人教版中职数学6.2.2等差数列的前n项和

合集下载

课件6:2.2.2 等差数列的前n项和(一)

课件6:2.2.2 等差数列的前n项和(一)

【答案】(1)210
(2)6
24 (3)79
例 4 若数列{an}的公差为 d 的等差数列,求证:数列{Snn} 也是等差数列.
【证明】∵{an}是等差数列,公差为 d, ∴Sn=na1+nn-2 1d=d2n2+(a1-d2)n. ∴Snn=d2n+(a1-d2),∴nS+n+11-Snn=d2(常数). ∴数列{Snn}为等差数列,公差为d2.
本课结束 更多精彩内容请登录:

题型一 等差数列的前 n 项和公式
例 1 已知数列{an}是等差数列, (1)若 a1=1,an=-512,Sn=-1 022,求公差 d; (2)若 a2+a5=19,S5=40,求 a10.
【解】(1)∵an=a1+(n-1)d,Sn=na1+nn- 2 1d, 又 a1=1,an=-512,Sn=-1 022,
2
=TS1155=3×2×151+5 1=3406=1253.
【答案】1253
探究 2 等差数列{an}中,S2n-1=(2n-1)·an,从而有bann=TS22nn--11. 思考题 3 (1)等差数列{an}中,若 a11=10,则 S21= ________. (2)等差数列{an}中,若 S15=90,则 a8=________. (3)已知{an}、{bn}都是等差数列,它们的前 n 项和分别为 Sn、 Tn,且对任意的 n∈N*有TSnn=72nn++161.则ba1111=________.
探究 3 等差数列前 n 项和 Sn 的有关性质在解题过程中,如果运 用得当可以达到化繁为简、化难为易、事半功倍的效果.
思考题 4 设{an}为等差数列,Sn 为数列{an}的前 n 项和,已知 S7=7,S15=75,Tn 为数列Snn的前 n 项和,求 Tn. 【答案】Tn=14(n2-9n)

中职数学基础模块6.2.2等差数列的前n项和教学设计教案人教版

中职数学基础模块6.2.2等差数列的前n项和教学设计教案人教版

课时教学设计首页(试用)☆补充设计☆环节教师行为问题某工厂的仓库里堆放一批钢管, 共堆放了7层,试求钢管的总数.学生行为学生分组合作探究.设计意图回顾等差数列概念一节中提出的问题,激发学生探究的兴趣和欲望.分析怎样求得钢管的总数呢?显然, 把各层钢管数直接相加就可得出结果.如果钢管很多,怎么办?下面我们用另外一个办法来求.1 •计算钢管数解用S来表示钢管的总数,则S7 = 4+5+6+7+8+9+10 , ①将各项次序反过来,又可写成S z =10+9+8+7+6+5+4 . ②把①②两式对应项相加,每对应两项和都等于14,所以把①②两式分别相加,得2S z =(4+10) X 7,(4+10) X 7S7 = 2,S= 49学生各抒己见,回答导入中提出的问题.教师出示学生回答中,用“倒序相加”方法解答此题的过程.学生合作探究.教师逐一点评学生想出的办法,对学生提到的“倒序相加法”结合图形,进行讲解.师:由上例,你能总结出求任意等差数列各项和的计算方法吗?使用熟悉的几何方法:把“梯形”倒置,与原图补成平行四边形.借助直观图形能启迪思路,帮助理解.在教学中,要鼓励学生借助几何直观进行思考,从而渗透数形结合的数学思想.2.等差数列的前n项和公式等差数列各项的和等于首末两项的和乘项数除以2.一般地,数列{a n }的前n项和记作S n, 即S n = a1+a2+a3+…+a n.可以得到等差数列的前n项和公式教师引导学生总结等差数列的前n项和公式.通过对公式的剖析,培养学生灵活应用公式运算的能力.太原市教研科研中心研课时教学设计尾页(试用)等差数列的前n项和公式为n (a i+ a n )Si= 2;作业设计教材P16,练习A组第2, 3题.教学后记☆补充设计☆S n = na i + n ( n —1 )~2~例题与练习:板书设计推导过程:。

中等职业教育规划教材数学1-3册目录(人民教育出版社)

中等职业教育规划教材数学1-3册目录(人民教育出版社)

中等职业教育规划教材数学1-3册目录(人民教育出版社)目录第一章集合(第一册)1.1集合及其表示1.1.1集合1.1.2集合的表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件第二章方程与不等式2.1一元一次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含有绝对值的不等式2.2.4一元二次不等式第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2.2空间几何体的体积第七章三角函数(第二册)7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像和性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法8.2.2向量的减法8.2.3数乘向量8.3平面向量的的直角坐标系8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量内积的直角坐标运算第九章直线与圆的方程9.1直线的方程9.1.1直线的方向向量与点向式方程9.1.2直线的斜率与点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行9.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程第十章立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置的关系第十一章概率与统计初步11.1计数的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3.1简单随机抽样11.3.2系统抽样11.3.3分层抽样11.4用样本估计总体11.4.1用样本的频率分布估计总体的分布11.4.2用样本的数字特征估计总体的数字特征11.5一元线性回归分析第十二章三角计算及其应用(第三册) 12.1和角公式12.1.1两角和与差的余弦12.1.2两角和与差的正弦12.1.3两角和与差的正切12.2倍角公式12.3正弦函数)sin(?ω+=x A y 的图像和性质 12.4解三角形12.4.1余弦定理12.4.2三角形的面积12.4.3正弦定理12.5三角计算及应用举例第十三章圆锥曲线与方程13.1椭圆13.1.1椭圆的标准方程13.1.2椭圆的几何性质13.2双曲线13.2.1双曲线的标准方程13.2.2双曲线的几何性质13.3抛物线13.3.1抛物线的标准方程13.3.2抛物线的几何性质第十四章坐标变换与参数方程14.1坐标变换14.1.1坐标轴的平移14.1.2利用坐标轴的平移化简二元二次方程14.1.3坐标轴的旋转14.1.4利用坐标轴的旋转化简二元二次方程14.2一般二元二次方程的讨论14.2.1化一般二元二次方程为标准式14.2.2一般二元二次方程的讨论14.3参数方程14.3.1曲线的参数方程14.3.2圆的参数方程14.3.3直线的参数方程14.3.4圆锥曲线的参数方程14.4参数方程的应用举例第十五章逻辑代数基础15.1常用逻辑用语15.1.1命题15.1.2量词15.1.3逻辑联结词15.2数制15.2.1十进制与二进制15.2.2十进制与二进制之间的转换15.3逻辑代词15.3.1基本概念与基本逻辑运算15.3.2逻辑代数的运算律和基本定理15.3.3逻辑函数15.3.4逻辑函数的表示方法15.3.5逻辑函数的化简15.3.6逻辑图第十六章算法与程序框图16.1算法的概念16.2程序框图与算法的基本逻辑结构16.2.1程序框图的基本图例16.2.2顺序结构及其框图16.2.3条件分支结构及其框图16.2.4循环结构及其框图16.3条件判断16.4算法案例第十七章数据表格信息处理17.1数组、数据表格的概念17.2数组的代数运算17.3用软件处理数据表格17.4数据表格的图示第十八章编制计划的原理与方法18.1编制计划的有关概念18.2关键路径法18.3统筹图18.3.1网络图18.3.2横道图18.4进度计划的编制18.4.1网络图的时间参数18.4.2时间优化的方法第十九章线性规划初步19.1线性规划问题19.2二元一次不等式表示的区域19.3线性规划问题的图解法19.4线性规划问题的应用举例19.5用Excel解线性规划问题第二十章复数20.1复数的概念20.1.1复数的有关概念20.1.2复数的几何意义20.2复数的运算20.2.1复数的加法和减法20.2.2复数的乘法和除法20.3实系数一元二次方程的解法20.4复数的三角形式20.4.1复数的三角形式20.4.2复数三角形式的乘法与乘方运算20.4.3复数三角形式的除法运算20.4.4复数的开方运算20.5复数的指数形式20.6复数的应用第二十一章概率分布初步21.1排列与组合21.1.1排列与排列数公式21.1.2组合与组合数公式21.2二项式定理21.2.1二项式定理21.2.2二项式系数的性质21.3离散型随机变量及其分布21.3.1离散型随机变量21.3.2二项分布21.4正态分布。

