:07804212】图10A.17π6B .17π3C .5πD .13π6A [由三视图可知,该几何体是半个圆锥,一个圆柱,一个半球的组合体, 其体积为16π+2π+23π=176π.选A.]8.执行如图11所示的程序框图,输出的结果为( )图11A .-1B .1 C.12D .2C [n =12,i =1进入循环,n =1-2=-1,i =2;n =1-(-1)=2,i =3;n =1-12=12,i =4,…,所以n 对应的数字呈现周期性的特点,周期为3,因为2 017=3×672+1,所以当i =2 017时,n =12,故选C.]9.若x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0ax -y +3≥0y ≥0,且z =y -x 的最小值为-6,则a 的值为( )A .-1B .1C .-12D .12C [作出不等式组表示的可行域如图中阴影部分所示,当a >0时,易知z =y -x 无最小值,故a <0,目标函数所在直线过可行域内点A 时,z 有最小值,联立⎩⎪⎨⎪⎧y =0ax -y +3=0,解得A ⎝ ⎛⎭⎪⎫-3a ,0,z min =0+3a=-6,解得a =-12,故选C.]10.(数学文化题)今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,问:几何日相逢?( ) A .12日 B .16日 C .8日D .9日D [由题易知良马每日所行里数构成一等差数列,其通项公式为a n =103+13(n -1)=13n +90,驽马每日所行里数也构成一等差数列,其通项公式为b n =97-12(n -1)=-12n+1952,二马相逢时所走路程之和为2×1 125=2 250,所以na 1+a n2+n b 1+b n2=2 250,即n 103+13n +902+n ⎝⎛⎭⎪⎫97-12n +19522=2 250,化简得n 2+31n -360=0,解得n =9或n =-40(舍去),故选D.]11.设函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2与直线y =3的交点的横坐标构成以π为公差的等差数列,且x =π6是f (x )图象的一条对称轴,则下列区间中是函数f (x )的单调递减区间的是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B .⎣⎢⎡⎦⎥⎤-4π3,-5π6C.⎣⎢⎡⎦⎥⎤2π3,7π6D .⎣⎢⎡⎦⎥⎤-5π6,-π3D [由题意得A =3,T =π,∴ω=2.∴f (x )=3sin(2x +φ),又f ⎝ ⎛⎭⎪⎫π6=3或f ⎝ ⎛⎭⎪⎫π6=-3,∴2×π6+φ=k π+π2,k ∈Z ,φ=π6+k π,k ∈Z ,又|φ|<π2,∴φ=π6,∴f (x )=3sin ⎝⎛⎭⎪⎫2x +π6.令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,故当k =-1时,f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤-5π6,-π3,故选D.]12.已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )A.40π3 B .4030π27C.32030π27D .20πB [设△A 1B 1C 1的外心为O 1,△ABC 的外心为O 2,连接O 1O 2,O 2B ,OB ,如图所示.由题意可得外接球的球心O 为O 1O 2的中点.在△ABC 中,由余弦定理可得BC 2=AB 2+AC 2-2AB ×AC cos∠BAC =32+12-2×3×1×cos 60°=7, 所以BC =7.由正弦定理可得△ABC 外接圆的直径2r =2O 2B =BC sin 60°=273,所以r =73=213. 而球心O 到截面ABC 的距离d =OO 2=12AA 1=1,设直三棱柱ABC ­A 1B 1C 1的外接球半径为R ,由球的截面性质可得R 2=d 2+r 2=12+⎝⎛⎭⎪⎫2132=103,故R =303,所以该三棱柱的外接球的体积为V =4π3R 3=4030π27.故选B.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数f (x )=ln x ,g (x )=x 2+mx (m ∈R ),若函数f (x )的图象在点(1,f (1))处的切线与函数g (x )的图象相切,则m 的值为________.[解析] 易知f (1)=0,f ′(x )=1x,从而得到f ′(1)=1,函数f (x )的图象在点(1,f (1))处的切线方程为y =x -1.法一:(应用导数的几何意义求解)设直线y =x -1与g (x )=x 2+mx (m ∈R )的图象相切于点P (x 0,y 0),从而可得g ′(x 0)=1,g (x 0)=x 0-1.