北师大版七年级上册数学第五章复习学案(一)

合集下载

北师大版初一数学上册5.1 认识一元一次方程(第1课时)教学设计

北师大版初一数学上册5.1 认识一元一次方程(第1课时)教学设计

《认识一元一次方程》教学设计(义务教育课程标准北师大版七年级上册第五章第1节第1课时)一、教材分析《认识一元一次方程》是义务教育课程标准北师大版七年级(上)第五章《认识一元一次方程》第1节,本节内容安排了两个课时,学生在小学认识方程和本册第3章字母表示数的基础上,进一步研究一元一次方程,本节课属于第一课时,研究一元一次方程概念.二、学情分析1.认知基础:在小学阶段学习过简易方程,不过与初中的要求相比,对知识的理解比较表层,大部分学生还没有真正体会到方程在解决实际问题时的优越性和重要性.2.活动经验基础:教材为学生提供了许多生动有趣的现实情境,七年级学生的思维活跃,喜欢参与探索活动,只要激发起兴趣,本课要贯彻的数学思想就能较好的实施.三、教学目标1.能根据给出的现实情境,找出其中的等量关系列出方程.2.通过观察,归纳出一元一次方程的概念.3.通过经历“建立数学模型”这一数学化的过程,提高学生的抽象概括能力.四、教学重点与难点教学重点:1.一元一次方程的概念.2.通过现实情境建立方程模型的思想.教学难点:1.对一元一次方程的概念、特征的理解.2.从现实情境中提炼等量关系.五、教法、学法1.教学方法:引导探究法2.学习方法:自主探究,合作交流3.教具准备:多媒体课件,配套学案【习得】建立方程数学模型知识点二:一元一次方程定义探究问题2:由上面得到的式子:40+5x=100; (1+147.30%)x=8930; 2[x+(2x-5=21; 2x-5=19.这些方程有什么共同点?【知识整理】定义:在一个方程中,只含有一个未知数代数式都是整式,未知数的指数都是1,这种方程叫做一元一次方程.。

最新北师大版七年级上数学教案 第五章复习

最新北师大版七年级上数学教案   第五章复习

第五章 一元一次方程小结与复习一、等式的概念和性质1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式. 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.2.等式的类型楷体五号(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式123+=.(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程56x +=需要1x =才成立.(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如125+=,11x x +=-. 注意:等式由代数式构成,但不是代数式.代数式没有等号.体五号3.等式的性质五号等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a m b m ±=±;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b =,则am bm =,a b m m=(0)m ≠.注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b =,那么b a =.②等式具有传递性,即:如果a b =,b c =,那么a c =.黑体小四二、方程的相关概念黑体小四1.方程,含有未知数的等式叫作方程. 注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.楷体五号2.方程的次和元 方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.楷体五号3.方程的已知数和未知数楷体五号已知数:一般是具体的数值,如50x +=中(x 的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有a 、b 、c 、m 、n 等表示. 未知数:是指要求的数,未知数通常用x 、y 、z 等字母表示.如:关于x 、y 的方程2ax by c -=中,a 、2b -、c 是已知数,x 、y 是未知数.4.方程的解 使方程左、右两边相等的未知数的值,叫做方程的解.楷体五号5.解方程 求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.6.方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.黑体小四三、一元一次方程的定义体小四1.一元一次方程的概念 只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.楷体五号2.一元一次方程的形式楷体五号标准形式:0ax b +=(其中0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式. 最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式.注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程ax b =与方程(0)ax b a =≠是不同的,方程ax b =的解需要分类讨论完成.黑体小四四、一元一次方程的解法1.解一元一次方程的一般步骤五号(1)去分母:在方程的两边都乘以各分母的最小公倍数. 注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.(2)去括号:一般地,先去小括号,再去中括号,最后去大括号. 注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成ax b =的形式. 注意:字母和其指数不变.(5)系数化为1:在方程的两边都除以未知数的系数a (0a ≠),得到方程的解b x a=. 注意:不要把分子、分母搞颠倒.体五号2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等.3.关于x 的方程 ax b 解的情况 ⑴当a 0时,x⑵当a ,b 0时,方程有无数多个解 ⑶当a 0,b 0时,方程无解练习1、等式的概念和性质1.下列说法不正确的是( )A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.2.根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x = ; (4)122x y =+,则x = . 练习2、方程的相关概念1.列各式中,哪些是等式?哪些是代数式,哪些是方程?①34a +;②28x y +=;③532-=;④1x y ->;⑤61x x --;⑥83x-=; ⑦230y y +=;⑧2223a a -;⑨32a a <-.2.判断题.(1)所有的方程一定是等式. ( )(2)所有的等式一定是方程. ( )(3)241x x -+是方程. ( )(4)51x -不是方程. ( )(5)78x x =不是等式,因为7x 与8x 不是相等关系. ( )(6)55=是等式,也是方程. ( )(7)“某数的3倍与6的差”的含义是36x -,它是一个代数式,而不是方程. ( ) 练习3、一元一次方程的定义 1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:(1)3x+5=12; (2)31+x +2x =5; (3)2x+y=3; (4)y 2+5y -6=0; (5)x 3-x =2.2.已知2(1)(1)30k x k x -+-+=是关于x 的一元一次方程,求k 的值.3.已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________4.已知方程1(2)40a a x --+=是一元一次方程,则a = ;x = .练习4、一元一次方程的解与解法1)一元一次方程的解 一)、根据方程解的具体数值来确定1.若关于x 的方程a x x -=+332的解是2x =-,则代数式21aa -的值是_________。