2019-2020年中职职高数学《3.3等差数列的前n项的和》公开课教案

2019-2020年中职职高数学《3.3等差数列的前n项的和》公开课教案

2019-2020年中职职高数学《3.3等差数列的前n项的和》公开课教案教学目标:知识与技能:理解并掌握等差数列前n项的和公式,并会应用公式解决简单的问题。

过程与方法:在自主、合作和探究的学习过程中学会等差数列前n项和的求解方法,在多元化的过程中学会简单实际问题的解决。

情感与价值观:在学会和会学的过程中体验学习的快乐,尝试成功,提升自我学习能力。

重点:等差数列前n项和公式的应用.难点:等差数列前n项和公式应用思路和对问题的分析课前准备:1.导学案的下发、批阅和错题的收集整理、了解学生预习情况和对教学设计的调整;批阅方式可以灵活,时间允许的话整班批,工作繁忙时代表性批,剩余由学科班长或者学科组长、预习案展示学生批阅,旨在发现学生在预习中存在的问题。

2.预习培训:全体学生:预习等差数列前n项和的公式导出、公式的简单运用、和预设的问题,并对小组长提出要求。

3.课前培训:教师培训学科班长或学科组长然后学科班长或组长培训组内成员培训内容:讨论形式和内容;展示、点评、质疑、总结要求;预习案展示和课堂总结学生培训:批阅部分学生的导学案,结合问题最多的题目理解教材上的知识点,做好预习案的展示和分析准备,结束时根据检测题进行课堂知识的总结。

4.教学目标的书写:在黑板的右上方,书写字迹清晰、公正。

教学过程:一、情景创设承前启后1.情景创设内容根据学科而定,可以用一段对话或一个视频、学生感兴趣的话题引入;语文如演讲、故事导入等;数学以题目或问题导入等;主要起到一个知识的衔接作用。

如:爸爸单位食堂的休闲区需要换地方,方案是在中间设计了一个三角新图形,上底边是1块砖,最下边是31块砖,装潢公司打电话问共需要多少块砖?你能很快报出数目吗?怎么计算的?2.执行者和形式:教师通过多媒体或口述的形式导入,衔接到预习案的展示。

3.时间:3分钟以内。

二、预习案展示检测自习1. 展示人员:一般是学科组长(或教师指定的其他学生)2.展示内容:对预习案的情况做一个概括,然后将全对的题目把知识点做一个概念性的总结,错误题目要进行分析,并对错误的情况作一一分析,最后还要展示学生预习中“我的疑问”3.根据展示的情况给出分值4.教师点拨:预习案中知识的总结或规律等。

等差数列前n项和说课稿2

等差数列前n项和说课稿2
n 1
代入公式一,得到:
四、公式辨析,应用反馈
在等差数列 {an} 中,如果已知五个元素 a1, an, n, d, Sn 中 的任意三个, 可以求出其余两个量 ,即“知 三 求 二” 设计意图:为后面的解题作好铺垫,提醒学生对公式 的辨析使用。
五、 范例讲解
.
例1 根据下列各题的条件求相应的等差数列的 前 n 项和 Sn .
六、课堂练习
课本P10练习 6.2.3 1 、 2 、3 师生活动:先让学生思考、练习,教师巡视引导,然后各 组选一位同学的课堂练习用幻灯片展示,教师及时点评。 设计意图:加深学生对等差数列前n项和的公式的认识 和应用。
七、 课堂小结
1、等差数列前n项和公式的推导, 掌握“倒序求和法” 同时学习数形结合数学思想和化归的数学思想; 2、掌握等差数列的两个求和公式及应用,学习函数与方 程的思想。
2,教学目标
依据教学大纲的教学要求,渗透新课标理念,我制 定了以下教学目标:
● 知识与技能目标 掌握等差数列前n项和公式及应用。 ●过程与方法目标 通过对等差数列前n项和公式的推导,渗透倒序相加 求和的数学方法。 ●情感、态度与价值观目标 让学生获得发现新知识的成就感,养成科学严谨的 学习态度,培养学生数学人文素质。
100 =(1+100) · 2
100 (a 1 a 100 ) · 2
分组探究,鼓励学生大 胆猜测出等差数列前n 项和的公式是什么?
21 s21= (1 + 21) · 2
21 ( a1 a 21) · 2
n Sn (a 1 an ) · 2
设计意图:从特殊到一般,学生大胆猜测出等差数列的 前n项和公式,同时培养学生合作探究的团队精神。

人教版中职数学基础模块下册6.2等差数列

人教版中职数学基础模块下册6.2等差数列

【课题】 6.2 等差数列
【教学目标】
知识目标:
理解等差数列通项公式及前n 项和公式. 能力目标:
(1)应用等差数列的前n 项公式,解决数列的相关计算,培养学生的计算技能; (2)应用等差数列知识,解决生活中实际问题,培养学生处理数据技能和分析解决问题的能力.
情感目标:
(1)经历数列的前n 项和公式的探索,增强学生的创新思维.
(2)赞赏高斯等数学史上流传的故事,形成对数学的兴趣,感受数学文化.
【教学重点】
等差数列的前n 项和的公式.
【教学难点】
等差数列前n 项和公式的推导.
【教学设计】
本节的主要内容是等差数列的前n 项和公式,等差数列应用举例.重点是等差数列的前
n 项和公式;难点是前n 项和公式的推导以及知识的简单实际应用.
等差数列前n 项和公式的推导方法很重要,所用方法叫逆序相加法,应该让学生理解并学会应用.等差数列中的五个量1a 、d 、n 、n a 、n S 中,知道其中三个,可以求出其余两个,例5和例6是针对不同情况,分别介绍相应算法.
例7将末项看作是首项的思想是非常重要的,以这类习题作为载体,对培养学生的创新精神是十分重要的.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
【教师教学后记】。

4.2.2等差数列的前n项和公式 (解析版)

4.2.2等差数列的前n项和公式 (解析版)