又g ′(x )=2x +m ,因此有⎩⎪⎨⎪⎧g ′x 0=2x 0+m =1x 20+mx 0=x 0-1,得x 2=1,解得⎩⎪⎨⎪⎧x 0=1m =-1或⎩⎪⎨⎪⎧x 0=-1m =3.法二:(应用直线与二次函数的相切求解)联立⎩⎪⎨⎪⎧y =x -1y =x 2+mx ,得x 2+(m -1)x +1=0,所以Δ=(m -1)2-4=0,解得m =-1或m =3. [答案] -1或314.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有________种.【导学号:07804213】[解析] 3所学校依次选医生、护士,不同的分配方法共有C 13C 26C 12C 24=540种. [答案] 54015.已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点.直线PQ 过原点O 且与直线MN 平行,直线PQ 与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.[解析] 法一:由题意知,直线MN 的斜率不为0,设直线MN :x =my -1,则直线PQ :x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4). ⎩⎪⎨⎪⎧x =my -1x 22+y 2=1⇒(m 2+2)y 2-2my -1=0⇒y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. ∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎪⎨⎪⎧x =my x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2.∴|PQ |=1+m 2|y 3-y 4|=22m 2+1m 2+2.故|PQ |2|MN |=2 2. 法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=2 2. [答案] 2 216.设函数f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x )=f (x +4),且当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫12x-1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值范围是________. [解析] 设x ∈[0,2],则-x ∈[-2,0],∴f (-x )=⎝ ⎛⎭⎪⎫12-x-1=2x-1,∵f (x )是定义在R 上的偶函数,∴f (x )=f (-x )=2x-1.∵对任意x ∈R ,都有f (x )=f (x +4), ∴当x ∈[2,4]时,(x -4)∈[-2,0],∴f (x )=f (x -4)=⎝ ⎛⎭⎪⎫12x -4-1; 当x ∈[4,6]时,(x -4)∈[0,2], ∴f (x )=f (x -4)=2x -4-1.∵在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根, ∴函数y =f (x )的图象与函数y =log a (x +2)的图象在区间(-2,6]内恰有3个不同的交点,作出两个函数的图象如图所示,易知⎩⎪⎨⎪⎧log a 6+2>3log a2+2<3,解得223<a <2,即34<a <2,因此所求a 的取值范围是(34,2).[答案] (34,2)。

版高考数学二轮复习小题提速练812选择+4填空80分练理

版高考数学二轮复习小题提速练812选择+4填空80分练理

小题提速练(八) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数3i1-i对应的点在( )【导学号:07804222】A .第一象限B .第二象限C .第三象限D .第四象限B [3i1-i=+-+=-3+3i 2,故其对应的点在第二象限,选B.]2.已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.]3.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( ) (参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.27%,P (μ-2σ<ξ<μ+2σ)=95.45%,P (μ-3σ<ξ<μ+3σ)=99.73%) A .17 B .23 C .34D .46B [P (ξ>320)=12×[1-P (280<ξ<320)]=12×(1-95.45%)≈0.023, 0.023×1 000=23,∴用电量在320度以上的户数约为23.故选B.]4.