七年级数学上册 第五章 一元一次方程 5.1 认识一元一次方程教案 (新版)北师大版-(新版)北师大

七年级数学上册 第五章 一元一次方程 5.1 认识一元一次方程教案 (新版)北师大版-(新版)北师大

5.1 认识一元一次方程(第1课时)一、学生起点分析学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了分析简单数量的关系,并根据数量关系列出方程、求解方程、检验结果的过程。

对方程已有初步认识,但并没有学习“一元一次方程”准确的理性的概念。

二、学习任务分析本节从有趣的“猜年龄”游戏入手,通过对五个熟悉的实际问题的分析,学生结合已有知识,能得出一元一次方程。

在此过程中,学生逐渐体会方程是刻画现实世界、解决实际问题的有效数学模型。

本节的重点:学生在实际问题中分析、找到等量关系,准确列出方程,并总结所列方程的共同特点,归纳出一元一次方程的概念。

本节的难点:由特殊的几个方程的共同特点归纳一元一次方程的概念。

三、教学目标1、在对实际问题情境的分析过程中感受方程模型的意义;2、借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法;3、使学生在分析实际问题情境的活动中体会数学与现实的密切联系。

四、教学过程设计环节一:阅读章前图内容1:请一位同学阅读章前图中关于“丟番图”的故事。

(大约1分钟)丢番图(Diophantus)是古希腊数学家。

人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程。

上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛。

五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉。

悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途。

——出自《希腊诗文选》(The GreekAnthology)第 126 题目的:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型。

效果:学生对丟番图的故事很感兴趣,有的学生提出问题:他的年龄是多少呢?教师借机也提出问题:用什么方法可以求解丟番图的年龄呢?紧接着呈现内容2。

七年级上册数学北师大版第五单元复习 教学设计 教案

七年级上册数学北师大版第五单元复习 教学设计 教案

第5单元一元一次方程复习教案复习目标:1、进一步熟练掌握一元一次方程的解法,并会应用一元一次方程解决实际问题。

2、经历本章知识系统梳理过程,体会解方程中蕴含的转化思想和用方程解决问题过程中蕴含的方程模型思想3、提高知识的迁移能力,加强合作交流能力,体会数学的应用价值复习重点:熟练掌握一元一次方程的解法并应用一元一次方程解决实际问题。

复习难点:体会解方程中蕴含的转化思想,灵活应用一元一次方程解决实际问题并体会方程模型思想。

教学方法:自主复习,合作交流学情分析:学生对一元一次方程已经有初步的认识,并能够利用一元一次方程解决简单的实际问题,但这些零散的知识缺乏系统化、条理化,对应用题的分析能力不强。

教学准备:多媒体课件教学过程:一、导入同学们,方程是刻画现实生活中数量关系的重要模型。

今天我们复习第五章:一元一次方程。

通过陈省身的名言(数学是自己思考的产物;用自己的意见和别人交换会有很好的效果)鼓励大家多表达自己的思考,多把自己的想法跟别人交流,让我们在这个过程中复习《一元一次方程》。

二、梳理知识,温故知新活动设计(以学生列举一个一元一次方程为线索贯穿4个教学环节,以课堂资源的生成复习相关概念并深化理解):1、请你列举一个一元一次方程的例子,结合举例谈谈一元一次方程具有什么特征?(只含有一个未知数,未知数的次数是1,方程是等式,等式两边是整式),学生自主完成练习1。

