电子技术课程设计报告 音频信号分析仪
音频分析仪

音频分析仪音频分析仪是一种用于分析、处理和测量声音信号的仪器。
它可以帮助我们深入了解声音的特性和特征,从而应用于各种领域,如音乐、语音识别、语音合成、声音效果设计等。
本文将介绍音频分析仪的原理、应用以及发展趋势。
音频分析仪的原理基于信号处理和频谱分析。
它通过接收声音信号,并将其转换为数字信号进行处理。
然后,它使用不同的算法和技术来分析声音信号的频谱、波形、能量分布等特性。
通过这些分析结果,我们可以了解声音信号的频域、时域以及各种参数的变化情况。
音频分析仪在音乐领域中有着广泛的应用。
音乐制作过程中,我们可以使用音频分析仪来分析乐器的音色特征,以及乐曲中各个音轨的频谱分布和能量衰减情况。
通过这些分析结果,我们可以对声音进行混音、均衡器、压缩器等处理,从而达到更好的音质效果。
此外,音频分析仪还可以帮助我们分析音乐的节奏、音高以及和声等参数,从而提供更多的音乐信息。
在语音识别和语音合成领域,音频分析仪也发挥着重要的作用。
在语音识别中,音频分析仪可以帮助我们提取音频信号的特征向量,以便用于识别和辨别语音。
通过分析声音的频谱、波形以及声学特征,我们可以将声音信号与语音库中的模板进行比对,从而实现准确的语音识别。
而在语音合成中,音频分析仪可以帮助我们分析和合成不同音节、音调和音色的声音,从而实现自然流畅的语音生成。
除了音乐和语音领域,音频分析仪还可以应用于声音效果设计、噪声控制、通信系统等多个领域。
在声音效果设计中,音频分析仪可以帮助我们对声音进行特效处理,如回声、混响、剧院音效等。
在噪声控制方面,音频分析仪可以帮助我们分析噪声的频谱和能量分布,以便采取相应的降噪措施。
在通信系统中,音频分析仪可以帮助我们分析语音信号的质量和可理解度,对通信质量进行评估和优化。
随着科技的不断发展,音频分析仪也在不断演进和创新。
一方面,随着计算能力的提升,音频分析仪可以处理更复杂的音频信号,并提取出更多的声学特征。
另一方面,借助机器学习和深度学习的技术,音频分析仪可以实现更准确、自动化的音频处理和分析。
音频信号分析仪设计

215音频信号分析仪设计Design of Audio Frequency Analyser温如春黄朝志Wen RuchunHuang Chaozhi(江西理工大学机电工程学院, 江西赣州341000)(Mechanical & Electronical Institute, Jiangxi University of Science and Technology, JiangxiGanzhou341000)摘要: 本系统利用DFT法对音频信号进行频谱分析,应用S3C44B0X芯片作为系统的核心,再配以采样保持、程控放大等功能模块,构成了一个音频信号分析仪。
频谱测量频率范围为100Hz-10KHz,频谱分辨率达到20HZ。
关键字: S3C44B0X; 频谱分析; DFT中图分类号:TP368.2 文献标识码:B文章编号:1671-4792-(2007)9-0048-02Abstract: This system use DFT technics to analyse audio frequency. The System use S3C44B0X as the kernel,and also with sampling module, programable amplifier module etc to composing an audio frequency analyzer. It’s spectrum range from 100Hz-10KHz, distinguish efficiency attain 20 HZ.Keyword: S3C44B0X; Spectrum Analyse; DFT0引言19世纪60年代,James Maxwell通过计算推断出存在着能够通过真空传输能量的电磁波。
此后工程师和科学家们一直在寻求创新的频率(RF)测试技术方法。
常用的频率分析方法有: 扫频法、数字滤波法、FFT法。
音频技术实验报告

一、实验目的1. 理解音频信号的基本特性及其在数字音频处理中的应用。
2. 掌握音频信号的采集、处理和播放的基本方法。
3. 学习使用音频信号处理软件进行音频信号的编辑和效果处理。
4. 分析音频信号在传输和存储过程中的失真和干扰。
二、实验原理音频技术是指利用电子设备对声音信号进行采集、处理、存储和播放的技术。