将函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象向左平移π3个单位长度,所得图象对应的函数解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫2x +5π6B .y =-cos 2xC .y =cos 2xD .y =sin ⎝⎛⎭⎪⎫2x -π6A [依题意得,y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+π6=sin ⎝ ⎛⎭⎪⎫2x +2π3+π6=sin ⎝ ⎛⎭⎪⎫2x +5π6.故选A.]5.已知向量a =(1,cos α),b =(sin α,1),且0<α<π,若a ⊥b ,则α=( )A.2π3 B .3π4C.π4D .π6B [∵a ⊥b ,∴a ·b =0, ∴sin α+cos α=0,∴tan α=-1.又α∈(0,π), ∴α=3π4.故选B.]6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A. 3 B . 2 C .2D .3A [设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e =3,选A.]7.已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .19D .20D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0.又由(2x -1)10的展开式的通项可得a 1=-20, 所以a 2+a 3+…+a 9+a 10=20.]8.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1B [S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.] 9.某几何体的三视图如图20所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )图20A .48B .54C .64D .60D [根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.]10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0x -2y -2≤02x -y +2≥0,若2x +y +k ≥0恒成立,则直线2x +y +k =0被圆(x -1)2+(y -2)2=25截得的弦长的最大值为( )【导学号:07804223】A .10B .2 5C .4 5D .3 5B [作出约束条件表示的平面区域,如图中阴影部分所示,不等式2x +y +k ≥0恒成立等价于k ≥(-2x -y )max ,设z =-2x -y ,则由图可知,当直线y =-2x -z 经过点A (-2,-2)时,z 取得最大值,即z max =-2×(-2)-(-2)=6,所以k ≥6.因为圆心(1,2)到直线2x +y +k =0的距离d =|2+2+k |22+12=|4+k |5,记题中圆的半径为r ,则r =5,所以直线被圆截得的弦长L =2r 2-d 2=2-k +2+1255,所以当k =6时,L 取得最大值,最大值为25,故选B.]11.已知过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A ,B 两点,且AF →=3FB →,抛物线的准线l 与x 轴交于点C ,AA 1⊥l 于点A 1,若四边形AA 1CF 的面积为123,则准线l 的方程为( )A .x =- 2B .x =-2 2C .x =-2D .x =-1A [由题意,知F ⎝ ⎛⎭⎪⎫p 2,0,准线l 的方程为x =-p 2.设A (x 1,y 1),B (x 2,y 2),则AF →=⎝ ⎛⎭⎪⎫p 2-x 1,-y 1,FB →=⎝ ⎛⎭⎪⎫x 2-p 2,y 2.由AF →=3FB →,得p 2-x 1=3⎝⎛⎭⎪⎫x 2-p 2,即x 2=13(2p -x 1) ①.由题意知直线AB 的斜率存在,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程,消去y ,得k 2x 2-(k 2p +2p )x +k 2p 24=0,所以x 1x 2=p 24 ②.联立①②,得x 1=32p 或x 1=p2(舍去),所以|y 1|=3p .因为S 四边形AA 1CF =|y 1|⎝⎛⎭⎪⎫x 1+p2+p 2=123,将x 1,|y 1|的值代入,解得p =22,所以准线l 的方程为x =-2,故选A.] 12.已知函数f (x )=ax +eln x 与g (x )=x 2x -eln x的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .a <-e B .a >1C .a >eD .a <-3或a >1B [由ax +eln x =x 2x -eln x (x >0),得a +eln x x =11-eln x x.令h (x )=eln xx,且t=h (x ),则a +t =11-t,即t 2+(a -1)t -a +1=0 (*).