练习1:如果5x IaI-1=0是关于x的一元一次方程,那么a的值为()。

A.1B.-1C. ±1D.02、请说出你的方程的解,请你谈谈什么是方程的解?完成练习2,并告诉学生练习2是常州市2015年的中招试题,体验成就感。

练习2:(常州2015)已知x=2是关于x的方程a(x+1)=12a+x的解,则a的值是。

3、刚才解方程的过程中,我们解一元一次方程的依据是什么?根据你的经验,在哪些地方容易出错?(等式的基本性质)展示小明错题本上收集的错例,鼓励学生自主练习,互动纠错,让不同观点的同学都有机会展示自己的想法,最好引发同学之间的辩论,引导学生说出习题背后所隐含的知识点。

北师大版数学7年级上册教案第五章复习

北师大版数学7年级上册教案第五章复习

第五章 一元一次方程小结与复习一、等式的概念和性质1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式. 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.2.等式的类型(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式123+=.(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程56x +=需要1x =才成立.(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如125+=,11x x +=-. 注意:等式由代数式构成,但不是代数式.代数式没有等号.3.等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a m b m ±=±;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b =,则am bm =,a b m m=(0)m ≠.注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b =,那么b a =.②等式具有传递性,即:如果a b =,b c =,那么a c =.二、方程的相关概念1.方程,含有未知数的等式叫作方程. 注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.2.方程的次和元 方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.3.方程的已知数和未知数已知数:一般是具体的数值,如50x +=中(x 的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有a 、b 、c 、m 、n 等表示. 未知数:是指要求的数,未知数通常用x 、y 、z 等字母表示.如:关于x 、y 的方程2ax by c -=中,a 、2b -、c 是已知数,x 、y 是未知数.4.方程的解 使方程左、右两边相等的未知数的值,叫做方程的解.5.解方程 求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.6.方程解的检验要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.三、一元一次方程的定义1.一元一次方程的概念 只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.2.一元一次方程的形式标准形式:0ax b +=(其中0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式. 最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式.注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程ax b =与方程(0)ax b a =≠是不同的,方程ax b =的解需要分类讨论完成.四、一元一次方程的解法1.解一元一次方程的一般步骤(1)去分母:在方程的两边都乘以各分母的最小公倍数. 注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.(2)去括号:一般地,先去小括号,再去中括号,最后去大括号. 注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成ax b =的形式. 注意:字母和其指数不变.(5)系数化为1:在方程的两边都除以未知数的系数a (0a ≠),得到方程的解b x a=. 注意:不要把分子、分母搞颠倒.2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等.3.关于x 的方程 ax b 解的情况 ⑴当a 0时,x⑵当a ,b 0时,方程有无数多个解 ⑶当a 0,b 0时,方程无解练习1、等式的概念和性质1.下列说法不正确的是( )A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.2.根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x = ; (4)122x y =+,则x = . 练习2、方程的相关概念1.列各式中,哪些是等式?哪些是代数式,哪些是方程?①34a +;②28x y +=;③532-=;④1x y ->;⑤61x x --;⑥83x-=; ⑦230y y +=;⑧2223a a -;⑨32a a <-.2.判断题.(1)所有的方程一定是等式. ( )(2)所有的等式一定是方程. ( )(3)241x x -+是方程. ( )(4)51x -不是方程. ( )(5)78x x =不是等式,因为7x 与8x 不是相等关系. ( )(6)55=是等式,也是方程. ( )(7)“某数的3倍与6的差”的含义是36x -,它是一个代数式,而不是方程. ( ) 练习3、一元一次方程的定义1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:(1)3x+5=12; (2)31+x +2x =5; (3)2x+y=3; (4)y 2+5y -6=0; (5)x 3-x =2.2.已知2(1)(1)30k x k x -+-+=是关于x 的一元一次方程,求k 的值.3.已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________4.已知方程1(2)40a a x --+=是一元一次方程,则a = ;x = .练习4、一元一次方程的解与解法1)一元一次方程的解 一)、根据方程解的具体数值来确定1.若关于x 的方程a x x -=+332的解是2x =-,则代数式21a a -的值是_________。

