2018年高考总复习课时作业(文科)(六十)古典概型
北师版数学高一-北师大版必修3课时作业18 古典概型的特征和概率计算公式

课时作业18 古典概型的特征和概率计算公式(限时:10分钟)1.下列事件属于古典概型是( )A .任意抛掷两颗均匀的正方体骰子,所得点数之和作为基本事件B .篮球运动员投篮,观察他是否投中C .测量一杯水中水分子的个数D .在4个完全相同的小球中任取1个解析:判断一个事件是否为古典概型,主要看它是否具有古典概型的两个特征:有限性和等可能性.答案:D2.广州亚运会要在某高校的8名懂外文的志愿者中选1名,其中有3人懂日文,则选到懂日文的志愿者的概率为( )A.38B.13C.18D.15 解析:8名懂外文的志愿者中随机选1名有8个基本事件,“选到懂日文的志愿者”包含3个基本事件,因此所求概率为38.答案:A3.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为__________.解析:甲、乙、丙三人随机地站成一排有(甲乙丙)、(甲丙乙)、(乙甲丙)、(乙丙甲)、(丙甲乙)、(丙乙甲)共6种排法,甲、乙相邻而站有(甲乙丙)、(乙甲丙)、(丙甲乙)、(丙乙甲)共4种排法,由概率计算公式得甲、乙两人相邻而站的概率为46=23.答案:234.一个口袋中装有2个白球和2个黑球,这些球除颜色外完全相同,从中摸出2个球. (1)写出该试验的基本事件及基本事件总数; (2)求至少摸到1个黑球的概率.解析:(1)设2个白球编号为1,2,2个黑球编号为3,4,则基本事件是(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共有6个基本事件.(2)设至少摸到1个黑球为事件A ,则事件A 包含的基本事件共有5个,所以P (A )=56.(限时:30分钟)1.一个家庭有两个小孩,则所有可能的基本事件有( ) A .(男,女),(男,男),(女,女) B .(男,女),(女,男)C .(男,男),(男,女),(女,男),(女,女)D .(男,男),(女,女)。
高考数学一轮复习 课时作业60 古典概型 理-人教版高三全册数学试题

课时作业60 古典概型[基础达标]一、选择题1.[2019·某某某某县域高中协同发展共同体联考]某次下课后,某教室里还剩下2位男同学和1位女同学,若他们依次走出教室,则第2个走出的是女同学的概率是( )A.12B.13C.14D.15解析:由题意知共有6个基本事件,第2个走出的是女同学包含2个基本事件,所以第2个走出的是女同学的概率是13.答案:B2.[2020·某某五校协作体联考]某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出2个球,若取出的2个球颜色相同,则中奖,否则不中奖.则中奖的概率为( )A.15B.310C.25D.35解析:设事件A 为“中奖”,则P (A )=C 22+C 23C 25=410=25.故选C.答案:C3.[2020·某某市高三综合测试]若A ,B ,C ,D ,E 五位同学站成一排照相,则A ,B 两位同学不相邻的概率为( )A.45B.35 C.25 D.15解析:A ,B ,C ,D ,E 五位同学站成一排照相的总结果数为A 55=120,先排C ,D ,E 三位同学,再在形成的4个“空”中排A ,B 两位同学,有A 33×A 24=72(种)排法,故所求的概率为72120=35,选B.答案:B4.[2020·某某江淮十校联考]用24个棱长为1的小正方体组成一个2×3×4的长方体,将该长方体共顶点的某三个面涂成红色,然后将长方体拆散开,搅拌均匀后从中任取一个小正方体,则它的涂成红色的面数为1的概率为( )A.1324 B.1124 C.724 D.14解析:由题意得,仅有一个面涂成红色的小正方体有2+3+2×3=11(个),所以任取的小正方体涂成红色的面数为1的概率为1124.故选B.答案:B5.[2020·某某市高中调研]从装有3双不同鞋的柜子里,随机取2只,则取出的2只鞋不成对的概率为( )A.1415B.45C.35D.15解析:设这3双鞋分别为A 1A 2,B 1B 2,C 1C 2,则随机取出2只的基本事件有A 1A 2,A 1B 1,A 1B 2,A 1C 1,A 1C 2,A 2B 1,A 2B 2,A 2C 1,A 2C 2,B 1B 2,B 1C 1,B 1C 2,B 2C 1,B 2C 2,C 1C 2,共15个,其中取出的2只鞋不成双的基本事件有12个,所以所求概率P =1215=45,故选B.答案:B 二、填空题6.[2020·某某适应性测试]从2,3,4,5,6这5个数字中任取3个,则所取3个数之和为偶数的概率为________.解析:依题意,从2,3,4,5,6这5个数字中任取3个,共有10种不同的取法,其中所取3个数之和为偶数的取法共有1+3=4种(包含两种情形:一种情形是所取的3个数均为偶数,有1种取法;另一种情形是所取的3个数中2个是奇数,另一个是偶数,有3种取法),因此所求的概率为410=25.答案:257.[2020·某某某某四中检测]甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则甲不输的概率为________.解析:设“乙获胜”为事件B ,则P (B )=13.因为甲不输与甲输是对立事件,而甲输便是乙获胜,所以甲不输的概率是1-P (B )=1-13=23.答案:238.[2020·某某某某检测]袋子中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次性随机摸出2个球,则摸出的2个球的编号之和大于4的概率为________.解析:从袋中一次性随机摸出2个球,基本事件的总数n =C 24=6,摸出的2个球的编号之和大于4包含的基本事件有(1,4),(2,3),(2,4),(3,4),共4个,所以摸出的2个球的编号之和大于4的概率为46=23.答案:23三、解答题9.现有8名马拉松志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.解析:(1)从8人中选出通晓日语、俄语和韩语的志愿者各1名的方法数是C 13C 13C 12=18,A 1恰被选中的方法数是C 13C 12=6.用M 表示“A 1恰被选中”这一事件,P (M )=618=13.(2)“B 1和C 1不全被选中”包括“选B 1不选C 1”,“选C 1不选B 1”,“B 1和C 1都不选”这三个事件,分别记作事件A 、B 、C ,则A 、B 、C 彼此互斥,且有P (A )=C 13C 13C 13C 12=16,P (B )=C 13C 12C 13C 13C 12=13,P (C )=C 13C 12C 13C 13C 12=13,用N 表示这一事件,所以有P (N )=P (A +B +C )=P (A )+P (B )+P (C )=56.10.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A 1,A 2和1个白球B 的甲箱与装有2个红球a 1,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.解析:(1)所有可能的摸出结果是{A 1,a 1},{A 1,a 2},{A 1,b 1},{A 1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B ,a 1},{B ,a 2},{B ,b 1},{B ,b 2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确.[能力挑战]11.[2020·某某某某质检]将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为( )A.13B.25 C.12 D.35解析:将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则基本事件的总数n =C 26C 24C 22=90,每个小组恰好有1名教师和1名学生包含的基本事件的个数m =C 13C 13C 12C 12C 11C 11=36,∴每个小组恰好有1名教师和1名学生的概率为m n =3690=25.故选B. 答案:B12.[2020·某某部分重点中学考试]有4位游客去某地旅游,若每人只能从此地甲、乙、丙三个不同景点中选择一处游览,则每个景点都有人去游览的概率为( )A.34B.916C.89D.49解析:通解 由题意知,4位游客各从此地甲、乙、丙三个不同景点中选择一处游览的选法有34=81(种).第一步:从三个不同景点中选出一个景点的选法有C 13种;第二步:从4位游客中选2位到第一步选出的景点去游览,有C 24种方法;第三步:余下2位游客到余下的两个景点的分法有A 22种.所以每个景点都有人去游览的方法有C 13C 24A 22=36(种),于是所求概率P =3681=49,故选D.优解 由题意知,4位游客各从此地甲、乙、丙三个不同景点中选择一处游览的选法有34=81(种).将4位游客分为3组的分法有C 24种,然后将这3组游客分到甲、乙、丙三个不同景点,其分法有A 33种,由分步乘法计数原理知,每个景点都有人去游览的方法有C 24A 33=36(种).于是所求概率P =3681=49,故选D.答案:D13.[2020·某某市,某某市高三调研]已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x+b 为减函数的概率是( )A.310B.35C.25D.15解析:函数f (x )=(a 2-2)e x +b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以函数f (x )=(a 2-2)e x+b 为减函数的概率是2×25×2=25.故选C. 答案:C。
古典概型作业(应用高考文科生)