由h ′(x )=-ln xx 2=0,得x =e ,函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,且x →+∞时,h (x )→0,h (x )的大致图象如图所示.由题意知方程(*)有一根t 1必在(0,1)内,另一根t 2=1或t 2=0或t 2∈(-∞,0).当t 2=1时,方程(*)无意义,当t 2=0时,a =1,t 1=0不满足题意,所以t 2∈(-∞,0),令m (t )=t 2+(a -1)t -a +1,由二次函数的图象,有⎩⎪⎨⎪⎧m =02+a --a +1<0m=12+a --a +1>0,解得a >1,故选B.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.运行如图21所示的程序,若结束时输出的结果不小于3,则t 的取值范围为________.图21[解析] 依次运行程序框图中的语句可得n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a =3.此时结束循环,输出的a x=38t, 由38t≥3,得8t ≥1,t ≥18.[答案] ⎣⎢⎡⎭⎪⎫18,+∞ 14.从一架钢琴挑出的10个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).[解析] 依题意共有8类不同的和声,当有k (k =3,4,5,6,7,8,9,10)个键同时按下时,有C k10种不同的和声,则和声总数为C 310+C 410+C 510+…+C 1010=210-C 010-C 110-C 210=1 024-1-10-45=968. [答案] 96815.已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)·OA →(λ∈R )(O 是坐标原点),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________.[解析] 因为AP →=(λ-1)OA →,所以OP →=λOA →,即O ,A ,P 三点共线,因为OA →·OP →=72,所以OA →·OP →=λ|OA →|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP →||cos θ|=|λ||x |=72|x ||OA →|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15,当且仅当|x |=154时取等号.故线段OP 在x 轴上的投影长度的最大值为15. [答案] 1516.已知三棱锥D ­ABC 的体积为2,△ABC 是等腰直角三角形,其斜边AC =2,且三棱锥D ­ABC的外接球的球心O 恰好是AD 的中点,则球O 的体积为________.【导学号:07804224】[解析] 设球O 的半径为R ,球心O 到平面ABC 的距离为d ,则由O 是AD 的中点得,点D 到平面ABC 的距离等于2d ,所以V D ­ABC =2V O ­ABC =23×12×2×2×d =2,解得d =3,记AC 的中点为O ′,则OO ′⊥平面ABC .在Rt△OO ′A 中,OA 2=OO ′2+O ′A 2,即R 2=d 2+12=10,所以球O 的体积V =43πR 3=43π×1010=40103π. [答案]40103π。

高考数学二轮复习小题提速练2“12选择+4填空”80分练文(2021年整理)

高考数学二轮复习小题提速练2“12选择+4填空”80分练文(2021年整理)

小题提速练(二)“12选择+4填空"80分练(时间:45分钟分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x≥4},B={x|-1≤2x-1≤0},则(∁R A)∩B=() A.(4,+∞)B.错误!C.错误!D.(1,4]B[因为A={x|x≥4},所以∁R A={x|x<4},又B={x|-1≤2x-1≤0}=错误!,所以(∁R A)∩B=错误!,故选B。

]2.复数错误!对应的点在复平面的( )A.第一象限B.第二象限C.第三象限D.第四象限A[因为错误!=错误!=错误!=1+i,所以该复数对应的点为(1,1),故选A.]3.已知命题p:x+y≥2错误!,命题q:在△ABC中,若sin A>sin B,则A>B。

则下列命题为真命题的是()A.p B.﹁qC.p∨q D.p∧qC[当x,y中至少有一个负数时,x+y≥2错误!不成立,所以命题p是假命题;由正弦定理和三角形中的边角关系知,命题q是真命题.所以p∨q是真命题.]4.已知向量a=(2,-1),b=(-1,3),则下列向量与2a+b平行的是()A.(1,-2)B.(1,-3)C。

错误!D.(0,2)C[因为a=(2,-1),b=(-1,3),所以2a+b=(3,1),而1×2-3×错误!=0,故选C。

