Embedding branch and bound within evolutionary algorithms
corenlp 三元组原理

corenlp 三元组原理English: The principle of extracting triples in CoreNLP involves identifying the subject, predicate, and object in a sentence to generate structured information. CoreNLP uses natural language processing techniques to parse the sentence and identify the grammatical structure, including parts of speech and dependencies between words. Once the sentence is parsed, CoreNLP applies patterns and rules to identify the entities and their relationships, which form the triples. For example, in the sentence "Bob bought a car", CoreNLP would identify "Bob" as the subject, "bought" as the predicate, and "car" as the object. These triples can then be used for various tasks such as knowledge graph construction, semantic parsing, and question answering.中文翻译: 在CoreNLP中提取三元组的原理涉及识别句子中的主语、谓语和宾语,以生成结构化信息。
embeddings 的结果通俗解释

embeddings 的结果通俗解释:
Embeddings 的结果通俗解释如下:
Embedding 是一种将数据从高维空间映射到低维空间的方法,其结果可以看作是一种降维表示。
对于单词或文本数据,Embedding 可以将每个单词或文本表示为一个向量,这个向量包含了该单词或文本的语义信息和上下文信息。
通过训练,Embedding 可以学习到单词或文本之间的相似性和关联性,从而生成具有语义相似性的向量。
这些向量可以用于多种任务,如聚类、分类、文本相似性比较等。
在文本分类任务中,Embedding 可以将文本表示为向量,然后使用这些向量进行分类。
在聚类任务中,Embedding 可以将相似的文本聚类在一起。
在文本相似性比较任务中,Embedding 可以比较两个文本的相似性程度。
embedding的数学推理

embedding的数学推理在数学领域中,embedding是一种常见的概念。
它指的是将一个数学结构嵌入到另一个更大或更复杂的数学结构中的过程。
通过embedding,我们可以将一个抽象或较简单的数学对象表示为更具体或更复杂的数学对象的一部分。
在本文中,我们将探讨embedding在数学推理中的应用和意义。
首先,我们来了解一下embedding的基本概念。
在数学中,embedding通常是通过将一个结构映射到另一个结构的方式实现的。
比如,我们可以将一个整数嵌入到一个实数集合中,或者将一个图形嵌入到一个三维空间中。
通过这种映射,我们可以保留原始结构的一些特性,并在更大或更复杂的结构中进行推理和分析。
其次,让我们来看一下embedding在数学推理中的应用。
首先,embedding可以帮助我们理解和解决复杂的数学问题。
通过将问题中的抽象对象嵌入到一个更具体的数学结构中,我们可以更好地理解问题的性质和规律,并从中寻找解决方案。
例如,在代数学中,通过将一个抽象的向量空间嵌入到一个更具体的欧几里德空间中,我们可以更容易地推导出向量的性质和操作规则。
此外,embedding还可以帮助我们建立数学对象之间的关联和联系。
通过将一个数学对象嵌入到另一个对象中,我们可以将它们之间的关系转化为更容易理解和处理的问题。
例如,在图论中,通过将一个图嵌入到一个更大的图中,我们可以将图的结构性质转化为更大图的性质,从而更好地研究和解决问题。
最后,embedding在数学推理中的使用要注意一些技巧和限制。
首先,我们要确保嵌入的过程是保持结构特性的,即在嵌入后,原始结构的一些重要性质仍然得以保留。
其次,我们要注意嵌入的精确性,以确保嵌入后的结构能够准确地代表原始结构。
同时,我们还需要注意嵌入的操作是否可逆,即能否从嵌入后的结构中恢复出原始结构。
总而言之,embedding是一种在数学推理中常用的技术,它可以帮助我们理解和解决复杂的数学问题,建立数学对象之间的关联和联系。
群的概念教学中几个有限生成群的例子

群的概念教学中几个有限生成群的例子霍丽君(重庆理工大学理学院重庆400054)摘要:群的概念是抽象代数中的最基本的概念之一,在抽象代数课程的教学环节中融入一些有趣的群例,借助于这些较为具体的群例来解释抽象的群理论,对于激发学生的学习兴趣以及锻炼学生的数学思维能力等方面都会起到一定的积极作用。
该文介绍了一种利用英文字母表在一定的规则下构造的有限生成自由群的例子,即该自由群的同音商,称为英语同音群。
此外,该文结合线性代数中的矩阵相关知识,给出了有限生成群SL2(Z )以及若于有限生成特殊射影线性群的例子。
关键词:有限生成群英语同音群一般线性群特殊射影线性群中图分类号:O151.2文献标识码:A文章编号:1672-3791(2022)03(b)-0165-04Several Examples of Finitely Generated Groups in the ConceptTeaching of GroupsHUO Lijun(School of Science,Chongqing University of Technology,Chongqing,400054China)Abstract:The concept of group is one of the most basic concepts in abstract algebra.Integrating some interesting group examples into the teaching of abstract algebra course and explaining the abstract group theory with the help of these more specific group examples will play a positive role in stimulating students'learning interest and training students'mathematical thinking ability.In this paper,we introduce an example of finitely generated free group by using the English alphabet under some certain rules,which is called homophonic quotients of free groups,or briefly called English homophonic group.In addition,combined with the theory of matrix in linear algebra,we give some examples of about finitely generated group SL_2(Z)and finitely generated special projective linear groups.Key Words:Group;Finitely generated group,English homophonic group;General linear group;Special projective linear group1引言及准备知识群是代数学中一个最基本的代数结构,群的概念已有悠久的历史,最早起源于19世纪初叶人们对代数方程的研究,它是阿贝尔、伽罗瓦等著名数学家对高次代数方程有无公式解问题进行探索的结果,有关群的理论被公认为是19世纪最杰出的数学成就之一[1-2]。
人工智能第三版课件第3章 搜索的基本策略