古典概型作业一、选择题1.下列试验是古典概型的是()A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C.向一个圆面内随机地投一个点,该点落在圆内任意一点都是等可能的D.射击运动员向一靶心进行射击,试验结果为,命中10环,命中9环,…,命中0环2.若书架上放有中文书五本,英文书三本,日文书两本,则抽出一本为外文书的概率为()A.15 B.310 C.25 D.123.有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为()A.750 B.7100 C.748 D.151004.一枚硬币连抛5次,则正、反两面交替出现的概率是()A.131 B.116 C.18 D.3325.在6盒酸奶中,有2盒已经过了保质期,从中任取2盒,取到的酸奶中有已过保质期的概率为()A.115 B.13 C.23 D.356.掷一个骰子,出现“点数是质数”的概率是()A.16 B.13 C.12 D.23二、填空题7.有语、数、外、理、化五本教材,从中任取一本,取到的是理科教材的概率是.8.从含有4个次品的10000个螺钉中任取1个,它是次品的概率为.9.1个口袋中有带有标号的2个白球、3个黑球,则事件A“从袋中摸出1个是黑球,放回后再摸一个是白球”的概率是.10.从标有1、2、3、4、5、6的6张卡片中任取3张,积是偶数的概率为.三、解答题11.做A、B、C三件事的费用各不相同.在一次游戏中,要求参加者写出做这三件事所需费用的顺序(由多到少排列),如果某个参加者随意写出答案,他正好答对的概率是多少?12.一个口袋内装有5个白球和3个黑球,从中任意取出一个球.(1)“取出的球是红球”是什么事件,它的概率是多少?(2)“取出的球是黑球”是什么事件,它的概率是多少?(3)“取出的球是白球或黑球”是什么事件,它的概率是多少?13.在一次口试中,要从5道题中随机抽出3道进行回答,答对其中的2道题就获得优秀,答对其中的1道题就获得及格,某考生会回答5道题中的2道题,试求:(1)他获得优秀的概率是多少?(2)他获得及格与及格以上的概率是多大?14.两个盒内分别盛着写有0,1,2,3,4,5六个数字的六张卡片,若从每盒中各取一张,求所取两数之和等于6的概率,现有甲、乙两人分别给出的一种解法:甲的解法:因为两数之和可有0,1,2,…,10共11种不同的结果,所以所求概率为1/11.乙的解法:从每盒中各取一张卡片,共有36种取法,其中和为6的情况有5种:(1,5)、(5,1)、(2,4)、(4,2)、(3,3)因此所求概率为5/36.试问哪一种解法正确?为什么?。
2018高考数学文科一轮复习讲义 7.2 第二节 古典概型

第二节 古典概型【考点点知】知己知彼,百战不殆古典概型是新课标概率知识中最重要的内容,高考对这一部分的考查,主要是利用古典概型的概率公式解决一些古典概型的应用题,是考查的重点.复习时,应先加强对基本事件的定义及古典概型定义的理解,从而更好地利用古典概型的概率公式求解古典概型问题. 考点一: 基本事件1.在试验中不能再分的最简单的随机事件,其他事件可以用它们来表示,这样的事件称为基本事件. 所有基本事件构成的集合称为基本事件空间.2.古典概型,都具有两个特征:(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同.我们把具有这两个特征的随机试验的数学模型称为古典概型(古典的概率模型),试验的每一个可能结果称为基本事件.考点二: 有放回抽样与无放回抽样1.在随机试验中有两种重要的概率模型,即有放回抽样与无放回抽样.(1)有放回的抽样:每次摸出一只后,仍放回袋中,然后再摸一只,这种摸球的方法称为有放回的抽样.显然,对于有放回的抽样,依次摸出的球可以重复,且摸球可无限地进行下去.(2)无放回的抽样:每次摸出一只后,不放回原袋中,在剩下的球中再摸一只,这种摸球的方法称为无放回的抽样. 显然,对于无放回的抽样,每次摸出的球不会重复出现,且摸球只能进行有限次.2.由此可见有放回的抽样不是古典概型,无放回的抽样是古典概型.考点三: 古典概型的概率公式对于古典概型,通常试验中的某一事件A 是由几个基本事件组成,如果试验的所有可能结果(基本事件)数为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为P (A )=nm .由此规定可知,在古典概型中,计算事件A 的概率,关键是计算试验的所有可能结果(基本事件)数n 和事件A 包含的可能结果(基本事件)数m .【考题点评】分析原因,醍醐灌顶例1.(基础·2007江西文,6)一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132 B.164 C.332 D.364思路透析:两个球的编号和不小于...15, 则两球号码可以为7,8; 8,7; 8,8三种可能, 其概率为338864P ==⨯, 故应选D. 点评:应用枚举法列出基本事件的个数,再利用公式求概率,求解中有不少考生遗漏了8,8这一可能性.例2.(基础·2007上海春季)在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目.若选到男教师的概率为920,则参加联欢会的教师共有 人.思路透析:设男教师有x 人,则女教师有12x +人,则随机挑选一人是男教师的概率1112912220xx x C x C x ++==+,解之得54x =, ∴参加联欢会的教师共有122120x +=人.点评:本题考查了随机事件的概率事件的分析与实际应用, 概率与方程思想相交汇的综合考查. 不可能事件和必然事件虽然是两类不同的事件,但它们可以看作是随机事件的两个极端情况,用这种既对立又统一的观点去看待它们,有利于认识它们的内在联系.例3.(综合·2007山东卷文科12)设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4思路透析:当2x =时, 211()236P C ==⨯; 当3x =时, 321()233P C ==⨯; 当4x =时, 421()233P C ==⨯; 当5x =时, 511()236P C ==⨯, 综上可得事件n C 的概率最大时, n 的所有可能值为3或4,故应选D.点评:考生在求解不同的赋值情况下的概率时,对于点在直线上的点坐标的对号选择有部分错误,导致结论出解中出现错误,也有部分考生对于得到的两个值持怀疑态度,进行二次概率求解,试图比较其两者的大小而出现延时现象.高考概率试题的求解,对概率事件的分析过程一要细心,二要清楚的理解该事件所有可能发生的情况,作出正确的判断后再进行求解.例 4.(综合·2007山东临沂期中,17)已知△ABC ,向量ABC k AB AC k BC ∆∈≤=-=求且,,4||),4,2(),3,2(Z 为直角三角形的概率.思路透析:).1,(),3,2()3,2(k CB AC AB k CB k BC =+=∴--=∴-=又.1515,15,161,4||22≤≤-∴≤≤+∴≤k k k又.3,2,1,0,±±±=∴∈k k Z若△ABC 为直角三角形,则(i )2,042,0-=∴=+∴=⋅k k ;(ii )13,32,02-=∴--∴=⋅或k k k ;(iii )8,012)2(2,0=∴=+-∴=⋅k k (舍去).∴△ABC 为直角三角形的k 的值为-1,-2,3,而基本事件总数为7.由古典概型知,.73=P 即△ABC 为直角三角形的概率为.73点评:本题以平面向量的坐标运算与点坐标间的相互联性定义进行命题,通过直角三角形的个数作为事件,考查了古典概型及其概率计算公式,属于一道综合题,考查了考生对复杂的概率事件的分析与推理论证的能力.例 5.(创新探究·2008如东、启东期中,18)已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,且,b c Z ∈,记函数)(x f 满足条件:⎩⎨⎧≤-≤3)1(12)2(f f 的事件为A ,求事件A 发生的概率.思路透析:由 ⎩⎨⎧≤-≤3)1(12)2(f f 得:282b c b c +≤⎧⎨-+≤⎩ 且 04,04b c ≤≤≤≤,b c Z ∈ . 当b=0时c=0,1,2 ; 当b=1时c=0,1,2,3 ; 当b=2时c=0,1,2,3,4 ;当b=3时c=0,1,2 ; 当b=4时c=0以上共16种情形 .故事件A 发生的概率为16()25P A = . 点评:古典概型是近几年高考考查的热点内容.在计算其基本事件的个数以及事件A 所包含的基本事件的个数时,既可以直接列举,也可借用平面直角坐标系、有序实数对(有序实数组或有序元素等)、树枝状图等方法来列举. 本例中是通过有序实数对来计数的.例6.(创新探究·2007湖北八校联考)箱中装有15张大小、重量一样的卡片,每张卡片正面分别标有1到15中的一个号码,正面号码为n 的卡片反面标的数字是21240n n -+.(卡片正反面用颜色区分)(1)如果任意取出一张卡片,试求正面数字大于反面数字的概率;(2)如果同时取出两张卡片,试求他们反面数字相同的概率.思路透析:(1)由不等式21240n n n >-+,得58n <<.由题意知6,7n =,即共有2张卡片正面数字大于反面数字,故所求的概率为215. 答:所求的概率为215. (2)设取出的是第m 号卡片和n 号卡片(m n ≠), 则有2212401240m m n n -+=-+.即2212()n m n m -=-,由m n ≠得12m n +=.故符合条件的取法为1,11;2,10;3,9;4,8;5,7. 故所求的概率为2155121C =. 答:故所求的概率为121. 点评:本题为一个不等式与概率问题的交汇考题,通过解不等式得出符合条件的基本事件数,也可以用列举法列出所有的基本事件(当基本事件个数较少时适用),然后分别求得符合条件的概率值.【画龙点睛】探索规律,豁然开朗1.规律总结:(1)一般地,对于古典概型,如果试验的n 个基本事件组成基本事件集合(称为基本事件空间),随机事件A 含有m 个基本事件,这m 个基本事件构成集合A,则集合A 中元素的个数m 与基本事件的个数n 的比值,就是事件A 的概率,即P (A )=n m . (2) P (A )=nm ,既是概率的古典定义又是求古典概型的概率的基本方法. 求P(A)时,首先要判断是否是古典概型,它的计算步骤是: ①判断事件A 是否为古典概型; ②算出基本事件的总个数n ;③算出事件A 包含的基本事件的个数m ;④算出事件A 的概率P (A )=A 事件所包含的基本事件数试验的所有可能的基本事件总数=nm . 2.学以致用:(1)将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为A .91B .121C .151D .181 (2)将一枚硬币连掷3次,出现“2个正面,1个反面”的概率是 A.31 B.81 C.83 D.32 (3)在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率 是 (结果用数值表示).