]5.若x,y∈R,且{x≥1,y≥x,x-2y+3≥0则z=错误!的最大值为( )【导学号:04024176】A.3 B.2C.1 D.错误!B[作出不等式组表示的平面区域,如图所示,错误!的几何意义是区域内(包括边界)的点P(x,y)与原点连线的斜率,由图可知,当P移动到点B(1,2)时,错误!取得最大值2.]6.已知函数f(x)=sin错误!,则下列结论中正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点错误!对称C.将函数f(x)的图象向右平移错误!个单位长度可以得到函数y=sin 2x的图象D.函数f(x)在区间错误!上单调递增C[由题知,函数f(x)的最小正周期为π,故A不正确;令x=错误!,求得f(x)=错误!,故函数f(x)的图象不关于点错误!对称,故排除B;将f(x)的图象向右平移错误!个单位长度,得到函数y=sin错误!=sin 2x的图象,故选C;当x∈错误!时,2x+错误!∈错误!,函数f(x)单调递减,故排除D.]7.执行图1中的程序框图(其中[x]表示不超过x的最大整数),则输出的S值为( )图1A.5 B.7C.9 D.12C[程序运行如下:(1)S=0+错误!=0,n=0<5;(2)S=0+错误!=1,n=1<5;(3)S=1+[错误!]=2,n=2<5;(4)S=2+[错误!]=3,n=3<5;(5)S=3+[错误!]=5,n=4<5;(6)S=5+[错误!]=7,n=5;(7)S=7+[错误!]=9,n=6>5,循环结束,故输出S=9。

高考数学二轮复习小题提速练2“12选择+4填空”80分练文

高考数学二轮复习小题提速练2“12选择+4填空”80分练文

小题提速练(二) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x ≥4},B ={x |-1≤2x -1≤0},则(∁R A )∩B =( )A .(4,+∞)B .⎣⎢⎡⎦⎥⎤0,12 C.⎝ ⎛⎭⎪⎫12,4 D .(1,4]B [因为A ={x |x ≥4},所以∁R A ={x |x <4},又B ={x |-1≤2x -1≤0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0≤x ≤12,所以(∁R A )∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0≤x ≤12,故选B.] 2.复数5+3i4-i对应的点在复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限 A [因为5+3i4-i=++-+=17+17i17=1+i ,所以该复数对应的点为(1,1),故选A.]3.已知命题p :x +y ≥2xy ,命题q :在△ABC 中,若sin A >sin B ,则A >B .则下列命题为真命题的是( ) A .pB .﹁qC .p ∨qD .p ∧qC [当x ,y 中至少有一个负数时,x +y ≥2xy 不成立,所以命题p 是假命题;由正弦定理和三角形中的边角关系知,命题q 是真命题.所以p ∨q 是真命题.] 4.已知向量a =(2,-1),b =(-1,3),则下列向量与2a +b 平行的是( ) A .(1,-2)B .(1,-3) C.⎝ ⎛⎭⎪⎫2,23 D .(0,2)C [因为a =(2,-1),b =(-1,3),所以2a +b =(3,1),而1×2-3×23=0,故选C.]5.若x ,y ∈R ,且⎩⎪⎨⎪⎧x ≥1,y ≥x ,x -2y +3≥0,则z =yx的最大值为( )【导学号:04024176】A .3B .2C .1D.12B [作出不等式组表示的平面区域,如图所示,y x的几何意义是区域内(包括边界)的点P (x ,y )与原点连线的斜率,由图可知,当P 移动到点B (1,2)时,y x取得最大值2.]6.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4,则下列结论中正确的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π4,0对称 C .将函数f (x )的图象向右平移π8个单位长度可以得到函数y =sin 2x 的图象D .函数f (x )在区间⎝⎛⎭⎪⎫π8,5π8上单调递增C [由题知,函数f (x )的最小正周期为π,故A 不正确;令x =π4,求得f (x )=22,故函数f (x )的图象不关于点⎝ ⎛⎭⎪⎫π4,0对称,故排除B ;将f (x )的图象向右平移π8个单位长度,得到函数y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8+π4=sin 2x 的图象,故选C ;当x ∈⎝ ⎛⎭⎪⎫π8,5π8时,2x +π4∈⎝ ⎛⎭⎪⎫π2,3π2,函数f (x )单调递减,故排除D.]7.执行图1中的程序框图(其中[x ]表示不超过x 的最大整数),则输出的S 值为( )图1A .5B .7C .9D .12C [程序运行如下:(1)S =0+[]0=0,n =0<5;(2)S =0+[]1=1,n =1<5;(3)S =1+[2]=2,n =2<5;(4)S =2+[3]=3,n =3<5;(5)S =3+[4]=5,n =4<5;(6)S =5+[5]=7,n =5;(7)S =7+[6]=9,n =6>5,循环结束,故输出S =9.]8.