用于提高盒段整体结构拉伸强度的增强芯材
增强材料

● 沥青基碳纤维的性能
日本三菱化成公司Pitch-CF产品牌号及性能
美国Amoco公司Pitch-CF产品牌号及性能
21
拉伸强度高,~7GPa; 弹性模量~900GPa;
(5.2)、碳纤维的物理性能
密度小:1.5~2.0 g/cm3之间,石墨化程度越高,密度越大; 热膨胀系数小:轴向(-1.5~-0.5) ×10-6/K
耐热性:在不接触空气和氧化气氛时,惰性气氛中热稳定性 高(2000℃还能承载),在空气中400℃开始下降;
耐油、抗放射、吸收有毒气体等
23
(6)、碳纤维的应用
做为高性能增强纤维,应用在各类复合材料中(PMC、 MMC、CMC和C/C),广泛应用于
航空航天、军事:航空器的主承力结构材料,如主翼、尾 翼、机体;C/C刹车片;防热及结构材料:火箭喷嘴、防热层; 卫星天线、太阳能翼片底板,等等;
热匹配(热膨胀系数)、互溶性等; 高化学稳定性 优良的性能再现性和一致性 增强材料的形状、尺寸 容易制造,性能/价格比。
对结构复合材料,首先考虑的是增强材料的强度、模量和密度。 增强体与基体相容性主要反映界面作用和影响。
9
二、纤 维(fiber)
重点介绍: 有机纤维:Kevlar纤维,聚乙烯纤维,尼龙 无机纤维:玻璃纤维、碳纤维、硼纤维、SiC纤维、 Al2O3纤维
32
3、碳化硅(SiC)纤维(Silicon carbide fiber, SiCf) (1)、SiC纤维的制备
CVD(化学气相沉积)法
使用钨芯或碳芯采用CVD法制备出SiC纤维,美国Texton公司商品名SCS2、SCS-6、 SCS-8等,以及英国的Sigma11140+。该方法生产的碳化硅纤 维的密度为~3.5 g/cm3,性能高强、高模,抗拉强度为2.2~3.9GPa,模 量为415 GPa,直径为100、140m,柔软性也差。
复合材料技术

航空预浸料- 热压罐工艺复合材料技术应用概况发布时间:2011-11-23 15:34:27先进复合材料自问世以来,由于其轻质、高强、耐疲劳、耐腐蚀等诸多优势,一直在航空材料领域得到重视。
随着近几十年来的发展,尤其是最近10年在大型飞机上井喷式的应用,先进复材料已经证明了其在未来航空领域的重要地位,它在飞机上的用量和应用部位也已经成为衡量飞结构先进性的重要标志之一[1] 如目前代表世界最先进战机的美国F-22 和F-35,其复合材料占机结构重量达到了26%(F-22 机身、机翼、襟翼、垂尾、副翼、口盖、起落架舱门;F-35 机身翼进气道、操纵面、副翼、垂尾),欧洲EF-2000 战机更是达到了35%~40%(机翼、垂尾、方向舵[2] ;民机领域的两大巨头波音和空客,在其最新型的大型客机波音787、A350XWB 机型中,大幅使用复合材料,分别达到50% 和52%[3],在机身主承力结构中,除一些特殊需要外,基本上实现了全复合材料化。
从当前的复合材料应用来看,航空复合材料具备以下几个方面的特点:在材料方面,飞主承力结构应用高韧性复合材料;在工艺方面,呈现出以预浸料- 热压罐工艺为主,积极开发液体成型工艺及其他低成本成型工艺的态势,对复合材料构件的制造综合考虑性能/ 成本因机[4]设计理念的广泛认知,复合材料已逐渐在主承力结构上站稳了脚跟,而且,为了进一步将复合材料的优点充分发挥,飞机结构设计越来越趋向于整体化和大型化。
复合材料在主承力结构上的应用技术是体现航空复合材料水平及应用程度的重要标志。
目前复合材料主承力构件仍是以预浸料- 热压罐工艺为主。
基于此,本文旨在介绍目前与航空预浸料- 热压罐工艺相关的复合材料技术。
主承力结构用预浸料1 高性能复合材料体系“计是主导,材料是基础,工艺是关键”[5]复合材料的制造技术与材料的发展息息相关。
航空预浸料-热压罐工艺高性能复合材料到目前已经历了3个阶段。
第一阶段的复合材料采用通用T300 级碳纤维和未增韧热固性树脂,具有明显的脆性材料特征,主要用于飞机承力较小的结构件。
芳纶纤维-精选精品教育文档