(4)豌豆的高矮性态的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d,第一子代的一对基因为D d ,若第一子代的D ,d 基因的遗传是等可能的,求第二子代为高茎的概率.(只要有基因D,则茎就是高茎,只有两个基因全是d 时,才显现矮茎)答案:(1)D 解析: 设骰子连续抛掷三次向上的对应的点数所成等差数列的公差为d ,若0d =,则该等差数列有6个; 若1d =,则该等差数列有4个; 若2d =,则该等差数列有2个; 若3d ≥,则该等差数列不存在; 若1d =-,则该等差数列有4个; 若2d =-,则该等差数列有2个; 若3d ≤-,则该等差数列不存在.由此可得点数依次成等差数列的概率3642421618P ++++==, 故应选D. (2)C 解析:用“×”表示反面向上,“√”表示正面向上,所有的可能结果有“√√√”“√√×”“√×√”“×√√”“√××”“×√×”“××√”“×××”共8种;其中“2个正面,1个反面”的有3种,概率为83. 故应选C.(3)3.0解析:从5个数中任取3个共有10种方法,而取出三个数字后剩下的两个数字都是奇数,则取出的三个数中必有一个是奇数,两个是偶数,共有3种取法,∴剩下两个数字都是奇数的概率30.310P ==. (4)解析:由于第一子代的D ,d 基因的遗传是等可能的,可以将各种可能的遗传情形都列举出来. 如图所示,Dd 与Dd 的组合有4种:DD ,Dd ,d D ,dd , 其中只有第四种表现为矮茎,故第二子代为高茎的概率为375%4=. 3.易错分析:(1)在运用公式时,关键在于求出m 、n. 在求n 时,必须注意几种结果必须是等可能的,这一点比较容易出错.(2)利用图表的形象直观性,可以清晰地分析基本事件空间,确定随机事件中所含的基本事件的个数,进而利用古典概型的概率公式来求其概率.【能力训练】学练结合,融会贯通一、选择题:1.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x 、y ,则2log 1x y =的概率为 ( )A .61B .365 C .121 D .21 2.从1,2,…,9共9个数字中任取一个数字,取出数字为偶数的概率为 ( ) A.0 B.1C.95D.94 3.一个口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是( ) A.21 B.31 C.41 D.32 4.若书架上放有数学、物理、化学书分别是5本、3本、2本,则随机抽出一本是物理书的概率为( ) A.51 B.103 C.53 D.21 5.从集合{a ,b ,c ,d ,e }的所有子集中任取一个,这个集合恰是集合{a ,b ,c }的子集的概率是 ( ) A .53 B.52 C.41 D.81 6.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( )A .17B .27C .37D .47二、填空题:7.若10把钥匙中只有2把能打开某锁,则从中任取1把能将该锁打开的概率为 .8.从含有两件正品a 1、a 2和一件次品b 1的3件产品中每次任取1件,每次取出后不放回,连续取两次,取出的两件产品中恰有一件次品的概率为 .9.某号码锁有6个拨盘,每个拨盘上有从0到9共十个数字,当6个拨盘上的数字组成某一个六位数字号码(开锁号码)时,锁才能打开.如果不知道开锁号码,试开一次就把锁打开的概率是 ?10.有100张卡片(从1号到100号),从中任取1张,取到的卡片是7的倍数的概率是_______.三、解答题:11.抛掷两粒均匀的骰子,求:(Ⅰ)点数和为7的概率;(Ⅱ)出现两个5点的概率.12.某校举行运动会,高三(一)班有男乒乓球运动员4名,女乒乓球运动员3名,现要选一男一女运动员组成混合双打组合代表本班参赛,试列出全部可能结果,若某女乒乓球运动员为国家一级运动员,则她参赛的概率是多少?13.某城市的电话号码是8位数,如果从电话号码中任指一个电话号码,求(Ⅰ)头两位号码都是8的概率;(Ⅱ)头两位号码都不超过8的概率;(Ⅲ)头两位号码不相同的概率.14.已知袋中有编号为1~9的小球各一个,它们的大小相同,从中任取三个小球.求:(Ⅰ)恰好有一球编号是3的倍数的概率;(Ⅱ)至少有一球编号是3的倍数的概率;(Ⅲ)三个小球编号之和是3的倍数的概率.【能力训练】参考答案一、选择题:1. C2. D3. D4. B5. C6. C二、填空题:7. 15 8. 32 9. 11000000 10. 0.14 三、解答题:11.解析:用有序实数对(x ,y )表示基本事件,其中x 、y 分别表示两粒骰子的点数,易知所有基本事件数为36.(Ⅰ)用A 表示事件“点数之和为7”,则事件A 所含有的基本事件数为6.所以P (A )=61366=. (Ⅱ)用B 表示事件“出现两个5点”,则事件B 所含有的基本事件数为1.所以P (B )=361. 12.解析:由于男生从四人中任意选取,女生从3人中任意选取,为了得到试验的全部结果,我们设男生为A,B,C,D,女生为1,2,3,我们可以用一个“有序数对”来表示随机选取的结果如(A ,1)表示:第一次随机选取中从男生中选的是男生A ,从女生中选取的是女生1, 可用列举法列出所有可能的结果. 如下表所示:由表可知,可能结果总数是12个.设该国家一级运动员为编号1,她参赛的可能事件有4个,故她参赛的概率为41123P == 13.解析:电话号码的第一位可以是0~9中的任一个数字.第二位也是0~9中的任一个数字,我们把前2位号码用(,x y )表示,试验的所有结果如下表:从表中可以看出,头两位号码的所有可能的结果共有100个,由于是随机抽取,每个号码是等可能出现的,这个试验属于古典概型.(Ⅰ)记A 为“头两位号码都是8”,事件A 包含的基本事件只有1个(8,8),∴事件A 的概率1()0.01100P A ==. (Ⅱ)记B 为“头两位号码都不超过8”,则事件B 包含的基本事件由表可知共有81个, ∴事件B 的概率81()0.81100P B ==. (Ⅲ)记C 为头两位号码不相同,则事件C 包含的基本事件数由表可以数出共90个, ∴事件C 的概率90()0.9100P C ==. 14.解析:(Ⅰ)从九个小球中任取三个共有39C 种取法,它们是等可能的.设恰好有一球编号是3的倍数的事件为A , 则2815)(392613=⋅=C C C A P . (Ⅱ)设至少有一球编号是3的倍数的事件为B , 则2116)(21161)(3926131623333936=++==-=C C C C C C B P C C B P 或 . (Ⅲ)设三个小球编号之和是3的倍数的事件为C ,设集合}7,4,1{},9,6,3{21==S S ,}8,5,2{3=S ,则取出三个小球编号之和为3的倍数的取法共有131313333C C C C ⋅⋅+种,则1453)(3913131333=⋅⋅+=C C C C C C P .。
2021版新高考数学(文科)一轮复习课后限时集训64 古典概型

古典概型建议用时:45分钟一、选择题1.(2018·全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.3D[将2名男同学分别记为x,y,3名女同学分别记为a,b,c.设“选中的2人都是女同学”为事件A,则从5名同学中任选2人参加社区服务的所有可能情况有(x,y),(x,a),(x,b),(x,c),(y,a),(y,b),(y,c),(a,b),(a,c),(b,c),共10种,其中事件A包含的可能情况有(a,b),(a,c),(b,c),共3种,故P(A)=310=0.3.故选D.]2.在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为()A.12 B.13 C.34 D.25B[点P(m,n)共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x2+y2=9的内部,所求概率为26=13.]3.(2019·沈阳模拟)某英语初学者在拼写单词“steak”时,对后三个字母的记忆有些模糊,他只记得由“a”“e”“k”三个字母组成,并且“k”只可能在最后两个位置,如果他根据已有信息填入上述三个字母,那么他拼写正确的概率为()A.16 B.14 C.13 D.12B[满足题意的字母组合有四种,分别是eka,eak,ake,aek.拼写正确的组合只有一种eak,所以所求概率P=1 4.]4.甲、乙两名同学分别从“象棋”“文学”“摄影”三个社团中随机选取一个社团加入,则这两名同学加入同一个社团的概率是()A.14 B.13 C.12 D.23B[由题意,甲、乙两名同学各自等可能地从“象棋”“文学”“摄影”三个社团中选取一个社团加入,共有3×3=9(种)不同的结果,这两名同学加入同一个社团有3种情况,则这两名同学加入同一个社团的概率是39=13.]5.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.310 B.15 C.110 D.120C[从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C.]二、填空题6.从2,3,8,9中任取两个不同的数字,分别记为a,b,则log a b为整数的概率是.16[从2,3,8,9中任取两个不同的数字,分别记为a,b,则有2,3;2,8;2,9;3,8;3,9;8,9;3,2;8,2;9,2;8,3;9,3;9,8,共12种取法,其中log a b为整数的有(2,8),(3,9)两种,故P=212=16.]7.(2019·成都模拟)如图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为.0.3[依题意,记题中的被污损数字为x,若甲的平均成绩不超过乙的平均成绩,则有(8+9+12+11)-(5+3+10+x+15)≤0,x≥7,即此时x的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P=310=0.3.]8.某同学同时掷两颗骰子,得到点数分别为a,b,则椭圆x2a2+y2b2=1的离心率e>32的概率是.13[同时掷两颗骰子,得到的点数所形成的数组共有36种情况,当a>b时,e=1-b2a2>32⇒ba<12⇒a>2b,符合a>2b的情况有:当b=1时,有a=3,4,5,6,4种情况;当b=2时,有a=5,6,2种情况,故共有6种情况,则概率是636=16.