4.2.2等差数列的前n 项和公式知识点一.前n 项和1.数列的前n 项和:对于数列{a n },一般地称a 1+a 2+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+…+a n .2.等差数列的前n 项和公式已知量首项,末项与项数首项,公差与项数选用公式S n =n (a 1+a n )2S n =na 1+n (n -1)2d 3、等差数列前n 项和公式的推导对于公差为d 的等差数列,S n =a 1+(a 1+d )+(a 1+2d )+…+[a 1+(n -1)d ],①S n =a n +(a n -d )+(a n -2d )+…+[a n -(n -1)d ],②由①+②得2S n =(a 1+a n )+(a 1+a n )+…+(a 1+a n )n 个=n (a 1+a n ),由此得等差数列前n 项和公式S n =n (a 1+a n )2,代入通项公式a n =a 1+(n -1)d 得S n =na 1+n (n -1)2d .知识点二.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和.(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.知识点三.等差数列与函数的关系1.通项公式:当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且一次项系数为公差d .若公差d >0,则为递增数列,若公差d <0,则为递减数列.2.前n 项和:当公差d ≠0时,S n =na 1+n (n -1)2d =d 2n 21是关于n 的二次函数且常数项为0.知识点四.两个常用结论1.关于等差数列奇数项和与偶数项和的性质①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1;②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1.2.两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为S 2n -1T 2n -1=a n b n.【注意】1.当公差d ≠0时,等差数列的通项公式是n 的一次函数;当公差d =0时,a n 为常数.2.注意利用“a n -a n -1=d ”时加上条件“n ≥2”.题型1等差数列前n 项和基本量的计算【例题1】(一题多解)(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则()A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n【解析】(1)方法一:设等差数列{a n }的公差为d 4=0,5=5,a 1+4×32d =0,1+4d =5,解得1=-3,=2,所以a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A.方法二:设等差数列{a n }的公差为d 4=0,5=5,a 1+4×32d =0,1+4d =5,1=-3,=2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ;选项C ,S 1=2-8=-6,排除C ;选项D ,S 1=12-2=-32,排除D.故选A.【变式1-1】1.(2022·甘肃·宁县第二中学高二阶段练习)已知等差数列a n 的前n 项和为S n ,若S 9=54,a 11+a 12+a 13=27,则S 16=()A .120B .60C .160D .80【答案】A【分析】首先根据等差数列通项公式和前n 项和公式将题干条件中的等式转化成基本量a 1和d ,然后联立方程组解出a 1和d ,最后根据公式求解S 16即可.【详解】∵a n 为等差数列,∴S 9=9a 1+9×82d =9a 1+36d =54,a 11+a 12+a 13=a 1+10d +a 1+11d +a 1+12d =3a 1+33d =27,9a 1+36d =543a 1+33d =27,解得a 1=307d =37.S 16=16a 1+16×152d =16×307+120×37=120.故选:A.【变式1-1】2.(2022·湖南省桃源县第一中学高三阶段练习)设等差数列a n 的前n 项和为S n ,已知a 3=11,a 5=19,则S 10=()A .310B .210C .110D .39【答案】B【分析】根据等差数列的公差以及求和公式,可得答案.【详解】由等差数列a n ,则公差d =a 5-a 35-3=19-112=4,即S 10=5×a 3+a 8=5×a 3+a 3+5d =5×11×2+5×4=5×42=210.故选:B.【变式1-1】3.(2022·江苏南京·高三阶段练习)设S n 为等差数列{a n }的前n 项和,若a 8=6,S 21=0,则a 1的值为()A .18B .20C .22D .24【答案】B【分析】根据等差数列的通项公式和求和公式代入求解即可.【详解】解:由题意得:设等差数列的通项公式为a n =a 1+(n -1)d ,则S n =na 1+n (n -1)2da 8=6S 21=0⇒a 1+7d =721a 1+20×212d =0解得:d =-2a 1=20故选:B 【变式1-1】4.(2023·上海·高三专题练习)已知数列{a n }的前n 项和为S n ,且满足a n =1+(n −1)d ,5a 2=a 8,则S n =___________.【答案】n 2【分析】根据通项公式列出方程求出d ,利用前n 项和公式求解.【详解】因为a n =1+(n −1)d ,5a 2=a 8所以5(1+d )=1+7d ⇒d =2,所以{a n }是以2为公差的等差数列,所以S n =n (1+2n −1)2=n 2,故答案为:n 2【变式1-1】5.(2020·河南部分重点高中联考)记等差数列{a n }的前n 项和为S n ,若3S 5-5S 3=135,则数列{a n }的公差d =________.【解析】因为3S 5-5S 3=135,所以a 1+5×42d a 1+3×22d135,所以15d =135,解得d =9.【变式1-2】1.(2020·六校联盟第二次联考)设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=()A .18B .16C .14D .12【答案】选C.【解析】设{an }的公差为d ,1+3d +5a 1+5×42d =2,a 1+7×62d =14a 1+13d =2,1+3d =2,1=-4,=2,所以a 10=-4+9×2=14,选C.【变式1-2】2.已知数列{a n}(n∈N+)是等差数列,S n是其前n项和,若a2a5+a8=0,S9=27,则S8的值是________.【答案】16【解析】设等差数列{a n}的公差为d,则a2a5+a8=(a1+d)·(a1+4d)+a1+7d=a21+4d2+5a1d +a1+7d=0,S9=9a1+36d=27,解得a1=-5,d=2,则S8=8a1+28d=-40+56=16.【变式1-2】3.(2017·全国卷Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【答案】C【解析】设等差数列{a n}的公差为d4+a5=24,6=48,1+3d+a1+4d=24,a1+6×52d=48,即a1+7d=24,a1+5d=16,解得d=4.【变式1-2】4.(2020·高考全国卷Ⅱ)记S n为等差数列{a n}的前n项和.若a1=-2,a2+a6=2,则S10=________.【答案】25【解析】设等差数列{a n}的公差为d,则a2+a6=2a1+6d=2.因为a1=-2,所以d=1.所以S10=10×(-2)+10×92×1=25.【变式1-2】5.(2020·合肥第一次教学检测)已知等差数列{a n}的前n项和为S n,a1=1,S4=4S2.(1)求数列{a n}的通项公式;(2)若a m+a m+1+a m+2+…+a m+9=180(m∈N*),求m的值.【解析】(1)设等差数列{a n}的公差为d,由S4=4S2得,4a1+6d=8a1+4d,整理得d=2a1,又a1=1,所以d=2,所以a n=a1+(n-1)d=2n-1(n∈N*).(2)a m+a m+1+a m+2+…+a m+9=180可化为10a m+45d=20m+80=180.解得m=5.【变式1-2】6.(2021·新高考卷Ⅱ)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)求数列{a n}的通项公式a n;(2)求使S n>a n成立的n的最小值.【解析】(1)由等差数列的性质可得S5=5a3,则a3=5a3,所以a3=0,设等差数列的公差为d,从而有a2a4=(a3-d)(a3+d)=-d2,S4=a1+a2+a3+a4=(a3-2d)+(a3-d)+a3+(a3+d)=-2d,从而-d2=-2d,由于公差不为零,故d=2,数列的通项公式为a n=a3+(n-3)d =2n-6.(2)由数列的通项公式可得a1=2-6=-4,则S n=n×(-4)+n(n-1)2×2=n2-5n,则不等式S n>a n即n2-5n>2n-6,整理可得(n-1)·(n-6)>0,解得n<1或n>6,又n为正整数,故n的最小值为7.题型2等差数列前n项和Sn与等差中项的关系2n-1n【例题2-1】等差数列{a n}的前n项和为S n,若a1+a3+a5+a7+a9=20,则S9=() A.27B.36C.45D.54【答案】选B.【解析】依题意a1+a3+a5+a7+a9=5a5=20,a5=4,所以S9=a1+a92×9=9a5=36.【变式2-1】1.已知数列{a n}为等差数列,S n为其前n项和,2+a5=a6+a3,则S7=() A.2B.7C.14D.28【答案】选C.【解析】因为2+a5=a6+a3,所以2+a4+d=a4+2d+a4-d.解得a4=2,所以S7=7(a1+a7)2=7a4=14.【变式2-1】2.(2023·全国·高三专题练习)设公差不为0的等差数列a n的前n项和为S n,已知S9=3a3+a5+a m,则m=()A.9B.8C.7D.6【答案】C【分析】根据等差数列的前n项和的性质及等差数列通项公式化简可得.【详解】因为S9=3a3+a5+a m,又S9=9a5,所以9a5=3a3+a5+a m,所以a3+a5+ a m=3a5,即a3+a m=2a5,设等差数列a n的公差为d,则a1+2d+a1+(m−1)d=2(a1+ 4d),所以(m+1)d=8d,又d≠0,所以1+m=8,所以m=7.