芳纶的化学性能
⊙热稳定、耐火、不溶、自熄性材料。真空中长期使 用温度为160℃,-60℃也不脆; ⊙ Tg =(250~400)℃; ⊙热膨胀系数低(300℃以下,纵向为负值); ⊙具有良好的耐化学介质性(但不耐强酸、强碱); ⊙耐疲劳、耐磨、电气绝缘、透电磁波。 ⊙对紫外线敏感。
杜邦公司PPTA纤维的主要牌号
在复合材料中应用最普遍的是PPTA纤维,Du pont公 司PPTA纤维的主要牌号有: ◆第一代(RI型):Kevlar-29、Kevlar-49 ◆第二代(Hx系列):Ha(高粘接型)、Ht(Kevlar-129、 高强型)、He(Kevlar-100、原液着色型)、Hp (Kevlar-68、高性能中模型)、Hm(Kevlar-149、高 模型)、He(Kevlar-119、高伸长型)。
★后来则以超高分子量(>106)聚乙烯(UHMW-PE)的溶 液纺丝法得到模量高达200GPa的有机纤维。
★1971年,美国杜邦公司公布了以“Kevlar”为商品名的芳纶 的生产和性能。
2.3.1.1 概述
★芳纶(aramid fiber)是由芳香族聚酰胺树脂 (aromatic polyamide risen)纺成的纤维。
空
旋转鼓轮
气
隙
喷
凝胶液体
丝
嘴
生产PPTA纤维的干喷-湿纺工艺示意图
干喷—湿纺的特点:
♀用干喷—湿纺方法纺丝时,在剪切力作 用下,PPTA极易沿作用力方向取向。
♀采取干喷—湿纺液晶纺丝工艺,可抑制 卷曲或折叠链产生,使分子链沿轴向进 一步高度取向,形成几乎为100%的次晶 结构。
(2)PPTA的结构
◇芳纶沿分子链方向(平行于纤维轴向)为强共价键; 垂直于纤维轴向的分子间以氢键相连,因而纤维显
PC树脂

PC树脂的材料特性和成型工艺聚碳酸酯(PC)树脂是一种性能优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕变和尺寸稳定性好,耐热、吸水率低、无毒、介电性能优良,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。
目前广泛应用于汽车、电子电气、建筑、办公设备、包装、运动器材、医疗保健等领域,随着改性研究的不断深入,正迅速拓展到航空航天、计算机、光盘等高科技领域。
PC树脂的应用与发展:70年代PC多用作连接器、开关等电气、电子零件,到80年代前半期应用扩展至精密机械(照相机、钟表)、电动工具和光学机械上,成为PC的第一发展期。
80年代后半期PC的应用进一步扩大到办公设备、汽车、激光唱片(CD),需求量大增而成为第二个发展期。
进入90年代以后受经济影响速度放缓,但在1992~1994年间仍有10%~15%的增长率。
PC之所以有大的市场容量是由于它具有比较全面平衡的性能——优良的耐冲击性、耐热性、尺寸稳定性、透明及自熄性等,因此在电气、电子、精密机械、汽车、保安、医疗等领域成为可广泛使用的工程塑料。
90年代中期又开发出PC/ABS 合金的复合化技术,更扩大了应用领域。
目前PC广泛应用于汽车、电子电气、建筑、办公设备、包装、运动器材、医疗保健等领域,随着改性研究的不断深入,正迅速拓展到航空航天、计算机、光盘等高科技领域。
PC合金改性PC/ABS合金:PC与ABS共混物可以综合PC和ABS 的优良性能,提高ABS的耐热性、抗冲击和拉伸强度,降低PC成本和熔体粘度,改善加工性能,减少制品内应力和冲击强度对制品厚度的敏感性。
目前PC/ABS 合金发展迅速,全球产量约为80万吨/年左右,世界各大公司纷纷开发推出PC /ABS合金新品种,如阻燃、玻纤增强、电镀、耐紫外线等品种,尤其是在汽车工业中得到广泛应用,另外还广泛应用于计算机、复印机和电子电气部件等。
我国近年来也开始一定研究和生产,如上海杰事杰公司的PC/ABS合金材料已应用于汽车装饰件、灯壳和耐热电器壳体;中科院长春应用化学所开发的高耐热、高耐热高抗冲、高耐热阻燃三个品级的PC/ABS合金材料已被国内数家汽车制造公司使用,用做前装饰板、仪表板及物品箱盖专用料等。