最新北师大版七年级数学上册《第五章复习》名师教学设计

最新北师大版七年级数学上册《第五章复习》名师教学设计

第五章一元一次方程小结与复习教学目的:1.复习本章的知识要点及其联系;2.巩固并熟练掌握一元一次方程的解法;3.较熟练地列出一元一次方程解应用题教学重点:一元一次方程的解法及应用教学难点:依据相等关系准确地列出一元一次方程教学过程:一、复习提问:1.你学完本章后有何收获?(学习一元一次方程的解法及应用)2.本章主要学习了哪些知识?(一元一次方程的意义、解法、应用)3.什么叫一元一次方程?什么叫一元一次方程的解?强调:一个未知数,最高次数一次。

1x+2=0 不是一元一次方程。

自觉养成检验的习惯4.叙述一元一次方程的解法步骤及每一个解题步骤应注意什么?去分母:不漏乘加括号去括号:注意分配;括号前是负号时要变号移项:注意要变号5.列方程解应用题的步骤有哪些?关键是什么?审题:分析题意,找出题中的数量关系及其关系;设元:选择一个适当的未知数用字母表示(例如x);列方程:根据相等关系列出方程;解方程:求出未知数的值;检验:检验求得的值是否正确和符合实际情形,并写出答案.关键:正确审清题意,找准“等量关系”二、习题讲解:1.有关定义运用的习题(填空题)2.有关方程解的判断及运用(解与解法的结合)(填空选择题)3.解下列各方程:P195/复习题/知识技能第一题(1~8)4.列方程解应用题(只要求写出假设步骤并列出一元一次方程)P195/问题解决/第1~11题。