故选:C.【变式2-1】3.(2021·陕西渭南·一模(理))已知数列a n为等差数列,其前n项和为S n,若S15=90,则a8=()A.12B.6C.4D.3【答案】B【分析】根据等差数列的性质及前n项和公式即可求出答案.【详解】因为数列a n为等差数列,所以S15=15×2a82=15a8=90,所以a8=6.故选:B.◆类型2a n bn =S2n−1 T2n−1【例题2-2】(2023·全国·高三专题练习)两个等差数列a n和b n的前n项和分别为S n、T n,且S n Tn =5n+2n+3,则a2+a20b7+b15等于()A.10724B.724C.14912D.1493【答案】A【分析】根据给定条件,利用等差数列前n项和公式结合等差数列性质计算作答.【详解】两个等差数列a n和b n的前n项和分别为S n、T n,且S n Tn =5n+2n+3,所以a2+a20b7+b15=a1+a21b1+b21=a1+a21 2×21b1+b21 2×21=S21T21=5×21+221+3=10724.故选:A【变式2-2】1.(2022·辽宁·沈阳市第五十六中学高二阶段练习)若等差数列a n 和b n 的前n 项的和分别是S n 和T n ,且an b n=n 2n +1,则S 11T 11=()A .1221B .1123C .613D .1223【答案】C【分析】根据等差数列的前n 项的和的公式即可转化成a n b n=n2n +1,进而求解.【详解】因为a n 和b n 是等差数列,故S11T 11==a 6b 6=613故选:C【变式2-2】2.(2022·天津·高二期末)若等差数列a n ,b n 的前n 项和分别为S n ,T n ,满足S n T n=2n −13n +1,则a4b 4=_______.【答案】1322【分析】根据等差数列下标和性质及等差数列前n 项和公式计算可得;【详解】解:依题意可得a4b 4=2a 42b 4=a 1+a 7b 1+b 7=21+a 77b 1+b 7=S 7T 7=2×7−13×7+1=1322;故答案为:1322【变式2-2】3.(2022·全国·高三专题练习)已知S n ,T n 分别是等差数列a n ,b n 的前n 项和,且S n T n=3n +1n +1,n ∈N ∗,则a 10b3+b 18+a 11b6+b 15=______.【答案】6121【答案】利用等差数列的性质和前n 项和公式即可求得.【详解】因为b n 为等差数列,所以b 3+b 18=b 6+b 15,所以a 10b3+b 18+a 11b6+b 15=a 10+a 11b 6+b 15=a 1+a20b 1+b 20=12×a 1+a 20×2012×b 1+b 20×20=S 20T 20=3×20+120+1=6121.故答案为:6121【变式2-2】4.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S nT n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.【答案】1941【解析】∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 9b 5+b 7+a 3b 8+b 4=1941.【变式2-2】5.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -13n -2,则a 11b 6+b 10+a 5b 7+b 9________.【答案】2943【解析】a 11b 6+b 10+a 5b 7+b 9=a 11+a 52b 8=2a 82b 8=a 8b 8,又a 8b 8=S 2×8-1T 2×8-1=S 15T 15=2×15-13×15-2=2943.【变式2-2】6.(2022·陕西·西安工业大学附中高一阶段练习)有两个等差数列a n ,b n ,其前n 项和分别为S n ,T n .(1)若a n b n=2n −13n +1,则S 11T 11=___________.(2)若S n T n=2n −13n +1,则a 5b 4=___________.【答案】11191722【分析】利用S11T 11=11a 611b 6可得填空1的答案;若SnT n=2n −13n +1=2n 2−n 3n 2+n,则可设S n =2n 2−n k ,T n =3n 2+n k ,然后可计算a5b 4的值.【详解】若a n b n=2n −13n +1,则S 11T 11=11a 611b 6=2×6−13×6+1=1119;若S n T n=2n −13n +1=2n 2−n 3n 2+n,则可设S n =2n 2−n k ,T n =3n 2+n k 所以a 5=S 5−S 4=45k −28k =17k ,b 4=T 4−T 3=52k −30k =22k ,所以a 5b 4=1722,故答案为:1119;1722【变式2-2】7.(2023·全国·高三专题练习)设公差不为零的等差数列a n 的前n 项和为S n ,a 4=2a 5,则S7S 4=()A .74B .-1C .1D .54【答案】C【分析】利用等差中项2a 5=a 4+a 6,2a 6=a 5+a 7及等差数列前n 项和的性质即可求解.【详解】解:在等差数列a n 中,2a 5=a 4+a 6,a 4=2a 5,故a 6=0,又2a 6=a 5+a 7,故a 7=−a 5,则S 7=S 4+a 5+a 6+a 7=S 4,故S7S 4=1.故选:C.【变式2-2】8.(2023·全国·高三专题练习)设等差数列a n 与等差数列b n 的前n 项和分别为S n,T n.若对于任意的正整数n都有S n Tn =2n+13n−1,则a8b9=()A.3552B.3150C.3148D.3546【答案】B【分析】先设S n=2n+1nt,T n=3n−1nt,由a8=S8−S7,b9=T9−T8直接计算a8b9即可.【详解】设S n=2n+1nt,T n=3n−1nt,t≠0.则a8=S8−S7=136t−105t=31t,b9= T9−T8=234t−184t=50t,所以a8b9=3150.故选:B.【变式2-2】9.(2022·安徽宿州·高二期中)已知两个等差数列a n和b n的前n项和分别为A n和B n,且A n Bn =2n+1n+4,则b2+b8a3+a5+a7=()A.43B.3839C.1319D.2657【答案】D【分析】根据等差数列性质与前n项公式化简即可求解.【详解】由b2+b8a3+a5+a7=b1+b93a1+a9=23⋅B9A9=23×9+42×9+1=2657.故选:D【变式2-2】10.(2022·黑龙江·鹤岗一中高二开学考试)等差数列a n和b n的前n项和分别记为S n与T n,若S2n Tn =6n3n+4,则a3+a12b4=()A.725B.1425C.2125D.4225【答案】D【分析】根据等差数列的性质,将a3+a12b4变形为数列的前n项和的比的形式,即可求得答案.【详解】a n和b n为等差数列,故a3+a12b4=a1+a1412×2b4=142(a1+a14)72(b1+b7)=S14T7=6×73×7+4=4225,故选:D.【变式2-2】11.两个等差数列{a n}和{b n}的前n项和分别为A n,B n,且满足A nB n =7n+45n+3,则使得a nb n为正整数的n的个数是() A.5B.4C.3D.2【解析】选A.因为a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以当n +1=2,3,4,6,12,即n =1,2,3,5,11时,an b n为正整数.故选A.题型3等差数列前n 项和S n 的性质k 2k k 3k 2k 列【例题3-1】(2022·上海市延安中学高二阶段练习)已知等差数列{a n }的前n 项和为S n ,若S 10=20,S 30=90,则S 20=___________【答案】50【分析】由等差数列片段和的性质知S 10,S 20−S 10,S 30−S 20成等差数列,再由等差中项的性质求结果.【详解】由题设S 10,S 20−S 10,S 30−S 20成等差数列,所以2(S 20−S 10)=S 10+S 30−S 20,则3S 20=3S 10+S 30=150,所以S 20=50.故答案为:50【变式3-1】1.等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为()A .130B .170C .210D .260【答案】C【解析】利用等差数列的性质:S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n-S n ),即30+(S 3n -100)=2(100-30),解得S 3n =210.【变式3-1】2.(2022·江西·高三开学考试)等差数列a n 的前n 项和为S n ,若a 3=0,a 4+a 5+a 6=6,则S 7=______.【答案】7【分析】方法一:设出公差,利用题干条件得到a 5=2,进而求出公差,再求出首项,利用求和公式进行求解;方法二:利用题干条件得到a 5=2,再利用求和公式的性质进行求解.【详解】方法一:设公差为d ,由a 4+a 5+a 6=3a 5=6,∴a 5=2,又a 3=0,∴d =a 5−a 35−3=1,a 1=a 3−2d =−2,∴S 7=7a 1+7×6d 2=7.方法二:由已知得a 4+a 5+a 6=3a 5=6,∴a 5=2,又a 3=0,所以S 7===7.故答案为:7【变式3-1】3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于()A .63B .45C .36D .27【答案】B【解析】∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.【变式3-1】4.设等差数列{}n a 的前n 项和为n S ,若488,20S S ==,则13141516a a a a +++=()A .12B .8C .20D .16【答案】C【解析】∵等差数列{}n a 的前n 项和为n S ,488,20S S ==,由等差数列的性质得:4841281612,,,S S S S S S S ---成等比数列又4848,20812,S S S =-=-=∴128122012416,S S S -=-=+=16121314151616420S S a a a a -=+++=+=.