无人机用碳纤维复合材料的性能及应用现状

0引言无人机技术自诞生以来,轻量化一直是该研发领域追求的目标,碳纤维复合材料与传统金属材料相比,具有质量轻、强度高、耐疲劳等优点,因此碳纤维复合材料在无人机上的应用成为无人机领域主要的研究方向[1]。
碳纤维复合材料应用于无人机结构件的制造,能极大地改善和提高无人机的性能。
近年来,世界各国在无人机制造中大量使用碳纤维复合材料,使用量占其结构总量的60%~80%,可使机体减重25%以上[2]。
碳纤维树脂基复合材料是应用最广泛的碳纤维复合材料,由碳纤维与树脂复合而成,可增强机体的结合程度,提升材料的力学性能。
韩艳霞[3]采用环氧树脂基对碳纤维进行铺层设计,并采用有限元分析碳纤维树脂基复合产品,证实其具有优异的力学性能。
碳纤维复合材料作为一种特殊材料,其加工需要采用特殊的工艺。
刘向等[4]研究一种新型的无人机机翼一体成型技术,采用该技术的机翼表面均匀性好、平整度高、不易断裂,提高了机翼的整体性及使用寿命。
我国碳纤维复合材料的研发起步虽然较晚,但是经过科研工作者多年的努力,已拥有生产碳纤维复合材料的自主产权,并且应用碳纤维复合材料制造的无人机在农林植保、电力巡检、地理测绘、航拍等领域得到成熟的应用。
1碳纤维的制备过程碳纤维是高分子有机母体纤维在特定条件下进行热解制得到的一种新型纤维状材料,其含碳量在90%以上。
目前,碳纤维工业化生产采用的母体纤维主要有聚丙烯腈(PAN)纤维、沥青纤维和粘胶纤维,由这三大纤维生产出的碳纤维分别称为聚丙烯腈基碳纤维、沥青基碳纤维和粘胶基碳纤维。
沥青基碳纤维虽然碳化收率高、原料来源丰富、成本低,但是强度较低,因此其应用受到一定的限制;粘胶基碳纤维不仅制造工艺复杂,而且碳化收率低、产量小,成本相对较高;聚丙烯腈基碳纤维生产工艺简单,产品具备优异的力学性能,因此应用广泛,在市场中占据主流地位。
聚丙烯腈基碳纤维的制备过程分为预氧化、碳化、石墨化3个阶段。
1.1预氧化阶断(第一阶段)PAN原丝的预氧化一般在180~300℃的空气中进行。
[详解]pc树脂
![[详解]pc树脂](https://img.taocdn.com/s3/m/0287f07226d3240c844769eae009581b6ad9bd58.png)
PC树脂的材料特性和成型工艺聚碳酸酯(PC)树脂是一种性能优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕变和尺寸稳定性好,耐热、吸水率低、无毒、介电性能优良,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。
目前广泛应用于汽车、电子电气、建筑、办公设备、包装、运动器材、医疗保健等领域,随着改性研究的不断深入,正迅速拓展到航空航天、计算机、光盘等高科技领域。
PC树脂的应用与发展:70年代PC多用作连接器、开关等电气、电子零件,到80年代前半期应用扩展至精密机械(照相机、钟表)、电动工具和光学机械上,成为PC的第一发展期。
80年代后半期PC的应用进一步扩大到办公设备、汽车、激光唱片(CD),需求量大增而成为第二个发展期。
进入90年代以后受经济影响速度放缓,但在1992~1994年间仍有10%~15%的增长率。
PC之所以有大的市场容量是由于它具有比较全面平衡的性能——优良的耐冲击性、耐热性、尺寸稳定性、透明及自熄性等,因此在电气、电子、精密机械、汽车、保安、医疗等领域成为可广泛使用的工程塑料。
90年代中期又开发出PC/ABS 合金的复合化技术,更扩大了应用领域。
目前PC广泛应用于汽车、电子电气、建筑、办公设备、包装、运动器材、医疗保健等领域,随着改性研究的不断深入,正迅速拓展到航空航天、计算机、光盘等高科技领域。
PC合金改性PC/ABS合金:PC与ABS共混物可以综合PC和ABS 的优良性能,提高ABS的耐热性、抗冲击和拉伸强度,降低PC成本和熔体粘度,改善加工性能,减少制品内应力和冲击强度对制品厚度的敏感性。
