人工智能(部分习题答案)
人工智能第3版王万森部分习题答案

第二章2.8设有如下语句,请用相应的谓词公式分别把他们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
解:定义谓词P(x):x是人L(x,y):x喜欢y其中,y的个体域是{梅花,菊花}。
将知识用谓词表示为:(∃x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花))(2)有人每天下午都去打篮球。
解:定义谓词P(x):x是人B(x):x打篮球A(y):y是下午将知识用谓词表示为:(∃x )(∀y) (A(y)→B(x)∧P(x))(3)新型计算机速度又快,存储容量又大。
解:定义谓词NC(x):x是新型计算机F(x):x速度快B(x):x容量大将知识用谓词表示为:(∀x) (NC(x)→F(x)∧B(x))(4)不是每个计算机系的学生都喜欢在计算机上编程序。
解:定义谓词S(x):x是计算机系学生L(x, pragramming):x喜欢编程序U(x,computer):x使用计算机将知识用谓词表示为:¬(∀x) (S(x)→L(x, pragramming)∧U(x,computer))(5)凡是喜欢编程序的人都喜欢计算机。
解:定义谓词P(x):x是人L(x, y):x喜欢y将知识用谓词表示为:(∀x) (P(x)∧L(x,pragramming)→L(x, computer))2.10用谓词表示法求解农夫、狼、山羊、白菜问题。
农夫、狼、山羊、白菜全部放在一条河的左岸,现在要把他们全部送到河的右岸去,农夫有一条船,过河时,除农夫外船上至多能载狼、山羊、白菜中的一种。
狼要吃山羊,山羊要吃白菜,除非农夫在那里。
似规划出一个确保全部安全过河的计划。
请写出所用谓词的定义,并给出每个谓词的功能及变量的个体域。
解:(1) 先定义描述状态的谓词要描述这个问题,需要能够说明农夫、狼、羊、白菜和船在什么位置,为简化问题表示,取消船在河中行驶的状态,只描述左岸和右岸的状态。
人工智能(第3版)王万森部分习题答案

第二章2.8设有如下语句,请用相应的谓词公式分别把他们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
解:定义谓词P(x):x是人L(x,y):x喜欢y其中,y的个体域是{梅花,菊花}。
将知识用谓词表示为:(∃x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花))(2) 有人每天下午都去打篮球。
解:定义谓词P(x):x是人B(x):x打篮球A(y):y是下午将知识用谓词表示为:(∃x )(∀y) (A(y)→B(x)∧P(x))(3)新型计算机速度又快,存储容量又大。
解:定义谓词NC(x):x是新型计算机F(x):x速度快B(x):x容量大将知识用谓词表示为:(∀x) (NC(x)→F(x)∧B(x))(4) 不是每个计算机系的学生都喜欢在计算机上编程序。
解:定义谓词S(x):x是计算机系学生L(x, pragramming):x喜欢编程序U(x,computer):x使用计算机将知识用谓词表示为:¬(∀x) (S(x)→L(x, pragramming)∧U(x,computer))(5)凡是喜欢编程序的人都喜欢计算机。
解:定义谓词P(x):x是人L(x, y):x喜欢y将知识用谓词表示为:(∀x) (P(x)∧L(x,pragramming)→L(x, computer))2.10用谓词表示法求解农夫、狼、山羊、白菜问题。
农夫、狼、山羊、白菜全部放在一条河的左岸,现在要把他们全部送到河的右岸去,农夫有一条船,过河时,除农夫外船上至多能载狼、山羊、白菜中的一种。
狼要吃山羊,山羊要吃白菜,除非农夫在那里。
似规划出一个确保全部安全过河的计划。
请写出所用谓词的定义,并给出每个谓词的功能及变量的个体域。
解:(1) 先定义描述状态的谓词要描述这个问题,需要能够说明农夫、狼、羊、白菜和船在什么位置,为简化问题表示,取消船在河中行驶的状态,只描述左岸和右岸的状态。