音频信号是指由声波产生的电信号,其频率范围一般在20Hz到20kHz之间。
数字音频处理技术是将模拟音频信号转换为数字信号,进行编辑、处理和播放的技术。
三、实验仪器与设备1. 音频信号发生器2. 音频信号采集卡3. 音频播放器4. 音频信号处理软件(如Audacity、Adobe Audition等)5. 示波器6. 数据采集器四、实验内容1. 音频信号的采集(1)使用音频信号发生器产生一个纯音信号,频率为1kHz。
(2)使用音频信号采集卡将纯音信号采集到计算机中。
(3)使用示波器观察采集到的音频信号波形。
2. 音频信号的编辑(1)使用音频信号处理软件打开采集到的音频信号。
(2)对音频信号进行剪辑、复制、粘贴等编辑操作。
(3)调整音频信号的音量、音调、立体声平衡等参数。
3. 音频信号的处理(1)使用音频信号处理软件对音频信号进行降噪、均衡、混响等效果处理。
(2)分析处理后的音频信号,观察效果处理对音频信号的影响。
4. 音频信号的播放(1)使用音频播放器播放处理后的音频信号。
(2)比较处理前后的音频信号,评估效果处理对音频信号的影响。
5. 音频信号在传输和存储过程中的失真和干扰(1)使用数据采集器对音频信号进行采样,观察采样过程中的失真和干扰。
(2)分析失真和干扰的原因,提出相应的解决方法。
五、实验结果与分析1. 音频信号的采集实验结果表明,使用音频信号采集卡可以成功采集到音频信号,并使用示波器观察到音频信号的波形。
2. 音频信号的编辑实验结果表明,使用音频信号处理软件可以对音频信号进行剪辑、复制、粘贴等编辑操作,调整音频信号的音量、音调、立体声平衡等参数。
音频信号分析仪设计

。
—
引百
增益
鬲 用 的 狈 翠 分价
r 、 m I ; 1 . T: t i 革. J
…
。L …
I l
l
T
H h P口 C 机 接
I 。
量 让
Байду номын сангаас
.
七 』 池 ] 晡
r =
t }
卜
r r 个 H ’’
关键 字 : 34 B X S C 4 O;频谱 分 析 : F DT 中 图分 类 号 :T 3 82 P 6 . 文 献标 识 码 :B 文 章 编 号 :1 7 — 7 2 (0 79 0 4 — 2 6 1 4 9 一 2 0 )— 0 8 0
Ab ta t h s s s e s F e h i s t n l s u i r q e c . T e y t m u e S C 4 O s t e k r e , s r c :T i y t m u e D T t c n c o a a y e a d o f e u n y h S s e s 3 4 B X a h e n l
s sp tr m r nge ec u a fr l Hz O t om OO -l Ktz, di ti ui e ic nc at ai 20 Z. s ng sh ff ie y t n H
Ke wo d :S C 4 O ; S e t u n l s v rs 3 4 B X p c r m A a y e;D T F
仪 析 分 丐 口
信
设
计
( 江西理工大学机 电工程学院 ,江 西 赣州
G n h u 3 10 ) a z o 4 0 0
音频实验报告

实验名称:音频信号处理与分析实验日期:2023年4月10日实验地点:实验室A实验人员:张三、李四、王五一、实验目的1. 理解音频信号的基本概念和特性。
2. 掌握音频信号的采集、处理和分析方法。
3. 熟悉音频信号处理软件的使用。
4. 通过实验,提高对音频信号处理技术的实际操作能力。
二、实验原理音频信号是声波在空气中的传播形式,其频率范围一般在20Hz到20kHz之间。
音频信号处理技术主要包括信号采集、信号处理和信号分析三个方面。
本实验通过采集音频信号,对其进行处理和分析,以达到实验目的。
三、实验器材1. 音频采集卡2. 电脑3. 音频信号处理软件(如Audacity、Adobe Audition等)4. 音频信号发生器5. 音频信号分析仪四、实验步骤1. 信号采集(1)将音频采集卡插入电脑,打开音频信号处理软件。
(2)设置采样频率、采样位数和声道数等参数。
(3)连接音频信号发生器,输出一个标准音频信号。
(4)将音频信号发生器的输出端与音频采集卡的输入端连接。
(5)在软件中开始采集音频信号,记录采集时间。
2. 信号处理(1)打开采集到的音频文件,查看其波形图。
(2)对音频信号进行降噪处理,去除背景噪声。