目前PC/ABS 合金发展迅速,全球产量约为80万吨/年左右,世界各大公司纷纷开发推出PC /ABS合金新品种,如阻燃、玻纤增强、电镀、耐紫外线等品种,尤其是在汽车工业中得到广泛应用,另外还广泛应用于计算机、复印机和电子电气部件等。
我国近年来也开始一定研究和生产,如上海杰事杰公司的PC/ABS合金材料已应用于汽车装饰件、灯壳和耐热电器壳体;中科院长春应用化学所开发的高耐热、高耐热高抗冲、高耐热阻燃三个品级的PC/ABS合金材料已被国内数家汽车制造公司使用,用做前装饰板、仪表板及物品箱盖专用料等。
(教科版)小学六年级科学上册 第2单元:形状与结构 瓦楞纸简介

瓦楞纸简介瓦楞纸是由挂面纸和通过瓦楞棍加工而形成的波形的瓦楞纸粘合而成的板状物,一般分为单瓦楞纸板和双瓦楞纸板两类,按照瓦楞的尺寸分为:A、B、C、E、F五种类型。
在生产过程中被压制成瓦楞形状,制成瓦楞纸板以后它将提供纸板弹性、平压强度,并且影响垂直压缩强度等性能。
瓦楞纸,纸面平整,厚薄要一致,不能有皱折、裂口和窟窿等纸病,否则增加生产过程的断头故障,影响产品质量。
瓦楞纸板经过模切、压痕、钉箱或粘箱制成瓦楞纸箱。
瓦楞纸箱是一种应用最广的包装制品,用量一直是各种包装制品之首。
包括钙塑瓦楞纸箱。
瓦楞纸板的历史瓦楞纸板始于18世纪末,19世纪初因其量轻而且价格便宜,用途广泛,制作简易,且能回收甚至重复利用,使它的应用有了显著的增长。
到20世纪初,已获得为各种各样的商品制作包装而全面的普级、推广和应用。
由于使用瓦楞纸板制成的包装容器对美化和保护内装商品有其独特的性能和优点,因此,在与多种包装材料的竞争中获得了极大的成功。
成为迄今为止长用不衰并呈现迅猛发展的制作包装容器的主要材料之一。
瓦楞纸板的构成瓦楞纸板是由面纸、里纸、芯纸和加工成波形瓦楞的瓦楞纸通过粘合而成。
根据商品包装的需求,瓦楞纸板可以加工成单面瓦楞纸板、三层瓦楞纸板、五层、七层、十一层等瓦楞纸板(如图一、图二、图三)。
单面瓦楞纸板一般用作商品包装的贴衬保护层或制作轻便的卡格、垫板以保护商品在贮存的运输过程中的震动或冲撞,三层和五层瓦楞纸板在制作瓦楞纸箱中是常用的。
许多商品的包装通过三层或五层瓦楞纸板进行恰恰相反当而精美的包装,在瓦楞纸箱或瓦楞纸盒的表面印制靓丽多彩的图形和画面,三层瓦楞纸不但保护了内在的商品,而且宣传和美化了内在的商品。
目前,许多三层或五层瓦楞纸板制作的瓦楞纸箱或瓦楞纸盒已堂而皇之的直接上了销售柜台,成了销售包装。
七层或十一层瓦楞纸板主要为机电、烤烟、家具、摩托车、大型家电等制作包装箱。
在特定的商品中,可以用这种瓦楞纸板组合制成内、外套箱,便于制作,便于商品的盛装、仓储和运输。
新型加固材料

新型加固材料随着科学技术的不断发展,建筑工程领域也在不断创新,为了提高建筑物的抗震、抗风等性能,新型加固材料应运而生。
这些材料具有较高的强度、耐久性和可靠性,能够有效地增强建筑结构的承载能力,提高其抗灾能力,保障人们的生命财产安全。
一种常见的新型加固材料是碳纤维复合材料(CFRP)。
CFRP具有轻质高强、耐腐蚀、易施工等优点,广泛应用于桥梁、楼房、水利等工程中。
在加固工程中,将CFRP布粘贴在混凝土或钢结构表面,形成一层外包装,能够有效提高结构的受力性能,延长使用寿命。
除了CFRP,玻璃纤维增强塑料(GFRP)也是一种常用的新型加固材料。
GFRP具有良好的耐久性、耐腐蚀性和电绝缘性能,被广泛应用于建筑结构、管道、储罐等领域。
通过在结构表面粘贴GFRP板材或条带,可以有效提高结构的承载能力和抗震性能,延长结构的使用寿命。
高强度钢材也常被用作新型加固材料。
高强度钢具有较高的屈服强度和抗拉强度,能够有效提高建筑结构的承载能力和抗震性能。
在加固工程中,常常采用高强度钢筋、钢板等材料,对结构进行加固和加固,提高其整体稳定性和安全性。
除了上述材料,还有一些新型加固材料正在不断涌现,如碳纳米管、形状记忆合金等。
这些材料具有独特的性能和应用优势,为建筑结构的加固提供了新的选择和可能性。