三、作业一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是()A.243x x -=B.0x =C.23x y +=D.11x x -= 2.(2013•福建晋江中考)已知关于x 的方程2x a --5=0的解是2x =-,则a 的值为( ) A .1 B .-1 C .9 D .-93.已知方程235x +=,则610x +等于( )A.15B.16C.17D.344.甲、乙两人练习赛跑,甲每秒跑7 m ,乙每秒跑6.5 m ,甲让乙先跑5 m ,设x s 后甲可追上乙,则下列四个方程中不正确的是( )A.7 6.55x x =+B.75 6.5x x +=C.(7 6.5)5x -=D.6.575x x =-5.如果三个正整数的比是1∶2∶4,它们的和是84,那么这三个数中最大的数是( )A.56B.48C.36D.126.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔D.无法确定7.已知21(35)m --有最大值,则关于x 的方程5432m x -=+的解是x =( )A.79B.97C.79-D.97- 8. 已知等式523+=b a ,则下列等式中不.成立的是( ) A.b a 253=- B.6213+=+b aC.f bf ac 523+=D.3532+=b a 9.若关于x 的方程042=-+a x 的解是2-=x ,则a 等于( )A.-8B.0C.2D.810.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=,怎么办呢?小明想了一想,便翻看书后答案,此方程的解是53y =-,于是很快就补好了这个常数,你能补出这个常数吗?它应是( )A.1B.2C.3D.4二、填空题(每小题3分,共24分)11. 若与互为相反数,则的值是 .12.如果关于x 的方程340x +=与方程3418x k +=是同解方程,则k = . 13.已知方程23252x x -+=-的解也是方程32x b -=的解,则b =_________. 14.已知方程233m x x -=+的解满足10x -=,则m ________.15.若52x +与29x -+互为相反数,则2x -的值为 .16.(2013•四川凉山中考)购买一本书,打八折比打九折少花2元钱,那么这本书的原价是 元.17.(四川自贡中考)某公路一侧原有路灯106盏,相邻两盏灯的距离为36 m ,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54 m ,则需更换新型节能灯 盏.18.当日历中同一行中相邻三个数的和为63,则这三个数分别为 .三、解答题(共46分)19.(12分)解下列方程:(1)10(1)5x -=;(2)7151322324x x x -++-=-; (3)2(2)3(41)9(1)y y y +--=-;(4)0.89 1.33511.20.20.3x x x --+-=. 20.(5分)m 为何值时,关于x 的方程4231x m x -=-的解是关于x 的方程23x x m =-的解的2倍?21.(5分)将一批工业最新动态信息输入管理储存网络,甲单独做需要6 h ,乙单独做需要4 h ,甲先做30 min ,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?22.(6分)有一列火车要以每分钟600 m 的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5 s 时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50 m ,试求两座铁桥的长分别为多少?23.(6分)某生态食品加工厂收购了一批质量为10 000 kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2 000 kg ,求粗加工的该种山货质量.24.(6分)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,求两校各植树多少棵.25.(6分) 为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同,规定吨数以上的超过部分收费标准相同,以下是小明家15月份用水量和交费情况:月份 1 2 3 4 5 用水量(吨)810 11 15 18费用(元)16 2023 35 44根据表格中提供的信息,回答以下问题:(1)求出规定吨数和两种收费标准.(2)若小明家6月份用水20吨,则应缴多少元?(3)若小明家7月份缴水费29元,则7月份用水多少吨?参考答案一、选择题1.B 解析:243x x -=中,未知数的次数是2,所以不是一元一次方程;23x y +=中,有两个未知数,所以不是一元一次方程;11x x -=不是整式方程.故选B.2.D 解析:将2x =-代入方程,得450a ---=,解得9a =-.故选D.3.B 解析:解方程235x +=,可得1x =.将1x =代入610x +,可得61061016x +=+=.4.B 解析:x s 后甲可追上乙,是指x s 时,甲跑的路程等于乙跑的路程,所以可列方程7 6.55x x =+,所以A 正确;将7 6.55x x =+移项、合并同类项,可得(7 6.5)5x -=,所以C 正确;将7 6.55x x =+移项,可得6.575x x =-,所以D 正确.故选B.5.B 解析:设这三个正整数分别为,2,4x x x .根据题意,得2484x x x ++=.解得12x =.所以这三个数中最大的数是448x =,故选B.6.B 解析:设此商人赚钱的那件衣服的进价为x 元,则x (1+25%)=120.解得96x =.设此商人赔钱的那件衣服进价为y 元,则y (1-25%)=120.解得160y =.所以他一件衣服赚了120-96=24(元),一件衣服赔了160-120=40(元),所以卖这两件衣服,总共赔了40-24=16(元).故选B.7.A 解析:由21(35)m --有最大值,可得350m -=,则53m =,554323x ⨯-=+,解得79x =.故选A. 8.C 解析:A 项可由移项得到;B 项可由方程两边都加上1得到;D 项可由方程两边同除以3得到,只有C 项是不一定成立的. 9. D 解析:将2-=x 代入方程得044=-+-a ,解得8=a .10.C 解析:设所缺的部分为,则x y y -=-21212, 把53y =-代入,可求得,故选C .二、填空题11. 5 解析:∵与互为相反数,∴ ,解得,则. 12.112解析:由340x +=可得43x =-.又因为340x +=与3418x k +=是同解方程,所以43x =-也是3418x k +=的解代入可求得112k =. 13.137 解析:由23252x x -+=-,得2420(515)x x -=-+.解得97x =. 所以9133277b =⨯-=. 14.-6或-12 解析:由10x -=,得1x =±.当1x =时,由233m x x -=+,得2313m -=+,解得6m =-; 当1x =-时,由233m x x -=+,得2313m --=-,解得12m =-. 综上可知,6m =-或12m =-.15.173- 解析:由题意可列方程52(29)x x +=--+,解得11.3x =- 所以11172233x -=--=-. 16.20 解析:设这本书的原价为x 元,由题意得0.9x -0.8x =2,解得x =20. 17.71 解析:设需更换的新型节能灯有x 盏,则54(x -1)=36×(106-1),54x =3 834,x =71,故需更换的新型节能灯有71盏.18.20,21,22 解析:设中间一个数为x ,则与它相邻的两个数分别为1,1x x -+.根据题意,得1163x x x -+++=.解得21x =.所以这三个数分别为20,21,22.三、解答题19.解:(1)10(1)5x -=.去括号,得10105x -=.移项,得1015x =.系数化为1,得32x =. (2)7151322324x x x -++-=-. 去分母,得4(71)6(51)243(32)x x x --+=-+.去括号,得2843062496x x x ---=--.移项,得2830924664x x x -+=-++.合并同类项,得728x =.系数化为1,得4x =.(3)2(2)3(41)9(1)y y y +--=-.去括号,得2412399y y y +-+=-.移项,得2129934y y y -+=--.合并同类项,得2y -=.系数化为1,得2y =-.(4)0.89 1.33511.20.20.3x x x --+-=. 去分母,得(0.89)6(1.33)451)x x x ---=+(.去括号,得0.897.818204x x x --+=+.移项,得9182047.80.8x x x -+-=+-.合并同类项,得1111x -=.系数化为1,得1x =-.20.解:关于x 的方程4231x m x -=-的解为21x m =-.关于x 的方程23x x m =-的解为3x m =.因为关于x 的方程4231x m x -=-的解是关于x 的方程23x x m =-的解的2倍,所以2123m m -=⨯,所以14m =-. 21.解:设甲、乙一起做还需要x h 才能完成工作. 根据题意,得111116264x ⎛⎫⨯++= ⎪⎝⎭.解得115x =. 115h=2 h 12 min. 答:甲、乙一起做还需要2 h 12 min 才能完成工作.22.解:设第一座铁桥的长为x m ,则第二座铁桥的长为(250)x -m ,过完第一座铁桥所需要的时间为600x min ,过完第二座铁桥所需要的时间为250600x -min . 依题意,可列出方程600x +560=250600x -.解得100x =. 所以250210050150x -=⨯-=.答:第一座铁桥长100 m ,第二座铁桥长150 m .23.解:设粗加工的该种山货质量为x kg.根据题意,得(32000)10000 x x ++=.解得2000 x =.答:粗加工的该种山货质量为2 000 kg .24.解:设励东中学植树x 棵.根据题意,得(23)834x x +-=,解得279x =.2322793555x -=⨯-=.答:励东中学植树279棵,海石中学植树555棵.25. 分析:(1)根据1、2月份可知,当每月用水量不超过10吨时,每吨收费2元.根据3月份的条件,用水11吨,其中10吨应交20元,超过的1吨收费3元,则超出10吨的部分每吨收费3元.(2)根据求出的收费标准,则用水20吨应缴水费就可以算出.(3)中存在的相等关系是:10吨的费用20元+超过部分的费用=29元.解:(1)从表格中可以看出规定吨数为不超过10吨(包括10吨),每吨2元,超过10吨的部分每吨3元.(2)小明家6月份的水费是:(元). (3)设小明家7月份用水吨,因为,所以. 由题意得,解得:. 故小明家7月份用水13吨.学习名言:1、学习必须与实干相结合。