某几何体的三视图如图2所示,则该几何体的体积为( )【导学号:04024177】图2A.43B.52C.73D.53A [由三视图知,该几何体为一个由底面相同的三棱锥与三棱柱组成的组合体,其体积V =13×12×2×1×1+12×2×1×1=43.]9.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙丁戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A.54钱 B.43钱 C.32钱 D.53钱 B [设所成等差数列的首项为a 1,公差为d ,则依题意有 ⎩⎪⎨⎪⎧5a 1+5×42d =5,a 1+a 1+d =a 1+2d +a 1+3d +a 1+4d ,解得⎩⎪⎨⎪⎧a 1=43,d =-16.]10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列.若sin A sinC +sin 2C -sin 2A =12sin B sin C ,则sin A =( )A.14 B.34 C.114D.154D [由已知得b 2=ac ,ac +c 2-a 2=12bc ,所以b 2+c 2-a 2=12bc ,所以cos A =14,所以sin A =154.] 11.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 作一条渐近线的垂线,与C 的右支交于点A .若|OF |=|OA |(O 为坐标原点),则C 的离心率e 为( )【导学号:04024178】A. 2 B .2 C. 5D .5C [不妨设一条渐近线为l :y =bx a,作FA ⊥l 于点B (图略),因为|OF |=|OA |,所以B 为线段FA 的中点.设双曲线的右焦点为F ′,连接F ′A ,因为O 为线段FF ′的中点,所以F ′A ⊥FA .易得直线FA ,F ′A 的方程分别为y =-a b (x +c ),y =b a(x -c ),解方程组可得点A 的坐标为⎝ ⎛⎭⎪⎫b 2-a 2c,-2ab c .因为该点在双曲线C 上,所以b 2-a 22a 2c 2-4a 2b2b 2c2=1,结合c 2=a 2+b 2,整理得5a 2=c 2,即5a =c ,所以e =ca= 5.]12.如图3所示,在等腰直角三角形ABC 中,∠A =π2,AC =1,BC 边在x 轴上,有一个半径为1的圆P 沿x 轴向△ABC 滚动,并沿△ABC 的表面滚过,则圆心P 的大致轨迹是(虚线为各段弧所在圆的半径)( )图3D [当圆在点B 的左侧滚动时,圆心P 的运动轨迹是一条线段;当圆在线段AB 上滚动时,圆心P 的运动轨迹也是一条线段;当圆与点A 接触并且绕过点A 时,圆心P 的轨迹是以点A 为圆心,1为半径的圆弧;当圆在线段AC 上和点C 右侧滚动时,与在线段AB 上和点B 的左侧滚动时的情况相同.结合各选项中的曲线知,选项D 正确.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.如图4所示是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则a 1,a 2的大小关系是________.图4[解析] 由题意可知a 1=80+1+5+5+4+55=84,a 2=80+4+4+6+4+75=85,所以a 2>a 1. [答案] a 2>a 114.若直线l :x 4+y3=1与x 轴、y 轴分别相交于A ,B 两点,O 为坐标原点,则△OAB 的内切圆的方程为________.[解析] 由题意,设圆心为(a ,a ),则有|3a +4a -12|5=a ,解得a =1或a =6(舍去),所以所求圆的方程为(x -1)2+(y -1)2=1. [答案] (x -1)2+(y -1)2=115.已知函数f (x )=e x-mx +1的图象为曲线C ,若曲线C 不存在与直线y =-1e x 平行的切线,则实数m 的取值范围为________.【导学号:04024179】[解析] 由已知得f ′(x )=e x-m ,由曲线C 不存在与直线y =-1e x 平行的切线,知方程e x -m =-1e 无解,即方程m =e x +1e 无解.因为e x >0,所以e x+1e >1e ,所以m 的取值范围是⎝ ⎛⎦⎥⎤-∞,1e .[答案] ⎝⎛⎦⎥⎤-∞,1e 16.已知A ,B ,C ,D 是同一球面上的四个点,其中△ABC 是正三角形,AD ⊥平面ABC ,AD =4,AB =23,则该球的表面积为________.[解析] 依题意,把三棱锥D ­ABC 扩展为直三棱柱,则上、下底面中心的连线的中点O 与A 之间的距离为球的半径(图略).