故选:C .【变式3-1】5.(2022·全国·高二课时练习)设等差数列a n 的前n 项和为S n ,若S k =2,S 2k =8,则S 4k =______.【答案】32【分析】由等差数列a n 前n 项和的性质,可得S k ,S 2k −S k ,S 3k −S 2k ,S 4k −S 3k 成等差数列,进而即得.【详解】由等差数列a n 前n 项和的性质,可得S k ,S 2k −S k ,S 3k −S 2k ,S 4k −S 3k 成等差数列,∴2S 2k −S k =S k +S 3k −S 2k ,解得S 3k =18,∴2,6,10,S 4k −18成等差数列,可得2×10=6+S 4k −18,解得S 4k =32.故答案为:32.【变式3-1】6.(2022·黑龙江·哈尔滨市第六中学校高二期末)在等差数列a n 中,其前n 项和为S n ,若S 21:S 7=6:1,则S 28:S 14=()A .16:1B .6:1C .12:1D .10:3【答案】D【分析】根据等差数列前n 项和的性质求解即可【详解】由等差数列前n 项和的性质可得,S 7,S 14−S 7,S 21−S 14,S 28−S 21成等差数列,设S 7=s ,则S 21=6s ,即s ,S 14−s ,6s −S 14成等差数列,故2S 14−s =s +6s −S 14,解得S 14=3s ,故S 7,S 14−S 7,S 21−S 14,S 28−S 21即s ,2s ,3s ,4s ,故S 28−6s =4s ,S 28=10s ,故S 28:S 14=10:3故选:D【变式3-1】7.n S 是等差数列n a }的前n 项和,若3613S S =,则612S S 为()A .310B .13C .18D .19【答案】A【解析】设36,3S a S a ==,根据36396129,,,S S S S S S S ---是一个首项为a ,公差为a 的等差数列,各项分别为,2,3,4a a a a ,故6123323410S a S a a a a ==+++.故选:A .【变式3-1】8.(2022·全国·高二课时练习)已知一个等差数列a n 的前4项和为32,前8项和为56.(1)求S12、S16的值;(2)通过计算观察,寻找S4、S8、S12、S16之间的关系,你发现什么结论?(3)根据上述结论,请你归纳出对于等差数列而言的一般结论,并证明.【答案】(1)S12=72,S16=80(2)S4,S8−S4,S12−S8,S16−S12成等差数列.(3)已知a n是等差数列,前n项和为S n,则S t,S2t−S t,S3t−S2t,…,S kt−S k−1t,…k,t∈N∗成等差数列;证明见解析.【分析】(1)设{a n}公差为d,由等差数列前n项和公式列方程组求得a1和d,再计算出S12,S16;(2)由(1)求出S4,S8−S4,S12−S8,S16−S12后可得结论;(3)根据等差数列的定义证明.(1)设{a n}公差为d,则S4=4a1+6d=32S8=8a1+28d=56,解得a1=354d=−12,S12=12a1+66d=12×354+66×(−12)=72,S16=16a1+120d=16×354+120×(−12)=80;(2)由(1)得S4=32,S8−S4=24,S12−S8=16,S16−S12=8,所以S4,S8−S4,S12−S8,S16−S12成等差数列;(3)设{a n}公差为d,则S kt−S(k−1)t=(a1+a2+⋯+a kt)−(a1+a2+⋯+a(k−1)t)= a(k−1)t+1+a(k−1)t+2+⋯+a kt,同理S(k+1)t−S kt=a kt+1+a kt+2+⋯+a(k+1)t,所以(S(k+1)t−S kt)−(S kt−S(k−1)t)=(a kt+1−a(k−1)t+1)+(a kt+2−a(k−1)t+2)+⋯+(a(k+1)t−a kt)=td+td+⋯+td=t2d为常数,所以S t,S2t−S t,S3t−S2t,…,S kt−S k−1t,…k,t∈N∗成等差数列.◆类型2数列{a n}是等差数列⇔S n=an2+bn(a,b为常数)⇔为等差数列【例题3-2】(2023·全国·高三专题练习)已知S n是等差数列{a n}的前n项和,若a1=﹣2018,S20192019−S2*******=6,则S2020等于()A.﹣4040B.﹣2020C.2020D.4040【答案】C【分析】根据等差数列前n 项和的性质,结合等差数列的通项公式进行求解即可.【详解】∵S n 是等差数列{a n }的前n 项和,∴数列{S n n}是等差数列.∵a 1=﹣2018,S 20192019−S 20132013=6,∴数列{S n n}的公差d =66=1,首项为﹣2018,∴S 20202020=−2018+2019×1=1,∴S2020=2020.故选:C .【变式3-2】1.(2022·河北·河间一中高三开学考试)在等差数列a n 中,a 1=−2021,其前n 项和为S n ,若S 1010−S 88=2,则S 2021等于()A .2021B .−2021C .−2020D .2020【答案】Bd =1,结合等差数列通项公式可求得S 20212021,进而得到结果.【详解】∵数列a n 为等差数列,∴设其公差为d ,又S1010−S 88=2d =2,解得:d =1,又S11=a 1=−2021,∴S 20212021=−2021+2020=−1,∴S 2021=−2021.故选:B.【变式3-2】2.在等差数列{a n }中,a 1=-2018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2018的值等于()A .-2018B .-2016C .-2019D .-2017【答案】A【解析】由题意知,数列{S n n }为等差数列,其公差为1,∴S 20182018=S 11+(2018-1)×1=-2018+2017=-1.∴S 2018=-2018.【变式3-2】3.(2022·浙江·高二阶段练习)(多选)若等差数列a n 的公差为d ,前n 项和为S n ,记b n =S nn,则()A .数列b n 是公差为12d 的等差数列B .数列b n 是公差为2d 的等差数列C .数列a n +b n 是公差为32d 的等差数列D.数列a n−b n是公差为32d的等差数列【答案】AC【分析】利用等差数列的定义可判断各选项的正误.【详解】由已知可得b n=S n n=2n=a1+a n2,对于AB选项,b n+1−b n=a n+1+a12−a n+a12=a n+1−a n2=d2,所以,数列b n是公差为12d的等差数列,A对B错;对于C选项,a n+1+b n+1−a n+b n=a n+1−a n+b n+1−b n=d+d2=3d2,所以,数列a n+b n是公差为32d的等差数列,C对;对于D选项,a n+1−b n+1−a n−b n=a n+1−a n−b n+1−b n=d−d2=d2,所以,数列a n−b n是公差为12d的等差数列,D错.故选:AC.【变式3-2】4.(2021·全国·高二专题练习)等差数列{a n}的通项公式是a n=2n+1,其前n项和为S n10项的和.【答案】75【分析】先求得S n,然后求得S n n,进而求得数列10项的和.【详解】a n=2n+1,a1=3,S n=3+2n+12⋅n=n+2⋅n,所以S n n=n+2是首项为1+2=3,公差为1的等差数列,其前10项和为10×3+10×92×1=75.【变式3-2】5.(2022·全国·高三阶段练习(理))已知等差数列a n的前n项和为S n,S10=30,S20=70,则S110=___________.【答案】880【分析】设等差数列a n的公差为d为等差数列,且公差为d2,求出5d的值,可求得S110110的值,即可得解.【详解】设等差数列a n的公差为d,∵S n n=2n=a1+a n2,则S n+1n+1−S n n=a n+1+a12−a n+a12=d2,为等差数列,且公差为d2,所以,S2020−S1010=72−3=12=10×d2=5d,故S110110=S1010+100×d2=3+10×5d=3+10×12=8,所以,S110=880.故答案为:880.【变式3-2】6.(2021·安徽·高三阶段练习(理))在等差数列{a n}中,a1=1,其前n项和为S n,若S6−3S2=24,则S10=_____.【答案】100d,进而得S66−S22=4d=4,故S n n=n,进而得S n=n2,再计算S10即可.【详解】∵数列a n为等差数列,∴设其公差为d,又S66−S22=4d=4,解得:d=1,又∵S11=a1=1,∴S n n=n,即S n=n2∴S10=100故答案为:100.【变式3-2】7.(2021·全国·高二课时练习)设等差数列{a n}的前n项和为Sn,且Sm=-2,Sm+1=0,Sm+2=3,则m=________.【答案】4是等差数列,从而可得S m m+S m+2m+2=2S m+1m+1,然后将Sm=-2,Sm+1=0,Sm+2=3,代入可求出m的值【详解】因为Sn是等差数列{an}的前n所以S m m+S m+2m+2=2S m+1m+1,即−2m+3m+2=0,解得m=4.故答案为:4◆类型3奇偶数项的和为()A.6B.5C.4D.3【答案】D【解析】因为某等差数列共有10项,其奇数项之和为15,偶数项之和为30,因此数列的第一、三、五、七、九项的和,写出数列的第二、四、六、八、十项的和,都用首项和公差表示,两式相减,得到结果.5a1+20d=15,5a1+25d=30,d=3,选B【变式3-3】1.等差数列{a n}共有2n+1项,所有的奇数项之和为132,所有的偶数项之和为120,则n等于________.【答案】10【解析】因为等差数列共有2n+1项,所以S奇-S偶=a n+1=S2n+12n+1,即132-120=132+1202n+1,解得n=10.【变式3-3】2.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.【答案】117【解析】设等差数列{a n}的项数为2n+1,S奇=a1+a3+…+a2n+1=n+1a1+a2n+12=(n+1)a n+1,S偶=a2+a4+a6+…+a2n=n a2+a2n2=na n+1,所以S奇S偶=n+1n=4433,解得n=3,所以项数2n+1=7,S奇-S偶=a n+1,即a4=44-33=11为所求中间项.【变式3-3】3.