人工智能基础(习题卷1)

人工智能基础(习题卷1)第1部分:单项选择题,共53题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]声明1:可以通过将所有权重初始化为0来训练网络。
声明2:可以通过将偏差初始化为0来很好地训练网络以上哪些陈述是真实的?A、1对2错A)1错2对B)1和2都对C)1和2都错答案:B解析:2.[单选题]下列哪个函数可以组合估计器?A)RepeatedKFoldB)KFoldC)LeaveOneOutD)make_pipeline答案:D解析:3.[单选题]输入图像已被转换为大小为28×28的矩阵和大小为7×7的步幅为1的核心/滤波器。
卷积矩阵的大小是多少?A)22X22B)21X21C)28X28D)7X7答案:A解析:4.[单选题]人工神经网络的相关研究最早可以追溯到上世纪40年代,由心理学家麦卡洛克和数学逻辑学家皮茨提出的( )。
A)M-P神经元模型B)B-P神经元模型C)M-N神经元模型D)N-P神经元模型答案:A解析:5.[单选题]要在某一台机器上为某种语言构造一个编译程序,必须掌握哪些内容()A)汇编语言、高级语言、编译方法B)程序设计方法、测试方法、编译方法C)源语言、目标语言、编译方法D)高级语言、程序设计方法、机器语言答案:C解析:C)奇异点阈值D)点云分辨率答案:A解析:7.[单选题]Hadoop生态系统中,HBase是一种()。
A)分布式文件系统B)数据仓库C)实时分布式数据库D)分布式计算系统答案:C解析:HBase是一个面向列的实时分布式数据库。
8.[单选题]人工神经元网络与深度学习的关系是A)人工神经元网络是深度学习的前身B)深度学习是人工神经元网络的一个分支C)深度学习是人工神经元网络的一个发展D)深度学习与人工神经元网络无关答案:C解析:深度学习是实现机器学习的一种技术,现在所说的深度学习大部分都是指神经网络9.[单选题]在编制自动化需求时,实践证明采用()时最有效的方式A)流程图B)视频说明C)电子表格D)流程图加视频说明答案:D解析:10.[单选题]关于用4V来表示大数据的主要特征,描述错误的是A)大数据的时间分布往往不均匀,近几年生成数据的占比最高B)“如何从海量数据中洞见(洞察)出有价值的数据”是数据科学的重要课题之一C)数据类型的多样性往往导致数据的异构性,进而加大数据处理的复杂性,对数据处理能力提出了更高要求D)数据价值与数据量之间存在线性关系答案:D解析:11.[单选题]常用的的灰度内插法不包括()。
大学计算机人工智能练习题及答案

大学计算机人工智能练习题及答案1. 基础知识题人工智能(Artificial Intelligence,简称AI)是一门研究如何使计算机能够像人一样地思考、学习和决策的科学。
它涉及了计算机科学、心理学、哲学等多个领域。
以下是一些基础知识题,请选择正确的答案:1.1 下列哪个不属于人工智能的应用领域?A. 机器学习B. 机器人技术C. 基因工程D. 自然语言处理答案:C1.2 以下哪个算法常用于监督学习?A. K-均值算法B. 决策树算法C. 遗传算法D. 支持向量机算法答案:D1.3 以下哪个机器人不属于人工智能领域的研究重点?A. 工业机器人B. 情感机器人C. 智能家居机器人D. 洗衣机器人答案:D2. 编程题请使用Python语言完成以下编程题:2.1 编写一个函数,计算斐波那契数列的第n项。
斐波那契数列的定义如下:F(0) = 0,F(1) = 1,F(n) = F(n-1) + F(n-2),其中n > 1。
```pythondef fibonacci(n):if n <= 0:return Noneelif n == 1:return 0elif n == 2:return 1else:a, b = 0, 1for i in range(3, n+1):a, b = b, a + breturn b# 测试print(fibonacci(10)) # 输出:34```2.2 编写一个函数,判断一个整数是否为素数(质数)。