设△ABC 的中心为E ,因为AD =4,AB =23,△ABC 是正三角形,所以AE =2,OE =2,所以AO =22,所以该球表面积S =4π×(22)2=32π. [答案] 32π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小题提速练(六) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( )A .3,-2B .3,2C .3,-3D .-1,4A [∵(1+i)+(2-3i)=a +b i , ∴a =3,b =-2,故选A.]2.设集合A ={y |y =2x,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( )A .(-1,1)B .(0,1)C .(-1,+∞)D .(0,+∞)C [∵A ={y |y =2x ,x ∈R }=(0,+∞),B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B =(-1,+∞),故选C.]3.(2017·广东惠州二模)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =1-x 2B .y =log 2|x |C .y =-1xD .y =x 3-1A [函数y =-3|x |为偶函数,在(-∞,0)上为增函数.选项B 中的函数是偶函数,但其单调性不符合;选项C 中的函数为奇函数,不符合要求;选项D 中的函数为非奇非偶函数,不符合要求.只有选项A 符合要求.故选A.]4.在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为( )【导学号:07804217】A.π6 B .π4C.π3D .56π A [由5cos(B +C )+3=0得cos A =35,则A ∈⎝⎛⎭⎪⎫0,π2,sin A =45,445=52sin B ,sin B =12.又a >b ,B 必为锐角,所以B =π6.]5.已知m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中真命题的个数是( )①若m ⊥α,m ⊥β,则α∥β; ②若m ∥n ,m ⊥α,则n ⊥α; ③若m ∥α,α∩β=n ,则m ∥n ; ④若m ⊥α,m ⊂β,则α⊥β. A .1 B .2 C .3D .4C [对于①,由于垂直于同一条直线的两个平面互相平行,故①为真命题;对于②,两条平行线中的一条直线垂直于一个平面,则另一条也垂直于这个平面,故②为真命题;对于③,直线m 与直线n 可能异面,也可能平行,故③为假命题;对于④,由面面垂直的判定定理可知④为真命题.故选C.]6.某四面体的三视图如图15所示,其中正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中的最大面的面积为( )图15A .2 2B .4C .2 3D .2 6C [将几何体放在正方体中考虑,可知该几何体为三棱锥S ­ABD ,它的四个面中面SBD 的面积最大,三角形SBD 是边长为22的等边三角形,所以此四面体的四个面中的最大面的面积为34×8=2 3.] 7.函数f (x )=A sin(ωx +φ)(A >0,ω>0)的最小正周期为π,其图象关于直线x =π3对称,则|φ|的最小值为( ) A.π12 B .π6C.5π6D .5π12B [由题意,得ω=2,所以f (x )=A sin(2x +φ).因为函数f (x )的图象关于直线x=π3对称,所以2×π3+φ=k π+π2(k ∈Z ),即φ=k π-π6(k ∈Z ),当k =0时,|φ|取得最小值π6,故选B.]8.已知A ,B 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,若在双曲线上存在点P 满足2|PA →+PB →|≤|AB →|,则双曲线C 的离心率e 的取值范围是( ) A .1<e ≤2 B .e ≥2 C .1<e ≤ 2D .e ≥ 2B [设点P 是双曲线左支上的点,并设双曲线左顶点为E ,则2|PA →+PB →|≤|AB →|,可化为4|PO →|≤2c (2c 为双曲线的焦距),|PO →|≤12c ,易证|PO →|≥a ,于是a ≤12c ,所以e ≥2.故选B.]9.若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞ B .⎣⎢⎡⎭⎪⎫-12,+∞C .(0,+∞)D .[0,+∞)D [f ′(x )=1x +2ax =2ax 2+1x(x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.]10.从1,2,3,4,5中挑出三个不同数字组成一个五位数,则其中有两个数字各用两次(例如,12332)的概率为( )【导学号:07804218】A.25 B .35 C.47D .57B [从1,2,3,4,5中挑出三个不同数字组成一个五位数,共有C 35(C 13C 35A 22+C 13C 15C 24C 22)=1 500(种)不同选法,其中有两个数字各用两次的选法有C 35C 13C 15C 24C 22=900(种),所以所求概率P =9001 500=35.]11.