同理当a<b时,e>32的概率也为16.综上可知,离心率e>32的概率为13.]三、解答题9.现有7名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2通晓俄语,C1,C2通晓韩语.从中随机选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.[解](1)从7人中选出通晓日语、俄语和韩语志愿者各1名,所有基本事件数为3×2×2=12.用M表示“A1恰被选中”这一事件,则它包含的基本事件有1×2×2=4.则P(M)=412=13.(2)用N表示“B1,C1不全被选中”这一事件,则其对立事件N表示“B1,C1全被选中”,由于N包含的基本事件有:(A1,B1,C1),(A2,B1,C1),(A3,B1,C1),事件N有3个基本事件组成,所以P(N)=312=14,由对立事件的概率公式得P(N)=1-14=34.10.移动公司在国庆期间推出4G套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐1的客户可获得优惠200元,选择套餐2的客户可获得优惠500元,选择套餐3的客户可获得优惠300元.国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.(1)求从中任选1人获得优惠金额不低于300元的概率;(2)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选出2人,求这2人获得相等优惠金额的概率.[解](1)设事件A为“从中任选1人获得优惠金额不低于300元”,则P(A)=150+10050+150+100=5 6.(2)设事件B为“从这6人中选出2人,他们获得相等优惠金额”,由题意按分层抽样方式选出的6人中,获得优惠200元的有1人,获得优惠500元的有3人,获得优惠300元的有2人,分别记为:a1,b1,b2,b3,c1,c2,从中选出2人的所有基本事件如下:a1b1,a1b2,a1b3,a1c1,a1c2,b1b2,b1b3,b1c1,b1c2,b2b3,b2c1,b2c2,b3c1,b3c2,c1c2,共15个.其中使得事件B成立的有b1b2,b1b3,b2b3,c1c2,共4个.则P(B)=4 15.故这2人获得相等优惠金额的概率为4 15.1.(2019·济南模拟)2019年1月1日,济南轨道交通1号线试运行,济南轨道交通集团面向广大市民开展“参观体验,征求意见”活动,市民可以通过济南地铁APP抢票.小陈抢到了三张体验票,准备从四位朋友小王、小张、小刘、小李中随机选择两位与自己一起去参加体验活动,则小王和小李至多一人被选中的概率为()A.16 B.13 C.23 D.56D[从小王、小张、小刘、小李中随机选择两位,所有可能的结果为(小王,小张),(小王,小刘),(小王,小李),(小张,小刘),(小张,小李),(小刘,小李)共6种,其中小王和小李都被选中的可能结果只有一种,因此所求概率为P=1-16=56.故选D.]2.甲邀请乙、丙、丁三人加入了微信群聊“兄弟”,为庆祝兄弟相聚甲发了一个9元的红包,被乙、丙、丁三人抢完,已知三人均抢到整数元,且每人至少抢到2元,则丙获得“手气王”(即丙领到的钱数不少于其他任何人)的概率是()A.13 B.310 C.25 D.34C[所有基本事件有(2,2,5),(2,5,2),(5,2,2),(2,3,4),(2,4,3),(3,2,4),(3,4,2),(4,2,3),(4,3,2),(3,3,3),共10个,其中丙获得“手气王”的基本事件有(2,2,5),(2,3,4),(3,2,4),(3,3,3),共4个,故所求概率为P=410=25.]3.曲线C的方程为x2m2+y2n2=1,其中m,n是将一枚骰子先后投掷两次所得点数,记事件A为“方程x2m2+y2n2=1表示焦点在x轴上的椭圆”,那么P(A)=.512[有序数对(m,n)所有可能的结果共有6×6=36种.由题意知m2>n2,即m>n,则当m=2时,n=1,当m=3时,n=1,2,当m=4时,n=1,2,3;当m=5时,n=1,2,3,4,当m=6时,n=1,2,3,4,5.因此共有1+2+3+4+5=15种结果满足m>n.所以所求概率P(A)=1536=512.]4.某商场举行有奖促销活动,顾客购买一定金额的商品即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.[解](1)所有可能的摸出结果是{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确.1.在集合⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =n π3,n =1,2,3,…,10中任取一个元素,所取元素恰好满足方程cos x =12的概率是 .310[基本事件总数为10,满足方程cos x =12的基本事件为π3,5π3,7π3,共3个,故所求概率P =310.]2.中国共产党第十九次全国代表大会(简称十九大)于2017年10月18日至10月24日在北京召开.“十九大”报告指出:“必须把教育事业放在优先位置,加快教育现代化,办好人民满意的教育”.要“推动城乡义务教育一体化发展,高度重视农村义务教育,办好学前教育、特殊教育和网络教育”.某乡镇属于学前教育的学校有3所,属于特殊教育的学校有1所,属于网络教育的学校有2所.目前每所学校只需招聘1名师范毕业生,现有2名师范毕业生参加应聘,每人只能参加一个学校的应聘且选择学校不能相同.(1)求他们选择的学校所属教育类别相同的概率;(2)记ξ为2人中选择的学校属于学前教育或网络教育的人数,求ξ≤1的概率.[解] (1)记某乡镇属于学前教育的3所学校分别为A 1,A 2,A 3,属于特殊教育的1所学校为B ,属于网络教育的2所学校分别为C 1,C 2,2名师范毕业生从6所学校中任选1所学校有(A 1,A 2),(A 1,A 3),(A 1,B ),(A 1,C 1),(A 1,C 2),(A 2,A 3),(A 2,B ),(A 2,C 1),(A 2,C 2),(A 3,B ),(A 3,C 1),(A 3,C 2),(B ,C 1),(B ,C 2),(C 1,C 2),(A 2,A 1),(A 3,A 1),(B ,A 1),(C 1,A 1),(C 2,A 1),(A 3,A 2),(B ,A 2),(C 1,A 2),(C 2,A 2),(B ,A 3),(C 1,A 3),(C 2,A 3),(C 1,B ),(C 2,B ),(C 2,C 1),共30种,他们选择的学校所属类别相同的有(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 2,A 1),(A 3,A 1),(A 3,A 2),(C 1,C 2),(C 2,C 1),共8种,故他们选择的学校所属类别相同的概率P=830=415.(2)由题意可知ξ=0或ξ=1或ξ=2.当ξ=0时,即2人中选择的学校都属于特殊教育,而特殊教育的学校只有1所,故ξ=0是一个不可能事件,P(ξ=0)=0;当ξ=1时,即2人中只有1人选择的学校属于学前教育或网络教育,则必有1人选择特殊教育的1所学校.所有可能的情况有(A1,B),(A2,B),(A3,B),(B,C1),(B,C2),(B,A1),(B,A2),(B,A3),(C1,B),(C2,B),共10种,∴P(ξ=1)=1030=13,∴P(ξ≤1)=P(ξ=0)+P(ξ=1)=1 3.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
高考数学总复习 第11章 第2节 古典概型课时演练 文 新人教A版

课时作业 古典概型一、选择题1.甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x ,y ,则满足复数x +y i 的实部大于虚部的概率是( )A.16 B.512C.712D.13解析:由题意知x =y 的概率是16,故x ≠y 的概率为56.又x >y 与y >x 的概率相等,故x>y 的概率为512.答案:B2.有4条线段,长度分别为1、3、5、7,从这四条线段中任取三条,则所取三条线段能构成一个三角形的概率是( )A.14B.13C.12D.25解析:从四条线段中任取三条,基本事件有(1,3,5),(1,3,7),(1,5,7),(3,5,7),共4个,能构成三角形的只有(3,5,7)这一个基本事件,故由概率公式,得P (A )=14.答案:A3.如图所示,a 、b 、c 、d 是四处处于断开状态的开关,任意将其中两个闭合,则电路被接通的概率为( )A .1 B.12 C.14D .0解析:四个开关任意闭合2个,有ab 、ac 、ad 、bc 、bd 、cd 共6种方案,电路被接通的条件是:①开关d 必须闭合;②开关a 、b 、c 中有一个闭合.即电路被接通有ad 、bd 和cd共3种方案,所以所求的概率是36=12.答案:B4.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x +y =5下方的概率是( )A.13B.14C.16D.112解析:连续掷两次骰子的点数m 、n 共有36种基本事件,点P (m ,n )在直线x +y =5下方, 即x +y <5,共有(1,1),(1,2),(1,3),(2,2),(2,1),(3,1). 所以所求的概率为P =636=16.答案:C5.(2012佛山模拟)已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 0347 4373 8636 9647 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( ) A .0.85 B .0.8192 C .0.8D .0.75解析:由随机数表可以看出,20次射击中至少击中3次的有15次,故所求概率为P =1520=0.75.答案:D6.某同学同时掷两颗骰子,得到点数分别为a 、b ,则椭圆x 2a 2+y 2b 2=1的离心率e >32的概率是( )A.118B.536C.16D.13解析:当a >b 时,e =1-b 2a 2>32⇒b a <12⇒a >2b .