素数的定义是只能被1和自身整除的整数。
```pythondef is_prime(n):if n <= 1:return Falsefor i in range(2, int(n**0.5) + 1):if n % i == 0:return Falsereturn True# 测试print(is_prime(17)) # 输出:Trueprint(is_prime(20)) # 输出:False```3. 算法题以下是一道经典的算法题,请编写代码实现。
人工智能课后习题答案

可采用批量梯度下降、随机梯度下降、小批量梯度下降等优化算法,以及动量 法、AdaGrad、RMSProp、Adam等自适应学习率优化方法。
课后习题解答与讨论
• 习题一解答:详细阐述感知器模型的原理及算法实现过程,包括模型结构、激 活函数选择、损失函数定义、权重和偏置项更新方法等。
• 习题二解答:分析多层前馈神经网络的结构特点,讨论隐藏层数量、神经元个 数等超参数对网络性能的影响,并给出一种合适的超参数选择方法。
发展历程
人工智能的发展大致经历了符号主义、连接主义和深度学习三个阶段。符号主义认为人工智能源于对人类思 维的研究,尤其是对语言和逻辑的研究;连接主义主张通过训练大量神经元之间的连接关系来模拟人脑的思 维;深度学习则通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
机器学习原理及分类
深度学习框架与应用领域
深度学习框架
深度学习框架是一种用于构建、训练和部署深度学习模型的开发工具。目前流行的深度学习框架包括 TensorFlow、PyTorch、Keras等。
应用领域
深度学习已广泛应用于图像识别、语音识别、自然语言处理、推荐系统等多个领域,并取得了显著的 成果。
课后习题解答与讨论
习题四解答
讨论人工智能的伦理问题,如数据隐私、算法偏见等,并 提出可能的解决方案。
02 感知器与神经网络
感知器模型及算法实现
感知器模型
感知器是一种简单的二分类线性模型 ,由输入层、权重和偏置项、激活函 数(通常为阶跃函数)以及输出层组 成。
感知器算法实现
通过训练数据集,采用梯度下降法更 新权重和偏置项,使得感知器对训练 样本的分类误差最小化。
时序差分方法
人工智能导论-各章习题答案

习题
答案:神经网络是一种模仿人脑神经元之间相互连接和传递信息的网络模型。神经网络通常由输入层、隐藏层和输出层组成,每一层都包含多个神经元,通过不同层之间的连接和权重,实现信息的传递和处理。
习题
答案:深度学习是一种基于神经网络的机器学习方法,通过多层次的网络结构和大量的数据进行训练,从而实现高效的模式识别和特征提取。深度学习在计算机视觉、自然语言处理等领域取得了许多重要的成果。
第二章习题答案
习题
答案:符号推理是一种基于逻辑和推理规则的方法,通过对符号和符号之间的关系进行操作和推理,从而实现问题的求解。符号推理通常涉及到语义、句法和语法的处理,需要对问题进行符号化表示。
习题
答案:决策树是一种常用的机器学习算法,用于解决分类问题。它基于树形结构,通过一系列的判断节点将数据进行分类。决策树的构建过程是一个递归的过程,每次选择一个最优的判断节点,并将数据分割为不同的子集,直到达到终止条件。
习题
答案:人工智能的应用非常广泛,涉及到各个领域。例如,在医疗领域,人工智能可以用于辅助医生进行诊断和治疗决策;在金融领域,人工智能可以用于风险评估和投资建议;在交通领域,人工智能可以用于智能交通管理和无人驾驶等。
习题
答案:人工智能的发展面临着一些挑战和问题。首先,人工智能的算法和模型需要不断优化和改进,以提高其性能和准确度。其次,人工智能系统需要大量的数据进行训练,但数据的获取和处理也面临一些困难。另外,还需要解决人工智能系统的安全和隐私问题,以保护用户的信息和权益。
以上是《人工智Байду номын сангаас导论》各章习题的答案。希望对学习人工智能的同学们有所帮助!