(2022·全国·高三专题练习)已知等差数列a n共有2n+1项,其中奇数项之和为290,偶数项之和为261,则a n+1的值为().A.30B.29C.28D.27【答案】B【分析】由等差数列的求和公式与等差数列的性质求解即可【详解】奇数项共有n+1项,其和为a1+a2n+12⋅n+1=2a n+12⋅n+1=290,∴n+1a n+1=290.偶数项共有n项,其和为a2+a2n2⋅n=2a n+12⋅n=na n+1=261,∴a n+1=290−261=29.故选:B.【变式3-3】4.(2021·全国·高二专题练习)已知某等差数列a n的项数n为奇数,前三项与最后三项这六项之和为78,所有奇数项的和为65,则这个数列的项数n 为()A .9B .11C .13D .15【答案】A【分析】由等差数列的性质与求和公式求解即可【详解】由已知,a 1+a 2+a 3+a n +a n −1+a n −2=78,所以a 1+a n =26,所有奇数项的和为a 1+a 3+a 5+⋅⋅⋅+a n =a 1+a n22==65,于是可得n =9.故选:A.【变式3-3】5.(2022·全国·高二课时练习)已知等差数列a n 的前n 项和为377,项数n 为奇数,且前n 项中,奇数项的和与偶数项的和之比为7:6,则中间项为________.【答案】29【分析】由题意可得S 奇S偶=n +1n −1=76,求出n =13,再利用等差数列求和公式的性质可求得答案【详解】因为n 为奇数,所以S奇S 偶=n +1n −1=76,解得n =13.所以S 13=13a 7=377,所以a 7=29.故所求的中间项为29.故答案为:29题型4等差数列前n 项和S n 的最值【例题4-1】已知数列{a n }中,,744,2511-==+n n a a a 若其前n 项和为S n ,则S n 的最大值为()A.15B.750C.4765 D.2705【解析】由4a n+1=4a n -7,知数列{a n }为等差数列,公差d=-74,{a n }为单调递减数列,其通项公式为a n =25+(n-1)×(-74)=-74n +1074.当a n ≥0且a n+1<0时,S n 最大,得n≤1077且n>1077,所以n=15,即数列{a n }的前15项均为正值,第16项开始为负值,故S 15最大,S 15=15×25+15×142×(−74)=7654,故选C.【变式4-1】1.(2018·河南信阳·高二期中(文))数列{an}中,如果a n =49﹣2n ,则Sn 取最大值时,n 等于()A .23B .24C .25D .26【答案】B【分析】由题意,根据等差数列的求和公式,结合二次函数的性质,可得答案.【详解】由题意,可知数列a n 为等差数列,则S n ==48n −n 2=−n −242+242,则当n =24时,S n 取最大值.故选:B.【变式4-1】2.(2022·北京·高三开学考试)等差数列a n 的前n 项和为S n .已知a 1+2a 3=−1,S 4=0.则S n 的最小值为()A .−4B .−3C .−2D .−1【答案】A【分析】根据题意,列方程求得d =2,a 1=−3,再求解S n 的最小值即可.【详解】解:设等差数列a n 的公差为d ,因为等差数列a n 中,a 1+2a 3=−1,S 4=0,所以a 1+2a 3=3a 1+4d =−1S 4=0=4a 1+6d,解得d =2,a 1=−3,所以a 1=−3,a 2=−1,a 3=1,且n ≥3时a n >0,所以S n 的最小值为S 2=a 1+a 2=−4.故选:A【变式4-1】3.(2022·甘肃·永昌县第一高级中学)记S n 为等差数列{a n }的前n 项和,已知a 3=-7,S 4=-32.(1)求{a n }的公差d ;(2)求S n 的最小值.【答案】(1)d =2(2)-36【分析】(1)依题意得到方程组,解得即可;(2)由(1)求出a n 的通项公式及S n ,再根据二次函数的性质计算可得.(1)解:依题意得a 3=a 1+2d =-7S 4=4a 1+6d =-32,解得a 1=-11d =2,所以{a n }的公差d =2;(2)解:由(1)知a n =-11+2(n -1)=2n -13,所以S n =n (a 1+a n )2=n (-11+2n -13)2=n 2-12n =n -62-36,由二次函数性质得,当n =6时,(S n )min =-36.【变式4-1】4.已知数列{}n a 中1116,2(*)n n a a a n N +=-=-∈,则数列{}n a 的前n 项和n S 最大时,n 的值为()A .8B .7或8C .8或9D .9【答案】C 【解析】12n n a a +-=-,∴数列{}n a 是等差数列,并且公差为2-,()()21162172n n n S n n n -=⨯+⨯-=-+21728924n ⎛⎫=--+⎪⎝⎭,对称轴是178.52n ==,*n N ∈,所以当8n =或9时,n S 取得最大值.故选:C ◆类型2相邻两项异号【例题4-2】设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为()A .6B .7C .12D .13【答案】选C.【解析】因为在等差数列{a n }中a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.【变式4-2】1.(2022·浙江·高一期中)若等差数列满足a 7+a 8+a 9>0,a 7+a 10<0,则当a n 的前n 项和最大时,n 的值为________.【答案】8【分析】利用等差数列的性质可得3a8=a7+a8+a9>0,a8+a9=a7+a10<0,分析即得解【详解】∵等差数列{a n}满足a7+a8+a9>0,a7+a10<0∴3a8=a7+a8+a9>0,a8+ a9=a7+a10<0∴a8>0,a9<0∴d=a9−a8<0∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴当{a n}的前n项和最大时n的值为8故答案为:8【变式4-2】2.(2022·福建省福安市第一中学高二阶段练习)(多选)已知等差数列a n 中,a3+a9=0,公差d<0,则使其前n项和S n取得最大值的自然数n是()A.4B.5C.6D.7【答案】BC【分析】由等差数列a n中,a3+a9=0可求出a6=0,从而判断a5>0,a7<0,即可求得答案.【详解】∵在等差数列a n中,a3+a9=0,∴a6=0.又公差d<0,∴a5>0,a7<0,∴使其前n项和S n取得最大值的自然数n是5或6,故选:BC.【变式4-2】3.(2022·江苏·无锡市第一中学高三阶段练习)已知{a n}为等差数列,S n为{a n}的前n项和.若S10<0,a3+a7>0,则当S n取最大值时,n的值为()A.3B.4C.5D.6【答案】C【分析】根据等差数列的前n项和公式及等差数列下角标的性质即可求解.=5(a1+a10)=5(a5+a6)<0,所以a5+a6<0,又a3+a7=【详解】因为S10=10(a1+a10)22a5>0,所以a5>0,所以a6<0,则(S n)max=S5.故选:C.【变式4-2】4.(2022·全国·高三专题练习)设等差数列{a n}的前n项和为S n,且S4045>0,S4044<0,则S n取最小时,n=()A.4045B.4044C.2023D.2022【答案】D【分析】由已知,利用等差数列前n项和公式及其性质得a2023>0,a2022+a2023<0,进而得出结论.【详解】∵等差数列{a n }的前n 项和为S n ,且S 4045>0,S 4044<0,∴4045(a 1+a 4045)2=4045×2a 20232>0,4044(a 1+a 4044)2=2022(a 2022+a 2023)<0,∴a 2023>0,a 2022+a 2023<0,∴a 2023>0,公差d >0,则当n =2022时S n 最小.故选:D【变式4-2】5.等差数列{a n }的前n 项和为S n ,S 100>0,S 101<0,则满足a n a n +1<0的n =()A .50B .51C .100D .101【答案】A【解析】根据题意,等差数列{}n a 中,1000S >,1010S <,则有110010*********()10050()50()02a a S a a a a +⨯==+=+>,则有50510a a +>;又由110110151()10110102a a S a +⨯==<,则有510a <;则有500a >,若10n n a a +<,必有50n =;故选:A【变式4-2】6.已知等差数列{}n a 的前n 项和为n S ,若190S >,200S <,则11S a ,22S a ,…,2020S a 中最大的是()A .88S a B .99S a C .1100S a D .1111S a 【答案】C 【解析】由119191019()1902a a S a +==>,得到100a >;由12020101120()10()02a a S a a +==+<,得到110a <,∴等差数列{}n a 为递减数列,且1231011120a a a a a a >>>>>>>>,12100S S S <<<<,1011121920210S S S S S S >>>>>>>>,当10n ≤时,0,0n n S a >>,且10S 最大,10a 最小,所以110S a 最大;当1119n ≤≤时,0,0n n S a ><,此时0nnS a <;当20n =时,20200,0S a <<,且20100S S <<,20100a a >>,所以202010202010S S S a a a =<,综上所述,11S a ,22S a ,…,2020S a 中最大的是1100S a .故选:C .【变式4-2】7.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是()A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】由于191109510569()10()9050222a a a a S a S a a ++====+>,()<,所以可得5600a a >,<.这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<,而125125S S S a a a ⋯⋯<<<,>>>>0,,所以在912129...S S S a a a ,,,中最大的是55S a .故选C .◆类型3利用前n 项和的函数特征(二次函数)【例题4-3】在等差数列{a n }中,a 1>0,S 4=S 11,则S n 取最大值时n 的值是________.