符合a >2b 的情况有:当b =1时,有a =3,4,5,6四种情况;当b =2时,有a =5,6两种情况,总共有6种情况, 则概率为636=16.同理当a <b 时,e >32的概率也为16, 综上可知e >32的概率为13. 答案:D 二、填空题7.(金榜预测)已知函数f (x )=6x -4(x =1,2,3,4,5,6)的值域为集合A ,函数g (x )=2x -1(x =1,2,3,4,5,6)的值域为集合B ,任意x ∈A ∪B ,则x ∈A ∩B 的概率是________.解析:根据已知条件可得A ={2,8,14,20,26,32},B ={1,2,4,8,16,32}.∴A ∪B ={1,2,4,8,14,16,20,26,32},A ∩B ={2,8,32}.所以任取x ∈A ∪B ,则x ∈A ∩B 的概率是39=13.答案:138.一笼里有3只白兔和2只灰兔,现让它们一一出笼,假设每一只跑出笼的概率相同,则先出笼的两只中一只是白兔,而另一只是灰兔的概率是________.解析:设3只白兔分别为b 1,b 2,b 3,2只灰兔分别为h 1,h 2.则所有可能的情况是(b 1,h 1),(b 1,h 2),(b 2,h 1),(b 2,h 2),(b 3,h 1),(b 3,h 2),(h 1,b 1),(h 2,b 1),(h 1,b 2),(h 2,b 2),(h 1,b 3),(h 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 1),(b 2,b 3),(b 3,b 1),(b 3,b 2),(h 1,h 2),(h 2,h 1),共20种情况,其中符合一只白兔而另一只是灰兔的情况有12种,∴所求概率为1220=35. 答案:35三、解答题9.(2012广州测试)已知直线l 1:x -2y -1=0,直线l 2:ax -by +1=0,其中a ,b ∈{1,2,3,4,5,6}.(1)求直线l 1∩l 2=∅的概率;(2)求直线l 1与l 2的交点位于第一象限的概率.解:(1)由题知,直线l 1的斜率为k 1=12,直线l 2的斜率为k 2=ab .设事件A 为“直线l 1∩l 2=∅”.又(a ,b )的所有取值为(1,1),(1,2),…,(1,6),(2,1),(2,2),…,(2,6),…,(6,5),(6,6),共36种.若l 1∩l 2=∅,则l 1∥l 2,即k 1=k 2,则有b =2a .满足条件的实数对(a ,b )有(1,2)、(2,4)、(3,6),共3种情形所以P (A )=336=112.即直线l 1∩l 2=∅的概率为112.(2)设事件B 为“直线l 1与l 2的交点位于第一象限”,由于直线l 1与l 2有交点,所以b ≠2a .联立方程⎩⎪⎨⎪⎧ax -by +1=0,x -2y -1=0,解得⎩⎪⎨⎪⎧x =b +2b -2a ,y =a +1b -2a .因为直线l 1与l 2的交点位于第一象限,所以⎩⎪⎨⎪⎧x >0,y >0,即⎩⎪⎨⎪⎧x =b +2b -2a>0,y =a +1b -2a >0,解得b >2a .又(a ,b )的所有取值为(1,1),(1,2),…,(1,6),(2,1),(2,2),…,(2,6),…,(6,5),(6,6),共36种.满足条件的实数对(a ,b )有(1,3)、(1,4)、(1,5)、(1,6)、(2,5)、(2,6),共6种. 所以P (B )=636=16.即直线l 1与l 2的交点位于第一象限的概率为16.10.(2012北京西城区模拟)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”“保留”和“不支持”态度的人数如下表所示:支持 保留 不支持 20岁以下 800 450 200 20岁以上(含20岁)100150300(1)在所有参与调查的人中,用分层抽样的方法抽取n 个人.已知从“支持”态度的人中抽取了45人,求n 的值;(2)在持“不支持”态度的人中,用分层抽样的方法选取5个人看成一个总体.从这5人中任意选取2人,求至少有1人20岁以下的概率;(3)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8人打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过0.6的概率.解:(1)由题意得800+10045=800+450+200+100+150+300n , 所以n =100.(2)设所选取的人中,有m 人20岁以下 则200200+300=m5,解得m =2.也就是20岁以下抽取了2人,另一部分抽取了3人, 分别记作A 1,A 2;B 1,B 2,B 3,则从中任取2人的所有基本事件为(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 1,A 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个.其中至少有1人20岁以下的基本事件有7个:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 1,A 2),所以从中任意抽取2人,至少有1人20岁以下的概率为710.(3)总体的平均数为 x -=18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9,那么与总体平均数之差的绝对值超过0.6的数只有8.2, 所以该数与总体平均数之差的绝对值超过0.6的概率为18.。
2018北师大版文科数学高考总复习教师用书10-5古典概型Word版含答案

第5讲古典概型最新考纲 1.理解古典概型及其概率计算公式;2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.知识梳理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型(1)定义具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.①试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.②每一个试验结果出现的可能性相同.(2)概率公式:P(A)=事件A包含的可能结果数试验的所有可能结果数.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”、“一正一反”、“两个反面”,这三个事件是等可能事件.()(3)某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能性相同.()(4)“从长为1的线段AB上任取一点C,求满足AC≤13的概率是多少”是古典概型.()答案(1)×(2)×(3)×(4)×2.下列试验中,是古典概型的个数为()①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在区间⎣⎢⎡⎦⎥⎤0,π2上任取一值x ,求cos x <12的概率. A .0 B .1C .2D .3解析 由古典概型的意义和特点知,只有③是古典概型.答案 B3.(必修3P133A1改编)袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( )A.25B.415C.35 D .非以上答案解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为P =615=25.答案 A4.(2016·全国Ⅲ卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130解析 ∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P =115.答案 C5.(2014·全国Ⅱ卷)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.解析 甲、乙两名运动员选择运动服颜色的情况为(红,红),(红,白),(红,蓝),(白,白),(白,红),(白,蓝),(蓝,蓝),(蓝,白),(蓝,红),共9种. 而同色的有(红,红),(白,白),(蓝,蓝),共3种.所以所求概率P =39=13.答案 13考点一 简单古典概型的概率【例1】 (1)(2015·全国Ⅰ卷)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120(2)(2016·全国Ⅰ卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56解析 (1)从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所求概率为110.所以3个数构成一组勾股数的概率P =110.(2)从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种.故所求概率为P =46=23.答案 (1)C (2)C规律方法 (1)计算古典概型事件的概率可分三步:①计算基本事件总个数n ;②计算事件A 所包含的基本事件的个数m ;③代入公式求出概率P .(2)用列举法写出所有基本事件时,可借助“树状图”列举,以便做到不重、不漏.【训练1】 (1)(2017·上饶质检)已知5件产品中有2件次品,其余为合格品,现从5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C.0.8 D.1(2)(2016·江苏卷)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.解析(1)记3件合格品为a1,a2,a3,2件次品为b1,b2,则任取2件构成的基本事件空间为Ω={(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},共10个元素.记“恰有1件次品”为事件A,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2)},共6个元素.故其概率为P(A)=610=0.6.(2)将一颗质地均匀的骰子先后抛掷2次,共有36种不同结果.