参考资料
1.Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson.
人工智能单选练习题库含参考答案

人工智能单选练习题库含参考答案一、单选题(共100题,每题1分,共100分)1、人工智能诞生在1955年,50年代末第一款神经网络-()将人工智能推向了第一个高潮。
A、感知机B、无人机C、费曼机D、机器人正确答案:A2、GooLeNet中使用较多小tricks,其中全局平局池化GAP就是一个,使用GAP的优点是()A、加速模型收敛B、提供更好的分类C、增加网络深度D、减少参数量,实现任意大小的输入正确答案:D3、学习器的实际预测输出与样本的真实输出之间的差异称为(___)。
A、误差B、精度C、查准率D、错误率正确答案:A4、华为的芯片支持 HUAWEI HiAI 的哪一个模块?A、HiAI FrameworkB、HiAI ServiceC、HiAI FoundationD、HiAI Engine正确答案:C5、有统计显示,在未来,非结构化数据的占比将达到()以上。
A、$0.90B、0.8C、0.6D、0.7正确答案:A6、我国人工智能的发展战略是()。
A、12320工业互联B、“1438”战略C、新一代人工智能发展规划D、国家制造创新正确答案:C7、()就是指分类任务中不同类别的训练样例数目差别很大的情况A、类别不相同B、类别不对等C、类别不平衡D、类别数不同正确答案:C8、以下哪个关键字是与 try 语句一起使用来处理异常的?A、&catch(a)&B、catch&C、&exception&D、&except正确答案:D9、深度学习中的“深度”是指()A、计算机对问题的处理更加灵活B、中间神经元网络的层次很多C、计算机的求解更加精准D、计算机理解的深度正确答案:B10、增强现实领域(AR)大量应用了(),典型的就是微软的HoLolens。
A、计算机视觉B、语音识别C、图像处理D、虚拟现实技术正确答案:A11、DBSCAN在最坏情况下的时间复杂度是()A、O(m2)B、O(m*logm)C、O(logm)D、O(m)正确答案:A12、多义现象可以被定义为在文本对象中一个单词或短语的多种含义共存。
人工智能基础概念习题(含答案)

人工智能基础概念习题(含答案)一、单选题(共60题,每题1分,共60分)1、在数据产品研发的过程中,以下()属于低层次数据。
A、一次数据B、三次数据C、二次数据D、零次数据正确答案:D2、在人工神经网络算法中,不属于实现“人工神经元”的方法的有()。
A、感知器B、线性单元C、Sigmoid单元D、Untied单元正确答案:D3、下列哪项不是构建知识图谱用到的主要技术()A、关系抽取B、命名实体识别C、词性标注D、实体链接正确答案:C4、以下关于机器学习说法错误的是A、机器学习可以解决图像识别问题B、监督学习和非监督学习都属于机器学习C、机器学习在一定程度上依赖于统计学习D、目前机器学习已经可以代替人类正确答案:D5、图像识别任务可以分为三个层次,根据处理内容的抽象性,从低到高依次为A、图像分析,图像处理,图像理解B、图像分析,图像理解,图像处理C、图像理解,图像分析,图像处理D、图像处理,图像分析,图像理解正确答案:D6、2010年谷歌推出以顶点为中心的图处理系统(),其专为大规模图数据处理而设计,将图数据保存在主存储器中并采用并行计算的BSP模型A、PregelB、DregelC、CregelD、Aregel正确答案:A7、()是人工智能地核心,是使计算机具有智能地主要方法,其应用遍及人工智能地各个领域。