(3)对音频信号进行均衡处理,调整音频的频率响应。
(4)对音频信号进行压缩处理,提高音频的动态范围。
3. 信号分析(1)使用音频信号分析仪对音频信号进行频谱分析。
(2)观察音频信号的频谱图,分析其频率成分。
(3)计算音频信号的功率谱密度,分析其能量分布。
(4)对音频信号进行时域分析,观察其时域波形。
五、实验结果与分析1. 信号采集实验成功采集到了标准音频信号,采集时间为5分钟。
2. 信号处理(1)降噪处理:经过降噪处理,音频信号中的背景噪声明显降低,提高了信号质量。
(2)均衡处理:通过均衡处理,调整了音频信号的频率响应,使其更加均衡。
(3)压缩处理:经过压缩处理,音频信号的动态范围得到了提高,音质更加清晰。
基于声卡的音频信号分析仪的设计

基于声卡的音频信号分析仪的设计————————————————————————————————作者:————————————————————————————————日期:2an基于声卡的音频信号分析仪的设计摘要本文主要介绍如何用普通的计算机声卡代替商用数据采集卡,利用声卡的DSP技术和LabVIEW的多线程技术实现音频信号的数据采集,开发基于PC机声卡的虚拟音频信号分析仪.该系统能够正确采集声卡设计频率范围内的信号,实现音频信号时域分析和频谱分析功能.关键词声卡数据采集信号分析LabVIEW- I -A general audio classifier based on human perception motivated modelAbstractThe audio channel conveys rich clues for content—based multimedia indexing。
Interesting audio analysis includes, besides widely known speech recognition and speaker identification problems,speech/music segmentation, speaker gender detection,special effect recognition such as gun shots or car pursuit, and so on。
All these problems can be considered as an audio classification problem which needs to generate a label from low audio signal analysis。
While most audio analysis techniques in the literature are problem specific,we propose in this paper a general framework for audio classification。
音频信号分析仪设计

音频信号分析仪设计学院:电子信息学院专业:电子信息工程姓名:学号:指导老师:摘要本音频信号分析仪由STM32为主控制器,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT快速傅氏变换运算,在时域和频域对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。
该系统能够精确测量的音频信号频率范围为20Hz-10KHz,其幅度范围为50mVpp-5Vpp,分辨力分为20Hz和100Hz两档。
测量功率精确度高达5%,并且能够准确的测量周期信号的周期,是理想的音频信号分析仪的解决方案。
关键词:FFT STM32 音频信号分析AbstractThe audio signal analyzer is based on a STM32 microprocessor, through the AD converter for audio signal sampling, the continuous signal discrete, and then through the FFT fast Fourier transform computing, in the time domain and frequency domain of the various audio frequency signal weight and power, and other