北师大版七年级上册数学第五章复习学案(一)

北师大版七年级上册数学第五章复习学案(一)

第五章 《一元一次方程》复习(一)【明确目标】1. 回顾方程、一元一次方程以及方程有解的概念。

2. 熟练解一元一次方程。

【知识预备】_________________________________叫代数式。

(P81)______________________叫单项式。

_______________叫多项式。

____________________称整式。

(P87、88)【例1】对号入座: 2x +3y ,2m ,2x 2+c ,-ab 2c ,a ,-x 21,1+2x ,x 11+,x 1单项式{ } 多项式{ } 整式{ } 代数式{ }【学习整理】知识点(一):方程的概念1. 方程:含 的等式叫做方程。

2. 方程的解:使方程的等号左右两边相等的 ,就是方程的解。

3. 解方程:求 的过程叫做解方程。

4. 一元一次方程:只含有一个 (元),未知数的最高次数是 并且方程叫做一元一次方程。

(P131)【环节1】巩固、熟练:练习:判断下列式子是不是方程,是方程打“√”,不是方程打“⨯”.是一元一次方程打“○” (1) x=3 ( ) (2) 5+6=2+9 ( ) (3) 1+2x=4 ( ) (4)2x+4>5 ( ) (5) x+y =2 ( ) (6) x +1-3 ( ) (7) 2x -1=0 ( ) (8) x11+=x ( ) 2.下面的等式中,是一元一次方程的为( )A .3x +2y =0B .3+m =10C .2+x1=x D .a 2=163.下列方程中,解为x =2的方程是( )A .3x =x +3B .-x +3=0C .2x =6D .5x -2=8 4、方程x+3=-1的解是( )A 、x=2B 、x=-4C 、x=4D 、x=-25、若关于y 的方程3y +5=0与3y +3k =1的解完全相同,则k 的值为( )A .-2B .43C .2D .-346.方程 是一元一次方程,则a 和m 分别为( ) A. 2和4 B . -2 和 4 C. 2 和 -4 D .-2 和-4 ※7.若212n b a 31+与-5b 2a 3n-2是同类项,则n=( ) 325)2(32=-++-m x x aA 、53 B 、-3 C 、35- D 、3 知识点(二):解一元一次方程的步骤,做法及依据方程变形——解方程的重要依据 1、等式的基本性质等式的性质1:等式的两边同时加(或减) ( ),结果仍相等。