A、深度学习B、智能芯片C、机器学习D、人机交互正确答案:C8、标准AdaBoost只适用于()任务A、二分类B、分类C、回归D、多分类正确答案:D9、阿尔法狗是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,它的主要工作原理是什么?A、深度学习B、卷积神经网络C、机器学习D、BP神经网络正确答案:A10、下列选项中,不属于生物特征识别技术的是()A、声纹识别B、文本识别C、步态识别D、虹膜识别正确答案:B11、对学习器的泛化性能进行评估,不仅需要有效可行的实验估计方法,还需要有衡量模型泛化能力的评价标准,这就是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.什么是人类智能?它有哪些特征或特点?定义:人类所具有的智力和行为能力。
特点:主要体现为感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。
2.人工智能是何时、何地、怎样诞生的?解:人工智能于1956年夏季在美国Dartmouth大学诞生。
此时此地举办的关于用机器模拟人类智能问题的研讨会,第一次使用“人工智能”这一术语,标志着人工智能学科的诞生。
3.什么是人工智能?它的研究目标是?定义:用机器模拟人类智能。
研究目标:用计算机模仿人脑思维活动,解决复杂问题;从实用的观点来看,以知识为对象,研究知识的获取、知识的表示方法和知识的使用。
4.人工智能的发展经历了哪几个阶段?解:第一阶段:孕育期(1956年以前);第二阶段:人工智能基础技术的研究和形成(1956~1970年);第三阶段:发展和实用化阶段(1971~1980年);第四阶段:知识工程和专家系统(1980年至今)。
5.人工智能研究的基本内容有哪些?解:知识的获取、表示和使用。
6.人工智能有哪些主要研究领域?解:问题求解、专家系统、机器学习、模式识别、自动定论证明、自动程序设计、自然语言理解、机器人学、人工神经网络和智能检索等。
7.人工智能有哪几个主要学派?各自的特点是什么?主要学派:符号主义和联结主义。
特点:符号主义认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从而思维就是符号计算;联结主义认为人类智能的基本单元是神经元,认识过程是由神经元构成的网络的信息传递,这种传递是并行分布进行的。
8.人工智能的近期发展趋势有哪些?解:专家系统、机器人学、人工神经网络和智能检索。
9.什么是以符号处理为核心的方法?它有什么特征?解:通过符号处理来模拟人类求解问题的心理过程。
特征:基于数学逻辑对知识进行表示和推理。
11.什么是以网络连接为主的连接机制方法?它有什么特征?解:用硬件模拟人类神经网络,实现人类智能在机器上的模拟。
特征:研究神经网络。
1.请写出用一阶谓词逻辑表示法表示知识的步骤。
步骤:(1)定义谓词及个体,确定每个谓词及个体的确切含义;(2)根据所要表达的事物或概念,为每个谓词中的变元赋予特定的值;(3)根据所要表达的知识的语义用适当的联接符号将各个谓词联接起来,形成谓词公式。
2.设有下列语句,请用相应的谓词公式把它们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
解:定义谓词如下:Like(x,y):x喜欢y。
Club(x):x是梅花。
Human(x):x是人。
Mum(x):x是菊花。
“有的人喜欢梅花”可表达为:(∃x)(Human(x)∧Like(x,Club(x)))“有的人喜欢菊花”可表达为:(∃x)(Human(x)∧Like(x,Mum(x)))“有的人既喜欢梅花又喜欢菊花”可表达为:(∃x)(Human(x)∧Like(x,Club(x))∧ Like(x,Mum(x))) (1)他每天下午都去玩足球。
解:定义谓词如下:PlayFootball(x):x玩足球。
Day(x):x是某一天。
则语句可表达为:(∀x)(D(x)→PlayFootball(Ta))(2)太原市的夏天既干燥又炎热。
解:定义谓词如下:Summer(x):x的夏天。
Dry(x):x是干燥的。