如图16所示,ABCD ­A 1B 1C 1D 1是棱长为1的正方体,S ­ABCD 是高为1的正四棱锥,若点S ,A 1,B 1,C 1,D 1在同一个球面上,则该球的表面积为( )图16A.916π B .2516πC.4916π D .8116πD [连接AC ,BD 交于点G ,连接A 1C 1,B 1D 1交于点G 1,易知S ,G ,G 1在同一直线上,连接SG 1.设O 为球心,OG 1=x ,连接OB 1,则OB 1=SO =2-x ,由正方体的性质知B 1G 1=22, 则在Rt△OB 1G 1中,OB 21=G 1B 21+OG 21,即(2-x )2=x 2+⎝ ⎛⎭⎪⎫22, 解得x =78,所以球的半径R =OB 1=98,所以球的表面积S =4πR 2=8116π.]12.已知椭圆C :x 23+y 2=1,设直线l 与椭圆C 交于A ,B 两点,坐标原点O 到直线l 的距离为32,则△AOB 面积的最大值为( ) A.34B .32C. 3 D .2 3B [设A (x 1,y 1),B (x 2,y 2). (1)当AB ⊥x 轴时,|AB |= 3.(2)当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m . 由已知得|m |1+k2=32,则m 2=34(k 2+1). 把y =kx +m 代入椭圆方程,整理得(3k 2+1)x 2+6kmx +3m 2-3=0, 所以x 1+x 2=-6km 3k 2+1,x 1x 2=3m 2-13k 2+1. 所以|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)·⎣⎢⎡⎦⎥⎤36k 2m23k 2+12-12m 2-13k 2+1=12k 2+13k 2+1-m 23k 2+12=3k 2+19k 2+13k 2+12=3+12k29k 4+6k 2+1. 当k ≠0时,|AB |2=3+129k 2+1k2+6≤3+122×3+6=4, 当且仅当9k 2=1k 2,即k =±33时等号成立.综上所述|AB |max =2,所以当|AB |最大时, △AOB 面积取最大值S =12×|AB |max ×32=32.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.某校1 000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N (90,σ2).若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70的人数为________.[解析] 记考试成绩为ξ,则考试成绩的正态曲线关于直线ξ=90对称.因为P (70<ξ≤110)=0.7,所以P (ξ≤70)=P (ξ>110)=12×(1-0.7)=0.15,所以这次考试分数不超过70的人数为1 000×0.15=150. [答案] 15014.在矩形ABCD 中,AB =1,AD =3,P 为矩形内一点,且|AP →|=32,若AP →=λAB →+μAD →(λ,μ∈R ),则λ+3μ的最大值为________.[解析]以A为原点,AB所在直线为x轴,AD所在直线为y轴建立如图所示的平面直角坐标系,则A(0,0),B(1,0),C(1,3),D(0,3).设P(x,y),则AP→=(x,y),AB→=(1,0),AD→=(0,3).由AP→=λAB→+μAD→(λ,μ∈R),得⎩⎨⎧x=λ,y=3μ.又因为⎩⎪⎨⎪⎧0≤x≤1,0≤y≤32,x2+y2=34,所以λ+3μ=x+y≤2x2+y2=62⎝⎛⎭⎪⎫当且仅当x=y=64时取得最大值.[答案]6215.已知x,y满足⎩⎪⎨⎪⎧y≥x,x+y≤2,x≥a,若z=2x+y的最大值是最小值的3倍,则a的值是________.[解析]画出⎩⎪⎨⎪⎧y≥x,x+y≤2,x≥a表示的可行域如图所示:由⎩⎪⎨⎪⎧y=x,x+y=2得A(1,1),由⎩⎪⎨⎪⎧x=a,y=x得B(a,a).当直线z=2x+y过点A(1,1)时,目标函数z=2x+y取得最大值,最大值为3;当直线z=2x+y过点B(a,a)时,目标函数z=2x+y取得最小值,最小值为3a.因为3=3×3a,所以a=13.[答案]1316.已知△ABC 中,角A ,32B ,C 成等差数列,且△ABC 的面积为1+2,则AC 边长的最小值是________.【导学号:07804219】[解析] 设内角A ,B ,C 所对的边分别为a ,b ,c . ∵A ,32B ,C 成等差数列,∴A +C =3B . 又∵A +B +C =π, ∴B =π4.由S △ABC =12ac sin B =1+2,得ac =2×(2+2).∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac ≥(2-2)ac =4,当且仅当a =c 时,等号成立,∴b ≥2,∴b 的最小值为2. [答案] 2。

相关文档
最新文档