indicators for analysis and processing, and then through the high-resolution LCD display signals in the spectrum. The system can accurately measure the audio signal frequency range of 20 Hz-10KHz, the range of 50mVpp-5Vpp,resolution of 20 Hz and 100 Hz correspondent. Power measurement accuracy up to5%, and be able to accurately measuring the periodic signal cycle is the ideal audio signal analyzer solution.Key words:FFT STM32 audio signal analyzing目录一、系统设计方案与论证 (1)1.1 系统总体设计 (1)1.2 CPU的选择 (1)1.3 前端信号调理电路 (2)1.4 AD转换模块 (2)1.5 LCD液晶显示模块 (2)二、硬件设计 (2)2.1 阻抗匹配电路 (2)2.2 峰值检测电路 (3)2.3 电压抬高电路 (4)2.4 可变增益放大电路 (4)2.5 低通滤波电路 (6)三、软件设计 (6)3.1 FFT程序 (7)3.2 功率谱测量方法 (8)3.3 周期性判断方法 (9)3.4 ADC采样程序 (9)3.5 LCD显示程序 (10)四、系统调试 (10)4.1 硬件调试 (10)4.2 软件调试 (13)4.3 总体调试 (14)五、测试结果 (15)六、总结 (16)附录 (16)参考文献 (20)一、系统设计方案与论证1.1 系统总体设计总体设计思路:信号经过电压跟随器后进入峰值检测然后经过两个电压比较器把输入信号分2段,然后分别进入不同的增益放大电路进行放大,经过电压抬升后进入ADC进行采样,然后利用STM32进行软件编程来进行FFT计算,判断是否为周期信号,求出输入信号的频率、功率、频谱等,然后在同步显示在液晶屏上。
电子设计大赛一等奖作品——音频信号分析仪

Abstract: The audio signal analyzer is based on a 32-bit MCU controller, through the AD converter for audio signal sampling, the continuous signal discrete, and then through the FFT fast Fourier transform computing, in the time domain and frequency domain of the various audio frequency signal weight and power, and other indicators for analysis and processing, and then through the high-resolution LCD display signals in the spectrum. The system can accurately measure the audio signal frequency range of 20 Hz-10KHz, the range of 5-5Vpp mVpp, resolution of 20 Hz and 100 Hz correspondent. Power measurement accuracy up to 1%, and be able to accurately measuring the periodic signal cycle is the ideal audio signal analyzer solution.
1.3 周期性判别与测量方法比较与选择
对于普通的音频信号,频率分量一般较多,它不具有周期性。测量周期可以在时域测 量也可以在频域测量,但是由于频域测量周期性要求某些频率点具有由规律的零点或接近零 点出现,所以对于较为复杂的,频率分量较多且功率分布较均匀且低信号就无法正确的分析 其周期性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南机电高等专科学校电子技术课程设计报告设计课题:音频信号分析仪