北师大版七年级数学上册第5章复习课教案

北师大版七年级数学上册第5章复习课教案
2.等式基本性质的内容是什么?你能用含有字母的式子表示吗?
3.解下面两个方程,思考解一元一次方程的一般步骤及每一步的依据.
(1) ;(2) .
4.思考:列方程解决实际问题的过程中,最关键的是什么?你是怎么判断一个方程的解是否符合要求?
Байду номын сангаас5.列方程解决下列问题:
(1)小颖在日历上任意圈出一个竖列上相邻的三个日期,她计算出这三个日期的和是60.你知道这三天分别是几号吗?
课题
第五章一元一次方程第10课第五章回顾与思考
教学目标
1.知识与技能:经历梳理本章知识的过程,能说出本章的知识要点及其联系,体会方程是刻画现实世界的有效数学模型;
2.过程与方法:通过解一元一次方程,能说出解一元一次方程的一般步骤以及每一步的依据,发展有条理地思考与表达的能力,提高运算能力;
3.情感与态度:会判断一个数是否是方程的解,能列方程解决实际问题,会判断方程的解是否符合要求,体验数学与生活的联系.
0.43元收费,如果超过140度,超过部分按每度0.57元收费.若某用户四月
份的电费平均每度0.5元,问该用户四月份应交电费多少元?
4.王大爷存入银行2500元,定期一年到期后扣除20%的利息税后得到本息和为2650元,问这种储蓄的年利率是多少?
四巩固练习
1.解方程:(1)3(x-1)-2(x+1)=-6;(2) .
2.一张试卷只有25道选择题,做对一题得4分,做错或不做一题倒扣1分,某学生做了全部试题共得70分,他做对了几道题?
五课堂小结
(1)解方程时需要注意什么?
(2)列方程解应用题时如何设未知数?
六达标检测
1.若x=5方程ax=5+3x的解,则a的值是.
2.解方程:(1)-3x+3=-2x-7;(2)10x-3(x-2)=9.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 《一元一次方程》复习(一)
【明确目标】
1. 回顾方程、一元一次方程以及方程有解的概念。

2. 熟练解一元一次方程。

【知识预备】_________________________________叫代数式。

(P81)
______________________叫单项式。

_______________叫多项式。

____________________称整式。

(P87、88) 【例1】对号入座: 2x +3y ,2m ,2x 2+c ,-ab 2c ,a ,-
x 21,1+2x ,x 11+,x
1
单项式{ } 多项式{ } 整式{ } 代数式{ }
【学习整理】知识点(一):
方程的概念
1. 方程:含 的等式叫做方程。

2. 方程的解:使方程的等号左右两边相等的 ,就是方程的解。

3. 解方程:求 的过程叫做解方程。

4. 一元一次方程:只含有一个 (元),未知数的最高次数是 并且
方程叫做一元一次方程。

(P131)
【环节1】巩固、熟练:
练习:判断下列式子是不是方程,是方程打“√”,不是方程打“⨯”.是一元一次方程打“○” (1) x=3 ( ) (2) 5+6=2+9 ( ) (3) 1+2x=4 ( ) (4)2x+4>5 ( ) (5) x+y =2 ( ) (6) x +1-3 ( ) (7) 2
x -1=0 ( ) (8) x
1
1+
=x ( ) 2.下面的等式中,是一元一次方程的为( )
A .3x +2y =0
B .3+m =10
C .2+x
1
=x D .a 2=16
3.下列方程中,解为x =2的方程是( )
A .3x =x +3
B .-x +3=0
C .2x =6
D .5x -2=8 4、方程x+3=-1的解是( )
A 、x=2
B 、x=-4
C 、x=4
D 、x=-2
5、若关于y 的方程3y +5=0与3y +3k =1的解完全相同,则k 的值为( ) A .-2 B .
4
3
C .2
D .-34
6.方程 是一元一次方程,则a 和m 分别为( ) A. 2和4 B . -2 和 4 C. 2 和 -4 D .-2 和-4 ※
7.若
2
12n b a 3
1+与-5b 2a 3n-2是同类项,则n=( ) A 、
53 B 、-3 C 、3
5
- D 、3 325)2(32=-++-m x x a
知识点(二):解一元一次方程的步骤,做法及依据
方程变形——解方程的重要依据 1、等式的基本性质
等式的性质1:等式的两边同时加(或减) ( ),结果仍相等。