Hot(x):x是炎热的。
则语句可表达为:Dry(Summer(Taiyuan))∧Hot(Summer(Taiyuan))(3)所有人都有饭吃。
解:定义谓词如下:Human(x):x是人。
Eat(x):x有饭吃。
则语句可表达为:(∀x)(Human(x)→Eat(x))(4)喜欢玩篮球的人必喜欢玩排球。
解:定义谓词如下:Like(x,y):x喜欢y。
Human(x):x是人。
则语句可表达为:(∀x)((Human(x)∧Like(x,basketball))→Like(x,volleyball))(5)要想出国留学,必须通过外语考试。
解:定义谓词如下:Abroad(x):x出国留学。
Pass(x):x通过外语考试。
则语句可表达为:Abroad(x)→Pass(x)、猴子问题:2.7解:根据谓词知识表示的步骤求解问题如下:解法一:(1)本问题涉及的常量定义为:猴子:Monkey,箱子:Box,香蕉:Banana,位置:a,b,c(2)定义谓词如下:SITE(x,y):表示x在y处;HANG(x,y):表示x悬挂在y处;ON(x,y):表示x站在y上;HOLDS(y,w):表示y手里拿着w。
(3)根据问题的描述将问题的初始状态和目标状态分别用谓词公式表示如下:问题的初始状态表示:SITE(Monkey,a)∧HANG(Banana,b)∧SITE(Box,c)∧~ON(Monkey,Box)∧~HOLDS(Monkey,Banana) 问题的目标状态表示:SITE(Monkey,b)∧~HANG(Banana,b)∧SITE(Box,b)∧ON(Monkey,Box)∧HOLDS(Monkey,Banana)解法二:本问题涉及的常量定义为:猴子:Monkey,箱子:Box,香蕉:Banana,位置:a,b,c定义谓词如下:SITE(x,y):表示x在y处;ONBOX(x):表示x站在箱子顶上;HOLDS(x):表示x摘到了香蕉。
(3)根据问题的描述将问题的初始状态和目标状态分别用谓词公式表示如下:问题的初始状态表示:SITE(Monkey,a)∧SITE(Box,c)∧~ONBOX(Monkey)∧~HOLDS(Monkey)问题的目标状态表示:SITE(Box,b)∧SITE(Monkey,b)∧ONBOX(Monkey)∧HOLDS(Monkey)从上述两种解法可以看出,只要谓词定义不同,问题的初始状态和目标状态就不同。
所以,对于同样的知识,不同的人的表示结果可能不同。
2.8解:本问题的关键就是制定一组操作,将初始状态转换为目标状态。
为了用谓词公式表示操作,可将操作分为条件(为完成相应操作所必须具备的条件)和动作两部分。
条件易于用谓词公式表示,而动作则可通过执行该动作前后的状态变化表示出来,即由于动作的执行,当前状态中删去了某些谓词公式而又增加一些谓词公式从而得到了新的状态,通过这种不同状态中谓词公式的增、减来描述动作。
定义四个操作的谓词如下,操作的条件和动作可用谓词公式的增、删表示:(1)goto<x,y):从x处走到y处。
条件:SITE(Monkey,x)动作:删除SITE(Monkey,x);增加SITE(Monkey,y)(2)pushbox (x,y):将箱子从x处推到y处。
条件:SITE(Monkey,x)∧SITE(Box,x)∧~ONBOX(Monkey)动作:删除SITE(Monkey,x),SITE(Box,x);增加SITE(Monkey,y),SITE(Box,y)(3)climbbox:爬到箱子顶上。
条件:~ONBOX(Monkey)动作:删除~ONBOX(Monkey);增加ONBOX(Monkey)(4)grasp:摘下香蕉。
条件:~HOLDS(Monkey) ∧ONBOX(Monkey) ∧SITE(Monkey,b)动作:删除~HOLDS(Monkey);增加HOLDS(Monkey)在执行某一操作前,先检查当前状态是否满足其前提条件。