音频信号分析仪
本音频信号分析仪由32位MCU为主控制器,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT快速傅氏变换运算,在时域和频域对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。
该系统能够精确测量的音频信号频率范围为20Hz-10KHz,其幅度范围为5mVpp-5Vpp,分辨力分为20Hz和100Hz两档。
测量功率精确度高达1%,并且能够准确的测量周期信号的周期,是理想的音频信号分析仪的解决方案。
1方案论证与比较
1.1 采样方法比较与选择
方案一、用DDS芯片配合FIFO对信号进行采集,通过DDS集成芯片产生一个频率稳定度和精度相当高的信号作为FIFO的时钟,然后由FIFO对A/D 转换的结果进行采集和存储,最后送MCU处理。
方案二、直接由32位MCU的定时中断进行信号的采集,然后对信号分析。
由于32位MCU -LPC2148是60M的单指令周期处理器,所以其定时精确度为16.7ns,已经远远可以实现我们的40.96KHz的采样率,而且控制方便成本便宜,所以我们选择由MCU直接采样。
1.2 处理器的比较与选择
由于快速傅立叶变换FFT算法设计大量的浮点运算,由于一个浮点占用四个字节,所以要占用大量的内存,同时浮点运算时间很慢,所以采用普通的8位MCU一般难以在一定的时间内完成运算,所以综合内存的大小以及运算速度,我们采用Philips 的32位的单片机LPC2148,它拥有32K的RAM,并且时钟频率高达60M,所以对于浮点运算不论是在速度上还是在内存上都能够很快的处
理。
1.3 周期性判别与测量方法比较与选择
对于普通的音频信号,频率分量一般较多,它不具有周期性。
测量周期可以在时域测量也可以在频域测量,但是由于频域测量周期性要求某些频率点具有由规律的零点或接近零点出现,所以对于较为复杂的,频率分量较多且功率分布较均匀且低信号就无法正确的分析其周期性。
而在时域分析信号,我们可以先对信号进行处理,然后假定具有周期性,然后测出频率,把采样的信号进行周期均值法和定点分析法的分析后即可以判别出其周期性。
综上,我们选择信号在时域进行周期性分析和周期性测量。
对于一般的音频信号,其时域变化是不规则的,所以没有周期性。
而对于单频信号或者由多个具有最小公倍数的频率组合的多频信号具有周期性。
这样我们可以在频域对信号的频谱进行定量分析,从而得出其周期性。
而我们通过先假设信号是周期的,然后算出频率值,然后在用此频率对信号进行采样,采取连续两个周期的信号,对其值进行逐次比较和平均比较,若相差太远,则认为不是周期信号,若相差不远(约5%),则可以认为是周期信号。
2 系统设计
2.1 总体设计
音频信号经过一个由运放和电阻组成的50 Ohm阻抗匹配网络后,经由量程控制模块进行处理,若是一般的100mV-5V的电压,我们选择直通,也就是说信
号没有衰减或者放大,但是若信号太小,12位的A/D转换器在2.5V参考电压的条件下的最小分辨力为1mV左右,所以如果选择直通的话其离散化处理的误差将会很大,所以若是采集到信号后发现其值太小,在20mV-250mV之间的话,我们可以将其认定为小信号,从而选择信号经过20倍增益的放大器后再进行A/D采样。
经过12位A/D转换器ADS7819转换后的数字信号经由32位MCU进行FFT 变换和处理,分析其频谱特性和各个频率点的功率值,然后将这些值送由Atmega16进行显示。
信号由32 位MCU分析后判断其周期性,然后由Atmegal6进行测量,然后进行显示。
总体设计框架图
2.2 单元电路设计
2.2.1 前级阻抗匹配和放大电路设计
信号输入后通过R5,R6两个100Ohm的电阻和一个高精度仪表运放AD620实现跟随作用,由于理想运放的输入阻抗为无穷大,所以输入阻抗即为:R5//R6=50Ohm,阻抗匹配后的通过继电器控制是对信号直接送给AD转换还是放大20倍后再进行AD转换。
在这道题目里,需要检测各频率分量及其功率,并且要测量正弦信号的失真度,这就要求在对小信号进行放大时,要尽可能少的引入信号的放大失真。
正弦信号的理论计算失真度为零,对引入的信号失真非常灵敏,所以对信号的放大,运放的选择是个重点。
我们选择的运放是TI公司的低噪声、低失真的仪表放大器INA217,其失真度在频率为1KHz,增益为20dB(100倍放大)时仅为0.004%,其内部原理图如下图所示。