总的来说,新型加固材料的出现为建筑工程的发展带来了新的机遇和挑战。
通过不断创新和应用新技术、新材料,可以有效提高建筑物的安全性和可靠性,为人们的生活和财产安全提供更加坚实的保障。
相信随着科技的不断进步,新型加固材料将在建筑工程领域发挥越来越重要的作用,推动建筑行业向着更加安全、可持续的方向发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用于提高盒段整体结构拉伸强度的增强芯材
近年来,为了发挥复合材料优势,提高结构效率和降低成本,飞行器复合材料结构越来越倾向于整体化,复合材料整体结构分为壁板整体结构和盒段整体结构。
长桁与蒙皮之间不采用紧固件机械连接而是采用共固化、共胶接或胶接的界面称为壁板整体结构。
腹板与蒙皮之间不用紧固件机械连接而采用共固化、共胶接或胶接的界面称之为盒段整体结构。
而盒段整体结构的T型或π型接头沿腹板方向的拉伸强度低是其弱点之一,迄今为止,提高T型或π型接头沿腹板方向的拉伸强度仍然是盒段整体结构工程应用必须解决的难题。
T型或π型接头拉伸载荷承受破坏特点
盒段整体结构T型接头由蒙皮、T型元件及填充材料组成,π型接头由蒙皮、π型元件、腹板及填充材料组成,当其承受沿腹板方向拉伸载荷时填充区是接头的最薄弱环节,接头首先从填充区的边缘分层破坏,并逐渐扩展,最后导致接头承载能力显著下降,填充区的应力-应变状况非常复杂。
提高接头拉伸强度的手段
影响盒段整体结构T型和π型接头拉伸强度的因素主要有接头的结构尺寸、制造工艺以及填充的材料。
通过分析T型和π型接头承受拉伸载荷时的破坏模式,并经试验验证,在接头结构尺寸一定的前提下,提高盒段整体结构T型和π型接头拉伸强度的手段主要有以下几种。
(1)将蒙皮与T型元件或π型元件缝合在一起的缝合工艺。
(2)将蒙皮与T型元件或π型元件用碳针嵌入的Z-pin工艺。
(3)将蒙皮与T型元件或π型元件编织为一个整体的编织工艺。
(4)提高填充材料的韧性和粘接性能。
过去填充区填充的是单向带预浸料,无法满足盒段整体结构T型和π 型接头沿腹板方向拉伸强度的要求。
上述方法中,由于缝合和整体编织需采用专用设备,而且只能采用液体成形工艺,另外,还有一个较大的问题是缝合和编织对纤维的损伤较大,影响了盒段整体结构的其他性能指标。
Z-pin工艺也需用专用设备,而且Z-pin工艺的嵌入过程较为复杂。
提高填充材料的韧性和粘接性能是提高T型和π型接头沿腹板方向拉伸强度的一个非常有效的途径,因为采用这种方法可以继续沿用制造盒段整体结构的成形工艺,而且不会提高制造成本,最重要的是盒段整体结构的其他性能指标也没有损失。
用于提高盒段整体结构拉伸强度的增强芯材
按照上述思路,北京航空制造工程研究所研制了Z X C180、Z X C190 及Z X C195 系列增强芯材,并编制了Z X C180、Z X C190 及ZXC195 增强芯材的企业标准,完成了数百件T 型和π 型接头沿腹板方向的拉伸强度试验,试验结果表明,相对于单向带预浸料,增强芯材通过自身韧性的提高,有效地提高了盒段整体结构T 型和π 型接头沿腹板方向的拉
伸强度。
由此看出,上述系列增强芯材可以广泛应用在采用T 型和π 型接头的飞行器盒段整体结构中。
ZXC180、ZXC190 及ZXC195系列增强芯材的固化温度和适用范围见表1,填充该系列增强芯材的T型接头拉伸试验件的拉伸强度均能达到3100M P a 以上( 见表2),其中Z X C180、Z X C190 及Z X C195 增强芯材的应用请参照Q /9S 172-2009 标准(北京航空制造工程研究所企业标准),上述系列增强芯材的材料组成、构成、制备及添加工艺已经申请了发明专利(专利号为200810172473.4)。
结束语
ZXC180、ZXC190、ZXC195 增强芯材可以应用于飞行器复合材料整体结构上,使整体结构填充区的材料制备更规范化,有效改善了整体结构填充区填充材料的韧性,显著提高了复合材料盒段整体结构的承载能力。