若满足,则执行该操作。
否则,检查另一操作的条件是否被满足。
检查的方法就是当前的状态中是否蕴含了操作所要求的条件。
在定义了操作谓词后,就可以给出从初始状态到目标状态的求解过程。
在求解过程中,当进行条件检查时,要进行适当的变量代换。
SITE(Monkey,a)SITE(Box,c)~ONBOX(Monkey)~HOLDS(Monkey)⇓goto(x,y),用a代x,用c代ySITE(Monkey,c)SITE(Box,c)~ONBOX(Monkey)~HOLDS(Monkey)⇓ pushbox(x,y),用c代x,用b代ySITE(Monkey,b)SITE(Box,b)~ONBOX(Monkey)~HOLDS(Monkey)⇓climbboxSITE(Monkey,b)SITE(Box,b)ONBOX(Monkey)~HOLDS(Monkey)⇓graspSITE(Monkey,b)SITE(Box,b)ONBOX(Monkey)HOLDS(Monkey)2.16. 用语义网络表示下列知识:(1)所有的鸽子都是鸟;(2)所有的鸽子都有翅膀;(3)信鸽是一种鸽子,它有翅膀。
解:本题涉及对象有信鸽、鸽子和鸟。
鸽子和信鸽的属性是有翅膀。
鸽子和鸟是ISA关系,信鸽和鸽子是AKO关系。
根据分析得到本题的语义网络如下:2.17. 请对下列命题分别写出它的语义网络:(1)每个学生都有多本书。
解:根据题意可得本题的语义网络如下:(2)孙老师从2月至7月给计算机应用专业讲《网络技术》课程。
解:根据题意可得本题的语义网络如下:(3)雪地上留下一串串脚印,有的大,有的小,有的深,有的浅。
解:根据题意可得本题的语义网络如下:(4)王丽萍是天发电脑公司的经理,她35岁,住在南内环街68号。
解:根据题意可得本题的语义网络如下:2.18. 请把下列命题用一个语义网络表示出来:(1)猪和羊都是动物;(2)猪和羊都是偶蹄动物和哺乳动物;(3)野猪是猪,但生长在森林中;(4)山羊是羊,且头上长着角;(5)绵羊是一种羊,它能生产羊毛。
解:本题涉及对象有猪、羊、动物、野猪、山羊和绵羊。
猪和羊的属性是偶蹄和哺乳。
野猪的属性是生长在森林中。
山羊的属性是头上长着角。
绵羊的属性是产羊毛。
根据对象之间的关系得到本题的语义网络如下:2.27有一农夫带一条狼,一只羊和一框青菜与从河的左岸乘船倒右岸,但受到下列条件的限制:(1) 船太小,农夫每次只能带一样东西过河;(2)如果没有农夫看管,则狼要吃羊,羊要吃菜。
请设计一个过河方案,使得农夫、浪、羊都能不受损失的过河,画出相应的状态空间图。
题示:(1) 用四元组(农夫,狼,羊,菜)表示状态,其中每个元素都为0或1,用0表示在左岸,用1表示在右岸。
(2) 把每次过河的一种安排作为一种操作,每次过河都必须有农夫,因为只有他可以划船。
解:第一步,定义问题的描述形式用四元组S=(f,w,s,v)表示问题状态,其中,f,w,s和v分别表示农夫,狼,羊和青菜是否在左岸,它们都可以取1或0,取1表示在左岸,取0表示在右岸。
第二步,用所定义的问题状态表示方式,把所有可能的问题状态表示出来,包括问题的初始状态和目标状态。
由于状态变量有4个,每个状态变量都有2种取值,因此有以下16种可能的状态:S0=(1,1,1,1),S1=(1,1,1,0),S2=(1,1,0,1),S3=(1,1,0,0)S4=(1,0,1,1),S5=(1,0,1,0),S6=(1,0,0,1),S7=(1,0,0,0)S8=(0,1,1,1),S9=(0,1,1,0),S10=(0,1,0,1),S11=(0,1,0,0)S12=(0,0,1,1),S13=(0,0,1,0),S14=(0,0,0,1),S15=(0,0,0,0)其中,状态S3,S6,S7,S8,S9,S12是不合法状态,S0和S15分别是初始状态和目标状态。