其中放大器A1的输出电压计算公式为
OUT1=1+(R1/RG)*VIN+
同理, OUT2=1+(R2/RG)*VIN--
R3、R4、R5、R6及A3构成减法器,最后得到输出公式
VOUT=(VIN2-VIN1)*[1+(R1+R2)/RG]
R1=R2=5K,取RG=526,从而放大倍数为20。
2.2.2AD转换及控制模块电路设计
采用12位AD转换器ADS7819进行转换,将转换的数据送32位控制器进行处理。
2.2.3 功率谱测量
功率谱测量主要通过对音频信号进行离散化处理,通过FFT运算,求出信号各个离散频率点的功率值,然后得到离散化的功率谱。
由于题目要求频率分辨力为100Hz和20Hz两个档,这说明在进行FFT运算前必须通过调整采样频率(fK)和采样的点数(N),使其基波频率f为100Hz和20Hz。
根据频率分辨率与采样频率和采样点数的关系:
f=fk/N;
可以得知, fk=N*f;
又根据采样定理,采样频率fk必须不小于信号频率fm的2倍,即:
fk>=2fm;
题目要求的最大频率为10KHz,所以采样频率必须大于20KHz,考虑到FFT 运算在2的次数的点数时的效率较高,所以我们在20Hz档时选择40.96KHz采样率,采集2048个点,而在100档时我们选择51.2KHz采样率,采集512个点。
通过FFT 分析出不同的频率点对应的功率后,就可以画出其功率谱,并可以在频域计算其总功率。
3 软件设计
主控制芯片为LPC2148,测量周期为Atmega16实现,由于处理器速度较快,所以采用c语言编程方便简单.软件流程图如下:
主流程图周期性分析和测量流程图
4系统测试
4.1 总功率测量(室温条件下)
输入信号
频
率
幅
度
测量时
域总功率(w)
测量频
域总功率
(w)
理
论值
估算
误差
正弦波100Hz
1
Vpp
0.127 0.129
0.125 1.2% 1KH
1
Vpp 0.126
0.129
0.125 1.3%
音
频信号20Hz-10KHz
20mVpp
-5Vpp 0.783 0.761 X 《5%
1.803 1.777 X 《5% 结果分析:由于实验室提供的能够模仿音频信号的且能方便测量的信号只
有正弦信号,所以我们用一款比较差点的信号发生器产生信号,然后进行测量,发现误差不达,在+-5%以内。
我们以音频信号进行测量,由于其实际值无法测量,所以我们只能根据时域和频域以及估计其误差,都在5%以内。
4.2 单个频率分量测量(室温条件下)
输入信号频率幅度最
大功率
频点
最大
功率频点
功率
次大
功率频点
次大
功率频点
功率
正弦波
500H
z
100m
Vpp 500Hz
1.20
mw 520Hz
0.04m
W
正弦波5KHz 1Vpp
5KHz 120mw 5.02KHz
3.56m
w
音频信号
20Hz
-10K
X
880Hz 23mw 600Hz 4.3mw
结果分析:我们首先以理论上单一频率的正弦波为输入信号,在理想状况下,其频谱只在正弦波频率上有值,而由于有干扰,所以在其他频点也有很小的功率。
音频信号由于有多个频点,所以没有一定的规律性。
由于音频信号波动较大,没有一定的规律,且实验室没有专门配置测量仪器,所以我们只好以正弦波和三角波作为信号进行定量分析测量,以及对音频信号进行定性的分析和测量。
我们发现其数字和用电脑模拟的结果符合得很近。
5 结论
由于系统架构设计合理,功能电路实现较好,系统性能优良、稳定,较好地达到了题目要求的各项指标。
参考文献:
《信号与系统》,ALAN V.OPPENHEIM著,西安:西安交通大学出版社,1997年;
《数字图像处理学》,元秋奇著,北京:电子工业出版社,2000年;
《模拟电子线路基础》,吴运昌著,广州:华南理工大学出版社,2004年;
《数字电子技术基础》,阎石著,北京:高等教育出版社,1997年;
《数据结构与算法》,张晓丽等著,北京:机械工业出版社,2002年;
《ARM&Linux嵌入式系统教程》,马忠梅等著,北京:北京航空航天大学出版社,2004年;
《单片机原理及应用》,李建忠著,西安:西安电子科技大学,2002年;
附录:
附1:元器件明细表:
1、LPC2148
2、ATMEGA16
3、AD620
4、ADS7819
5、液晶320*240
附2:仪器设备清单
1、低频信号发生器
2、数字万用表
3、失真度测量仪
4、数字示波器
5、稳压电源。