【答案】7或8【解析】设S n =An 2+Bn.由a 1>0,S 4=S 11可知,d <0,则d2=A <0.易知{S n }是y =Ax 2+Bx 图象上一系列孤立的点的纵坐标,y =Ax 2+Bx 的图象开口向下,对称轴是直线x =4+112=152.故S n 取最大值时n 的值是7或8.【变式4-3】1.在等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11.则当n 为多少时,S n 最大?【解析】方法一:设公差为d .由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.所以S n =d 2n 21=-a 113(n -7)2+4913a 1,因为a 1>0,所以-a 113<0.故当n =7时,S n 最大.方法二:易知S n =An 2+Bn 是关于n 的二次函数,由S 3=S 11,可知S n =An 2+Bn 的图象关于直线n =3+112=7对称.由方法一可知A =-a 113<0.故当n =7时,S n 最大.【变式4-3】2.在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值.【解析】由S 17=S 9,得25×17+17×17-12d =25×9+9×9-12d ,解得d =-2,法一公式法]S n =25n +nn -12×(-2)=-(n -13)2+169.由二次函数性质得,当n =13时,S n 有最大值169.法二邻项变号法]∵a 1=25>0n =25-2n -1≥0,n +1=25-2n ≤0,≤1312,≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.【变式4-3】3.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为()A .5B .6C .7D .8【答案】B【解析】由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d221的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.【变式4-3】4.(2022·全国·高二课时练习)已知等差数列a n 的前n 项和为S n ,若a 2+a 5=24,S 3=S 9,求S n 的最大值.【答案】72【分析】由题意可求出数列的首项和公差,即可求得数列的S n ,结合二次函数性质,求得答案.【详解】解法一(函数法):等差数列a n 中,由S 3=S 9,得a 4+a 5+⋅⋅⋅+a 9=0,则a 6+a 7=0.又a 2+a 5=24,设数列a n 的公差为d ,可得a 1+5d +a 1+6d =0a 1+d +a 1+4d =24,解得a 1=22d =−4,所以S n =−2n 2+24n =−2n −62+72,故当n =6时,S n 有最大值,为72.解法二(通项变号法):由S 3=S 9,得a 4+a 5+⋅⋅⋅+a 9=0,则a 6+a 7=0,又a 2+a 5=24,可得a 1+5d +a 1+6d =0a 1+d +a 1+4d =24,解得a 1=22>0d =−4<0,故结合a 6+a 7=0,可知数列a n 的前6项为正,从第7项开始为负,所以当n =6时,S n 有最大值,且最大值为S 6=3a 1+a 6=3a 2+a 5=72.【变式4-3】5.(2022·全国·高二课时练习)设a n 为等差数列,a 1=13,且前3项和与前11项和相等.问:前多少项和最大?并求前n 项和的最大值.【答案】前7项和最大,最大值为49【分析】先根据已知条件求出等差数列的公差,再表示出求和公式,配方后利用二次函数的性质可求得结果.【详解】设等差数列a n 的公差为d ,因为a 1=13,且前3项和与前11项和相等,所以3×13+3×22d =11×13+11×102d ,解得d =−2,所以前n 项和为S n =na 1+n (n −1)2d =13n +n (n −1)2×(−2)=−n 2+14n =−(n −7)2+49,所以当n =7时,前n 项和最大为49,◆类型4S n >0和S n <0问题【例题4-4】若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.【答案】405【解析】由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n}的前203项都是负数,那么2a203=a1+a405<0,所以S405<0,所以使前n项和S n<0的最大自然数n=405.【变式4-4】1.在等差数列{a n}中,a10<0,a11>0,且a11>|a10|,则满足S n<0的n的最大值为________.【答案】19【解析】因为a10<0,a11>0,且a11>|a10|,所以a11>-a10,a1+a20=a10+a11>0,所以S20=20a1+a202>0.又因为a10+a10<0,所以S19=19×a10+a102=19a10<0,故满足S n<0的n的最大值为19.【变式4-4】2.已知数列{a n}是等差数列,若a9+3a1<0,a10·a11<0,且数列{a n}的前n项和S n 有最大值,那么S n取得最小正值时n等于()A.1B.20C.10D.19【答案】D【解析】因为等差数列的前n项和有最大值,故可得d<0因为a9+3a1<0,故可得a9+a10+a11+a12<0,2(a10+a11)<0,a10+a11<0又因为a10·a11<0,故可得a10>0,a11<0又因为S n=19a n>0,S20=10(a10+a11)<0,故S n取得最小正值时n等于19.故选:D.【变式4-4】3.(2022·全国·高一专题练习)等差数列a n的前n项和为S n,公差为d,已知a1<0且2a1+7d=0.则使S n>0成立的最小正整数n的值为______.【答案】9【分析】先由2a1+7d=0求得d=−27a1,由S n>0求得n的取值范围,从而求得正确答案.【详解】因为2a1+7d=0,d=−27a1,所以S n=na1=−a17n2+87a1n,又a1<0,由S n=−a17n2+87a1n>0,可得n2−8n=n n−8>0,即n>8,所以使S n>0成立的最小正整数n的值为9.故答案为:9【变式4-4】4.(2022·广东韶关一模)设S n为等差数列{a n}的前n项和,a6+a7=1,则S12=________,若a7<0,则使得不等式S n<0成立的最小整数n=________.【答案】613【解析】根据{a n }为等差数列,且a 6+a 7=1,得S 12=6(a 6+a 7)=6;若a 7<0,则S 13=(a 1+a 13)×132=13a 7<0,又S 12>0,所以使不等式S n <0成立的最小整数n =13.题型5等差数列含有绝对值的求和【例题5】在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.【答案】60【解析】由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.【变式5-1】1.记S n 为等差数列{a n }的前n 项和,已知a 2=−3a 3,S 3=−9.(1)求{a n }的通项公式;(2)求|S n |的最小值,以及此时n 的值.【答案】(1)a n =4n −11.(2)|S n |的最小值及对应n 均为4.【分析】(1)设公差,由已知结合等差数列通项公式、前n 项和公式求基本量,写出通项公式即可.(2)由{a n }的前n 项和公式,根据|S n |的非负性质,易知最小值出现在S n 零点附近的自然数n 处,代入相应n 值计算即可.(1)设等差数列{a n }的公差为d ,由题意,{a 1+d =−3(a 1+2d )3a 1+3d =−9,,解得a 1=−7,d =4,∴a n =−7+4(n −1)=4n −11.(2)由(1)知,S n =n (−7+4n −11)2=n (2n −9),由f (x )=x (2x −9)的零点为0和92,∴|f (x )|的最小值是靠近零点处的函数值,又|S 1|=7,|S 4|=4,|S 5|=5,∴当n =4时,|S n |取得最小值为4.【变式5-1】2.(2022·全国·高二课时练习)记S n 是等差数列{a n }的前n 项和,若S 5=−35,S 7=−21.(1)求{a n}的通项公式,并求S n的最小值;(2)设b n=a n,求数列{b n}的前n项和T n.【答案】(1)a n=4n−19,-36;(2)T n=17n−2n2,n≤4,2n2−17n+72,n≥5.【分析】(1)求出a n=4n−19,再求出n=1,2,3,4时a n<0,n≥5时,a n>0,即得解;(2)对n分n≤4和n≥5两种情况讨论得解.(1)解:设{a n}的公差为d,则5a1+5×42d=−35,7a1+7×62d=−21,∴a1=−15,d=4,∴a n=−15+4(n−1)=4n−19.由a n=4n−19≥0得,n≥194,∴n=1,2,3,4时a n<0,n≥5时,a n>0,∴S n的最小值为S4=4a1+4×32d=−36.(2)解:由(1)知,当n≤4时,b n=|a n|=−a n;n≥5时,b n=|a n|=a n,S n=na1+n(n−1)2d=2n2−17n,当n≤4时,T n=−S n=17n−2n2.当n≥5时,T n=S n−2S4=2n2−17n−2×(−36)=2n2−17n+72,∴T n= 17n−2n2,n≤4,2n2−17n+72,n≥5.【变式5-1】3.(2021·北京·海淀教师进修学校附属实验学校高二期末)在①a1=−8,a2=−7,a n+1=ka n+1n∈N∗,k∈R②若{a n}为等差数列,且a3=−6,a7=−2③设数列{a n}的前n项和为S n,且S n=12n2−∈N∗.这三个条件中任选一个,补充在下面问题中,并作答(1)求数列{a n}的通项公式(2)求数列{a n}的前n项和为S n的最小值及n的值(3)记T n=a1+a2+a3+...+a n,求T20【答案】(1)a n=n−9(2)当n=8或n=9时,S n取得最小值为−36.(3)102【分析】(1)选①结合等差数列的定义求得a n;选②通过求a1,d来求得a n;选③利用a n= S1,n=1S n−S n−1,n≥2求得a n.(2)由a n≤0求得S n的最小值以及对应n的值.(3)结合等差数列前n项和公式求得T20.。