设事件A=“出现向上的点数之和小于10”,其对立事件A=“出现向上的点数之和大于或等于10”,A包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种情况.由于P(A)=636=16,因此P(A)=1-P(A)=56.答案(1)B(2)5 6考点二应用古典概型计算较复杂事件的概率【例2】(2016·山东卷)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解(1)用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16.所以基本事件总数n=16.(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C. 则事件B包含的基本事件数共6个.即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=616=38.事件C包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P(C)=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.规律方法(1)求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.(2)本题常见的错误:①理解不清题意,不能把基本事件列举出来;②不能恰当分类,列举基本事件有遗漏,再者本题中基本事件(x,y)看成有序的,(1,2)与(2,1)等表示不同的基本事件.【训练2】(2017·西安检测)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.解(1)依题意,所有可能的摸出的结果是{A1,a1},{A1,a2},{A1,b1},{A1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B ,a 1},{B ,a 2},{B ,b 1},{B ,b 2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为P 1=412=13,不中奖的概率为P 2=1-P 1=23.由于P 1=13<P 2=23.故这种说法不正确.考点三 古典概型与统计的综合应用【例3】 (2017·郑州模拟)空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了某地2016年某月10天的AQI 的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI ≤100)的天数(按这个月总共30天计算);(2)若从样本中的空气质量不佳(AQI >100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.解 (1)从茎叶图中发现该样本中空气质量优的天数为1,空气质量良的天数为3,故该样本中空气质量优良的频率为410=25,估计该月空气质量优良的频率为25,从而估计该月空气质量优良的天数为30×25=12.(2)该样本中轻度污染共4天,分别记为a 1,a 2,a 3,a 4;中度污染1天,记为b ;重度污染1天,记为c .从中随机抽取两天的所有可能结果表示为(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,b ),(a 1,c ),(a 2,a 3),(a 2,a 4),(a 2,b ),(a 2,c ),(a 3,a 4),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共15个.其中空气质量等级恰好不同的结果有(a 1,b ),(a 1,c ),(a 2,b ),(a 2,c ),(a 3,b ),(a3,c),(a4,b),(a4,c),(b,c),共9个.所以该两天的空气质量等级恰好不同的概率为915=35.规律方法有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.【训练3】(2017·天津南开中学检测)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.解(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.因此,事件A发生的概率P(A)=915=35.[思想方法]1.古典概型计算三步曲第一,本试验是不是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.2.确定基本事件的方法(1)当基本事件总数较少时,可列举计算;(2)列表法、树状图法.3.较复杂事件的概率可灵活运用互斥事件、对立事件的概率公式简化运算.[易错防范]1.在计算古典概型中试验的所有结果数和事件发生结果时,易忽视他们是不是等可能的.2.概率的一般加法公式P (A ∪B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∅,即A ,B 互斥时,P (A ∪B )=P (A )+P (B ),此时P (A ∩B )=0.基础巩固题组(建议用时:40分钟)一、选择题1.(2014·全国Ⅰ卷改编)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为( )A.12B.13C.23D.56解析 设两本不同的数学书为a 1,a 2,1本语文书为b .则在书架上的摆放方法有a 1a 2b ,a 1ba 2,a 2a 1b ,a 2ba 1,ba 1a 2,ba 2a 1,共6种,其中数学书相邻的有4种.因此2本数学书相邻的概率P =46=23.答案 C2.(2016·北京卷)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.925解析 设另外三名学生分别为丙、丁、戊.从5名学生中随机选出2人,有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共10种情形,其中甲被选中的有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种情形.故甲被选中的概率P =410=25.答案 B3.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )A.15B.25C.35D.45解析 设正方形的四个顶点分别是A ,B ,C ,D ,中心为O ,从这5个点中,任取两个点的事件分别为AB ,AC ,AD ,AO ,BC ,BD ,BO ,CD ,CO ,DO ,共有10种,其中只有顶点到中心O 的距离小于正方形的边长,分别是AO ,BO ,CO ,DO ,共有4种.故所求事件的概率P =1-410=35.答案 C4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( )A.12B.13C.34D.25解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.答案 B5.设m ,n 分别是先后抛掷一枚骰子得到的点数,则在先后两次出现的点数中有5的条件下,方程x 2+mx +n =0有实根的概率为( )A.1136B.736C.711D.710解析 先后两次出现的点数中有5的情况有:(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共11种,其中使方程x 2+mx +n =0有实根的情况有:(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共7种.故所求事件的概率P =711.答案 C二、填空题6.在集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =n π3,n =1,2,3,…,10中任取一个元素,所取元素恰好满足方程cos x =12的概率是________.解析 基本事件总数为10,满足方程cos x =12的基本事件数为3,故所求概率为P=310.答案3 107.(2016·四川卷)从2,3,8,9中任取两个不同的数字,分别记为a,b,则log a b为整数的概率是________.解析从2,3,8,9中任取两个不同的数字,分别记为a,b,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8), 共12种取法,其中log a b为整数的有(2,8),(3,9)两种,故P=212=16.答案1 68.在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.解析设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),共2种,所以P(A)=26=13.答案1 3三、解答题9.(2015·山东卷)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.解 (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15人,所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.根据题意,这些基本事件的出现是等可能的,事件“A 1被选中且B 1未被选中”所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个.因此A 1被选中且B 1未被选中的概率为P =215.10.在一个不透明的箱子里装有5个完全相同的小球,球上分别标有数字1,2,3,4,5.甲先从箱子中摸出一个小球,记下球上所标数字后,再将该小球放回箱子中摇匀后,乙从该箱子中摸出一个小球.(1)若甲、乙两人谁摸出的球上标的数字大谁就获胜(若数字相同为平局),求甲获胜的概率;(2)若规定:两人摸到的球上所标数字之和小于6则甲获胜,否则乙获胜,这样规定公平吗?解 用(x ,y )(x 表示甲摸到的数字,y 表示乙摸到的数字)表示甲、乙各摸一球构成的基本事件,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25个.