即:如果a=b ,那么a ±c=b ;
2、等式的性质2:等式的两边同时乘 ,或除以 数,结果仍相等。

即:如果a=b ,那么 ; 或 如果a=b ,那么 ( );
(三)小颖碰到这样一道解方程的题:2x=5x,她在方程的两边都除以x ,竟然得到2=5,你能说出她错在哪里吗?
【环节2】应用、演练:
1.下列结论中,正确的是( )
A .由5÷x =13,可得x =13÷5
B .由5 x =3 x +7,可得5 x +3 x =7
C .由9 x =-4,可得x =-4
9
D .由5 x =8-2x ,可得5 x +2 x =8 2.解方程
时,去分母得( )
A .4(x +1)=x -3(5x -1)
B .x +1=12x -(5x -1)
C .3(x +1)=12x -4(5x -1)
D .3(x +1)=x -4(5x -1) 3.已知等式3a=2b+5,则下列等式中不一定成立的是 ( )
A .3a-5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.
4..如果 -4=0是关于x 的一元一次方程,那么a =_____
5.如果x =1是方程ax+3x =2的解,那么a 的值_____.
6.小明是个“小马虎”,下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

(1)方程1024x x --=去分母,得214x x -+=; (2)方程1136
x x -+=去分母,得122x x +-=
【环节3】再演练:解下列方程
(1))1(5)14(3)2(2x x x -=--- (2)
例6.x 取何值时,代数式
21132--x x 与的值相等?x 为何值时代数式 2
1
132--x x 与
互为相反数?
4
365
21x x -=--35
32+
=b a 223a x -
变形名称 变形依据
注意事项
去分母
1. 2.
去括号 去括号法则,分配律 不漏乘项,注意符号是否要改变
移项 等式性质1
移项要变号
合并同类项 合并同类项法则 计算仔细,不要犯低级错误
化系数为1
等式性质2
分子分母不要颠倒
【巩固练习】
1.下列方程是一元一次方程的是( ) A. x+2y=9 B. x 2
-3x=1 C.
11=x D. x x 312
1
=- 2. 用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的.
(1)如果________;-8x 3,853==+那么x (2)如果-1_x _________
3,123=--=那么x x ; (3)如果
;__________x ,521==那么x (4)如果________.
3x ,3
2==那么y
x 3、单项式-3a x +1b 4
与9a
2x -1b 4
是同类项,则x =______.
4、如果方程3x+2a=12和方程3x-4=2的解相同,那么a= 。

5、若

互为相反数,则
的值是 。

6.当=a _____时,关于x 的方程
16
242=--+a
x x 的解是0. 7.当y 为何值时,代数式3
8-y 与41
y +5的值相等?(或者互为相反数呢?).
8.若

3
1
互为倒数,则x 的值是多少?
9.解方程
(1)2(x -1)+4=0 (2)4-2(3-x)=-2 (3)(x+1)-2(x -1)=1-3x
(4)-
x 4
1
132x 43-=+ (5)5131+=-x x ; (6) 51131+=--x x ;
(7)21141+=--x x ; (8) 512131+-=+-x x (9)3
2213415x
x x --+=-
(12) 3
2
221+-
=--
x x x (10)16
2
312=+-+x x (11)
【下节课课前准备】:(12.24交,附家长签名)
根据题意列方程:
1.一个数的6
5
与4的和等于最大的一位数,设这个数为x ,可列方程________________________
2..一种小麦磨成面粉后,重量要减少15%,为了得到4250千克的面粉,需要多少千克小麦? 3一个长方形,长比宽的3倍少1,长方形的周长为30厘米,求这个长方形的面积.
4.已知三个连续奇数的和是75,如果设中间的数为x ,那么较小的数为______,较大的数为 ______根据题意可得方程_________________________.
5.小斌的年龄乘以2,减去5,得到21,如果设小斌年龄为x ,那么可列方程_____________________ 6父亲的年龄为50岁,儿子的年龄为20岁,问几年后父亲的年龄是儿子年龄的2倍?
解:设x 年后父亲的年龄是儿子的2倍,则x 年后儿子年龄为_______,父亲年龄为__________, 可列方程__________________
7.父亲现年32岁,儿子现年5岁,x 年前,父亲的年龄是儿子年龄的10倍,则x 应满足的 方程是( )
A .32-x =5-x
B .32-x =10(5-x)
C .32-x =5×10
D .32+x =5×10
8.小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周升高约5厘米,大约几周后树苗长高到1米? 设x 周后树苗长到1米,可列方程_____________________。

9.在日历上画一个3×3的九宫格,且每个格都有数字。

如果设最中间的数为x ,那么正上方的数为______, 正下方的数为_______,左边的数为________,右边的数为__________。

10.在日历上取三个竖直的数,和为69,可列方程________________________。

那么这三个日期分别为______________________。

★家长签名:_____________。

相关文档
最新文档