数列中职练习题

数列中职练习题

数列中职练习题数列在数学中是一种重要的概念,广泛应用于各个领域。

掌握数列的基本性质和操作方法,对于数学学习和问题解决都能起到很大的帮助。

以下是一些数列中的职练习题,帮助读者加深对数列的理解和运用。

题目一:求等差数列的通项公式已知等差数列的首项为a,公差为d,求第n项的通项公式。

解析:等差数列的通项公式可以通过首项和公差的值来确定。

设第n项的通项公式为An,则有:An = a + (n-1)d题目二:求等差数列的前n项和已知等差数列的首项为a,公差为d,求前n项的和Sn。

解析:等差数列的前n项和可以通过首项、公差和项数来计算。

设前n项的和为Sn,则有:Sn = n/2 * [2a + (n-1)d]题目三:求等比数列的通项公式已知等比数列的首项为a,公比为q,求第n项的通项公式。

解析:等比数列的通项公式可以通过首项和公比的值来确定。

设第n项的通项公式为An,则有:An = a * q^(n-1)题目四:求等比数列的前n项和已知等比数列的首项为a,公比为q,求前n项的和Sn。

解析:等比数列的前n项和可以通过首项、公比和项数来计算。

设前n项的和为Sn,则有:Sn = a * (1 - q^n) / (1 - q)题目五:给定等差数列前两项和前四项的和,求首项和公差已知等差数列的前两项之和为S2,前四项之和为S4,求等差数列的首项a和公差d。

解析:根据等差数列的性质,可以得到以下方程:2a + d = S24a + 6d = S4通过联立以上方程,可以解得首项a和公差d的值。

题目六:给定等比数列前两项和前四项的乘积,求首项和公比已知等比数列的前两项的乘积为P2,前四项的乘积为P4,求等比数列的首项a和公比q。

解析:根据等比数列的性质,可以得到以下方程:a * q = P2a * q^3 = P4通过联立以上方程,可以解得首项a和公比q的值。

通过以上的练习题,可以帮助读者加深对数列的理解和运用。

同时,数列作为一种重要的数学工具,在实际应用中也具有广泛的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 在小于100 的正整数的集合中,以下各数是 7 的倍数 7,7×2,7×3,…,7×14.
即 7,14,28,…,98.
显然,这是一个等差数列.其中 a1=7,d =7,项数为不
大于
100 7
的最大整数值,即 n=14,a14=98 .
因此
S14 =
14 (7 98) 735 2
即在小于100 的正整数的集合中,有14个数是 7 的倍数,
将各项次序反过来,又可写成 S7 = 10+9+8+7+6+5+4 ②
把①②两式对应项相加,和都等于14,
所以把①②两式分别相加,得
2 S7 =(4+10)×7
S7
(4
10) 2
7
S7 = 49.
3
等差数列的前 n 项和公式
一般地,数列 {an } 的前 n 项和记作 Sn ,即 Sn = a1 + a2 + a3 + … + an .
7
例 1 在小于 100 的正整数的集合中,有多少个数 是 7 的倍数?并求它们的和.
分析: (1)在小于 100 的正整数的集合中,7 的倍数有哪 些?共有多少个? (2)这些数构成了一个什么样的数列? (3)如何用数列符号表示已知量?所求量?
8
例 1 在小于 100 的正整数的集合中,有多少个数 是 7 的倍数?并求它们的和.
可以得到等差数列的前 n 项和公式
Sn =
n (a1+an) 2

等差数列各项的和等于首末两项的和乘以项数除以 2 .
4
等差数列的前n 项和公式
Sn =
n (a1 + an) . 2
因为 an = a1+(n-1)d,所以上面公式又可写成
Sn = na1+
n (n-1)
2
d.
5
根据下列各题条件,求相应等差数列 {an } 的 Sn :
(1)a1=5,an=95,n=10;
(2)a1=100,d=-2,n=50;
(3)a1=
2 3
,an
=-3 2
,n =14;
(4)a1=14.5,d =0.7,an= 32.
6
一个堆放铅笔的 V 形架的最下面一层放一支 铅笔,往上每一层都比它下面一层多放一支,最 上面放 120 支, 这个 V 形架上共放多少支铅笔?
数 列
6.2.2
数列 数列
数列等差数列的前 n 项和: 李天乐乐 为您呈献!1
问题 某工厂的仓库里堆放一批钢管,共堆放了 7 层, 从上到下每层钢管的数为 4,5,6,7,8,9,10 , 怎样求得钢管的总数呢? 如果钢管很多,怎么办?
2
解 用S7来表示钢管的总数,则 S7 = 4+5+6+7+8+9+10 ①
它们的和等于 735 . 9
例 2 在等差数列 -5,-1,3,7,… 中,前多少项 的和是 345?
解 这里 a1=-5,d =-1-(-5)=4,Sn =345.
根据等差数列的前 n 项和公式得
345 = -5n + n (n-1) ×4, 2
整理得 2n2 -7n -345 = 0,


n1 =
15,n2 =
- 23 2
(不合题意Байду номын сангаас舍去).
所以 n = 15 .
即这个数列的前 15 项的和是 345 .
10
等差数列的前 n 项和公式
Sn =
n (a1 + an) . 2
Sn = na1+
n (n-1) d .
2
11
教材 P 16 ,练习A 组 第 1,2,3 题.
12
相关文档
最新文档