(1)设甲获胜的事件为A ,则事件A 中包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10个,则P (A )=1025=25.(2)设甲获胜的事件为B ,乙获胜的事件为C .事件B 所包含的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共有10个;则P (B )=1025=25.∴P (C )=1-P (B )=35.∵P (B )≠P (C ),∴这样规定不公平.能力提升题组(建议用时:20分钟)11.(2017·衡水中学质检)从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为( ) A.16 B.13C.14D.12解析 由题意知,向量m 共有4×3=12个,由m ⊥n ,得m ·n =0,即a =b ,则满足m ⊥n 的m 有(3,3),(5,5),共2个,故所求概率P =212=16.答案 A12.某同学先后投掷一枚质地均匀的骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在直角坐标系xOy 中,以(x ,y )为坐标的点落在直线2x -y =1上的概率为( )A.112B.19C.536D.16解析 先后掷两次骰子的结果共6×6=36种.以(x ,y )为坐标的点落在直线2x -y =1上的结果有(1,1),(2,3),(3,5),共3种,故所求概率为336=112.答案 A13.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a ,放回后,乙从此口袋中再摸出一个小球,其号码为b ,则使不等式a -2b +4<0成立的事件发生的概率为________.解析由题意知(a,b)的所有可能结果有4×4=16个.其中满足a-2b+4<0 有(1,3),(1,4),(2,4),(3,4)共4种结果.故所求事件的概率P=416=14.答案1 414.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品来自A,(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A,B,C三个地区的样品分别为A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以这2件商品来自相同地区的概率P(D)=4 15.。
高三数学第一轮复习课时作业(60)随机事件的概率与古典概型B

课时作业(六十)B 第60讲 随机事件的概率与古典概型时间:35分钟 分值:80分基础热身1.在数学考试中,小明的成绩在90分及以上的概率是0.12,在80~89分的概率为0.55,在70~79分的概率为0.15,在60~69分的概率为0.08.则小明在数学考试中取得80分及以上成绩的概率与考试不及格(低于60分)的概率分别是( )A .0.90,0.10B .0.67,0.33C .0.67,0.10D .0.70,0.102.若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率为( ) A.29 B.736 C.16 D.143.如图K60-1,三行三列的方阵有9个数a ij (i =1,2,3;j =1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )⎝ ⎛⎭⎪⎪⎫a 11 a 12 a 13a 21 a 22 a 23a 31 a 32 a 33 图K60-1A.37B.47C.114D.13144.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( ) A.1564 B.15128 C.24125 D.48125 能力提升5.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次5点向上的概率是( )A.5216B.25216C.31216D.912166.甲袋中有不可识别的m 个白球,n 个黑球,乙袋中有不可识别的n 个白球,m 个黑球(m ≠n ),现从两袋中各摸一个球.事件A :“两球同色”,事件B :“两球异色”,则P (A )与P (B )的大小为( )A .P (A )<P (B ) B .P (A )=P (B )C .P (A )>P (B )D .视m 、n 大小确定7.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( )A.151B.168C.1306D.14088.以平行六面体ABCD -A ′B ′C ′D ′的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率P 为( )A.367385B.376385C.192385D.183859.某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为________.(结果用分数表示)10.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为________.11.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是________.12.(13分)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客.在省外游客中有13持金卡,在省内游客中有23持银卡.(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.难点突破13.(12分)2011·重庆卷某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(1)恰有2人申请A片区房源的概率;(2)申请的房源所在片区的个数X的分布列与期望.课时作业(六十)B【基础热身】 1.C 解析 取得80分及以上的概率为:0.12+0.55=0.67;不及格的概率为:1-0.67-0.15-0.08=0.10. 2.A 解析 基本事件的总数是36,点P 落在圆内的基本事件是(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,故所求的概率是836=29.3.D 解析 从中任取三个数共有C 39=84种取法,没有同行、同列的取法有C 13C 12C 11=6,至少有两个数位于同行或同列的概率是1-684=1314,选D.4.A 解析 将5本不同的书全发给4名同学共有45种发法,其中每名同学至少有一本书的发法有C 25A 44,故每名同学至少有一本书的概率是P =C 25A 4445=1564,选A.【能力提升】5.D 解析 抛掷3次,共有6×6×6=216个事件.一次也不出现5,则每次抛掷都有5种可能,故一次也未出现5的事件总数为5×5×5=125.于是没有出现一次5点向上的概率P =125216所求的概率为1-125216=91216.6.A 解析 基本事件总数为(m +n )2,记事件A 为“两球同色”,则A 可分为“两球皆白”与“两球皆黑”两个互斥事件,∴P (A )=mn (m +n )2+mn (m +n )2=2mn(m +n )2.而B 与A 是对立事件,且m ≠n ,所以P (B )=1-P (A )=m 2+n2(m +n )2>P (A ).故选A.7.B 解析 基本事件总数为C 318=17×16×3. 选出火炬手编号为a n =a 1+3(n -1),a 1=1时,由1,4,7,10,13,16可得4种选法; a 1=2时,由2,5,8,11,14,17可得4种选法; a 1=3时,由3,6,9,12,15,18可得4种选法.所以P =4+4+417×16×3=168.8.A 解析 由平行六面体的八个顶点,共能作成的三角形有C 38=56个,从中任意取出两个三角形的方法数为C 256,由于平行六面体共有六个面和六个对角面,且每一个面上有四个顶点,从中任意取出三个点作成的三角形都是共面三角形,从而任取两个三角形共面的情况有12C 24=72个,即任意取出的两个三角形恰好共面的概率是P 1=72C 256=18385.由于事件A :“任意取出两个三角形不共面”与事件B :“任意取出的两个三角形恰好共面”是对立事件,故所求概率P =1-P 1=367385,选A.9.119190解析 方法1:将事件“两人不属于同一个国家”分拆为下列基本事件:A :“一中一法”,B :“一中一美”;C :“一美一法”,则A 、B 、C 互斥,由P (A )=C 14C 15C 220,P (B )=C 111C 15C 220,P (C )=C 111C 14C 220.∴P =P (A )+P (B )+P (C )=119190.方法2:设事件A :“两人不属于同一国家”的对立事件为A :“两人同属一个国家”,∵P (A )=C 211+C 24+C 25C 220=71190, ∴P (A )=1-71190=119190.10.3554解析 从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除.所有的三位数有A 310-A 29=648个,将10个数字分成三组,即被3除余1的有{1,4,7}、被3除余2的有{2,5,8},被3整除的有{0,3,6,9},若要求所得的三位数被3整除,则可以进行如下分类:①三个数字均取第一组,或均取第二组,有2A 33=12个;②若三个数字均取自第三组,则要考虑取出的数字中有无数字0,共有A 34-A 23=18个;③若三组各取一个数字,第三组中不取0,有C 13·C 13·C 13·A 33=162个;④若三组各取一个数字,第三组中取0,有C 13·C 13·2·A 22=36个.这样能被3整除的数共有228个,不能被3整除的数有420个,所以概率为420648=3554.11.1315解析 方法1:设事件A :甲乙两人中至少有一人抽到选择题.将A 分拆为B :“甲选乙判”,C :“甲选乙选”,D :“甲判乙选”三个互斥事件,则P (A )=P (B )+P (C )+P (D ).而P (B )=C 16C 14C 110C 19,P (C )=C 16C 15C 110C 19,P (D )=C 14·C 16C 110C 19,∴P (A )=2490+3090+2490=7890=1315.方法2:设事件A :甲乙两人中至少有一人抽到选择题,则其对立事件为A :甲乙两人均抽判断题.∴P (A )=C 14C 13C 110C 19=1290,∴P (A )=1-1290=7890=1315. 故甲、乙两人中至少有一人抽到选择题的概率为1315. 12.解答 (1)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡. 设事件A 为“采访该团2人,恰有1人持银卡”,则P (A )=C 16C 130C 236=27,所以采访该团2人,恰有1人持银卡的概率是27.(2)设事件B 为“采访该团2人,持金卡人数与持银卡人数相等”,可以分为: 事件B 1为“采访该团2人,持金卡0人,持银卡0人”,或事件B 2为“采访该团2人,持金卡1人,持银卡1人”两种情况,则P (B )=P (B 1)+P (B 2)=C 221C 36+C 19C 16C 36=44105,所以采访该团2人,持金卡与持银卡人数相等的概率是44105.【难点突破】13.解答 这是等可能性事件的概率计算问题.(1)解法一:所有可能的申请方式有34种,恰有2人申请A 片区房源的申请方式有C 24·22种,从而恰有2人申请A 片区房源的概率为C 24·2234=827.解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验,记“申请A 片区房源”为事件A ,则P (A )=13.从而,由独立重复试验中事件A 恰发生k 次的概率计算公式知,恰有2人申请A 片区房源的概率为P 4(2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827.(2)X 的所有可能值为1,2,3.又P (X =1)=334=127,P (X =2)=C 23(C 12C 34+C 24C 22)34=1427 ⎝⎛⎭⎫或P (X =2)=C 23(24-2)34=1427, P (X =3)=C 13C 24C 1234=49⎝⎛⎭⎫或P (X =3)=C 24A 3334=49.综上知,X 有分布列从而有E (X )=1×127+2×27+3×9=27.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.下列试验中,是古典概型的个数为()
①向上抛一枚质地不均匀的硬币,观察正面向上的概率;
②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;
③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;
④在线段[0,5]上任取一点,求此点小于2的概率.
A.0 B.1
C.2 D.3
答案:B
4.(2017·惠州二模)已知某校有2名男生、3名女生参加演讲比赛,从这5名学生中任选2名(每名学生被选中的机会均等),则这2名学生都是男生或都是女生的概率为()
A.B.
C.D.
解析:设2名男生分别为A,B,3名女生分别为a,b,c,则从这5名学生中任选2名的情况有:(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,而这2名学生刚好是一男一女的有:(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),共6种,故所求概率P=1-=.故选A.
解析:①中,硬币质地不均匀,不是等可能事件,
所以不是古典概型.
②④的基本事件都不是有限个,不是古典概型.
③符合古典概型的特点,是古典概型问题.
答案:B
2.(2017·江西高安中学等九校联考,4)甲、乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组,则两个参加同一个小组的概率为()
设事件“抽取的2个社区中至少有1个来自A行政区”为事件X,则事件X所包含的所有可能的结果有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,c),(A2,B1),(A2,B2),(A2,B3),(A2,c),共9种.
所以P(X)==.
12.(2015·湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.
解法二:记2名来自A大学的志愿者分别为A1,A2,4名来自B大学的志愿者分别为B1,B2,B3,B4,从这6名志愿者中选出2名的基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共15种.其中2名志愿者均来自B大学的事件有6种,分别是(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4).故所求概率P=1-=.
答案:C
6.(2017·宿州一模)从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则关于x的方程x2+2ax+b2=0有两个不相等的实根的概率是()
Hale Waihona Puke A.B.C.D.解析:解法一:根据题意,数对(a,b)共有15种不同的取法,分别为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),若方程x2+2ax+b2=0有两个不相等的实根,则Δ=(2a)2-4b2>0,即a>b,此时满足条件的数对(a,b)分别为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共9种,则方程x2+2ax+b2=0有两个不相等的实根的概率P==,故选C.
A.B.
C.D.
解析:甲、乙两人参加三个不同的学习小组共有9个基本事件,其中两人参加同一个小组有3个基本事件,因此所求概率为=,故选A.
答案:A
3.(2017·广州五校联考一)已知x,y∈{1,2,3,4,5,6},且x+y=7,则y≥的概率为()
A.B.
C.D.
解析:由题意得基本事件空间中的元素有:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),共6个,满足y≥的有:(1,6),(2,5),(3,4),(4,3),共4个,故所求概率为=,故选B.
解法二:根据题意,数对(a,b)共有15种不同的取法,分别为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),若方程x2+2ax+b2=0有两个不相等的实根,则Δ=(2a)2-4b2>0,即a>b,易知满足a≤b的数对(a,b)分别为(1,1),(1,2),(1,3),(2,2),(2,3),(3,3),共6种,则方程x2+2ax+b2=0有两个不相等的实根的概率P=1-==,故选C.
11.(2017·陕西西安八校联考)某市为了解社区群众体育活动的开展情况,拟采用分层抽样的方法从A,B,C三个行政区抽出6个社区进行调查,已知A,B,C三个行政区中分别有12,18,6个社区.
(1)求从A,B,C三个行政区中分别抽取的社区个数;
(2)若从抽得的6个社区中随机地抽取2个进行调查结果的对比,求抽取的2个社区中至少有1个来自A行政区的概率.
答案:A
5.(2017·青岛一模)若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P(m,n)落在直线x+y=4下方的概率为()
A.B.
C.D.
解析:由题意,连续掷两次骰子共包含6×6=36个基本事件.事件“点P(m,n)落在x+y=4下方”包含(1,1),(1,2),(2,1),共3个基本事件,故所求概率P==.
答案:
三、解答题
10.(2017·怀化二模)设a∈{1,2,3},b∈,求函数y=log是减函数的概率.
解析:∵f(x)=在区间(0,+∞)上是减函数,又函数y=log是减函数,
∴>1,
∵a∈{1,2,3},b∈,
则=,,,,2,3,4,6,共8个值,
其中满足>1的有,2,3,4,6,共5个值,
∴函数y=log是减函数的概率为.
则事件A包含的基本事件有(2,8),(3,9),共2个.
∴P(A)==.
答案:
8.(2017·江西九校联考一)某市图书馆要举办读书活动周,需要从本市A大学选2名志愿者,B大学选4名志愿者参与活动周的服务工作,若从这6人中随机抽取2人,则至少有1名A大学志愿者的概率是________.
解析:解法一:记2名来自A大学的志愿者分别为A1,A2,4名来自B大学的志愿者分别为B1,B2,B3,B4,从这6名志愿者中选出2名的基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共15种.其中至少有1名A大学志愿者的事件有9种.故所求概率P==.
答案:C
二、填空题
7.(2016·四川卷,13)从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是________.
解析:所有的基本事件有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12个.记“logab为整数”为事件A,
解析:(1)社区总数为12+18+6=36个,样本容量与总体的个体数之比为=.
所以从A,B,C三个行政区中应分别抽取的社区个数为2,3,1.
(2)设A1,A2为在A行政区中抽得的2个社区,B1,B2,B3为在B行政区中抽得的3个社区,c为在C行政区中抽得的1个社区,在这6个社区中随机抽取2个,全部可能的结果有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,c),(A2,B1),(A2,B2),(A2,B3),(A2,c),(B1,B2),(B1,B3),(B1,c),(B2,B3),(B2,c),(B3,c),共15种.
答案:
9.已知集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一点,O为坐标原点,则直线OA与抛物线y=x2+1有交点的概率是________.
解析:易知过点(0,0)与抛物线y=x2+1相切的直线为y=2x(斜率小于0的无需考虑),集合N中共有16个元素,其中使OA斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,由古典概型的概率计算公式知概率为P==.