2.3.1 启发式信息的表示
(2) 启发式函数应能够估计出可能加速 达到目标的程度
这可以帮助确定当扩展一个节点时,那些 节点应从搜索树中删除。
启发式函数对搜索树(图)的每一节点的真正 优点估计得愈精确,解题过程就愈少走弯路。
2.3.1 启发式信息的表示
例 2.8 八 皇 后 问 题 (8-Queens problem)
弱法主要包括: .最佳优先法 .生成测试法 .爬山法 .广度优先法 .问题归约法 .约束满足法 .手段目的分析法。
1.生成测试法(Generateand-test)
生成测试法的基本步骤为: 1. 生成一个可能的解,此解是状态空 间一个点,或一条始于S0的路径。 2. 用生成的“解”与目标比较。 3. 达到目标则停止,否则转第一步。
确定一个启发式函数f(n), n 为被搜索 的节点,它把问题状态的描述映射成问题 解决的程度,通常这种程度用数值来表示, 就是启发式函数的值。这个值的大小用来 决定最佳搜索路径。
2.3.1 启发式信息的表示
(2)表示成规则
如AM的一条启发式规则为: 如 果 存 在 一 个 有 趣 的 二 元 函 数 f(x,y) , 那 么看看两变元相同时会发生什么?
2.3.1 启发式信息的表示
如何构造启发式函数? (1)启发式函数能够根据问题的当前状态, 确定用于继续求解问题的信息。
这样的启发式函数能够有效地帮助决定 那些后继节点应被产生。
2.3.1 启发式信息的表示
例2.7 八数码问题。
S0
283 16 4
Sg
75
123 84 7 65
问题空间为:
a11 a12 a13 a21 a22 a23 a31 a32 a33
语义三元组提取-概述说明以及解释

语义三元组提取-概述说明以及解释1.引言1.1 概述概述:语义三元组提取是一种自然语言处理技术,旨在从文本中自动抽取出具有主谓宾结构的语义信息。
通过将句子中的实体与它们之间的关系抽取出来,形成三元组(subject-predicate-object)的形式,从而获得更加结构化和可理解的语义信息。
这项技术在信息检索、知识图谱构建、语义分析等领域具有广泛的应用前景。
概述部分将介绍语义三元组提取的基本概念、意义以及本文所要探讨的重点内容。
通过对语义三元组提取技术的介绍,读者可以更好地理解本文后续内容的研究意义和应用场景。
1.2 文章结构本文将分为三个主要部分,分别是引言、正文和结论。
在引言部分,将从概述、文章结构和目的三个方面介绍本文的主题内容。
首先,我们将简要介绍语义三元组提取的背景和意义,引出本文的研究对象。
接着,我们将介绍文章的整体结构,明确各个部分的内容安排和逻辑关系。
最后,我们将阐明本文的研究目的,明确本文要解决的问题和所带来的意义。
在正文部分,将主要分为三个小节。
首先,我们将介绍语义三元组的概念,包括其定义、特点和构成要素。
接着,我们将系统梳理语义三元组提取的方法,包括基于规则的方法、基于统计的方法和基于深度学习的方法等。
最后,我们将探讨语义三元组在实际应用中的场景,包括知识图谱构建、搜索引擎优化和自然语言处理等方面。
在结论部分,将对前文所述内容进行总结和展望。
首先,我们将概括本文的研究成果和亮点,指出语义三元组提取的重要性和必要性。
接着,我们将展望未来研究方向和发展趋势,探索语义三元组在智能技术领域的潜在应用价值。
最后,我们将用简洁的语言作出结束语,强调语义三元组提取对于推动智能化发展的意义和价值。
1.3 目的本文的目的是介绍语义三元组提取这一技术,并探讨其在自然语言处理、知识图谱构建、语义分析等领域的重要性和应用价值。
通过对语义三元组概念和提取方法的讨论,希望能够帮助读者更好地理解和应用这一技术,提高对文本语义信息的理解和利用能力。
马尔可夫决策过程实例讲解

} 算法步骤简单,思想也简单但有效:重复贝尔曼公式(4),更新V (s) 。经过验证,该算
法 最 终 能 够 使 得 V (s) V *(s) 。 具 体 证 明 值 迭 代 算 法 收 敛 的 过 程 可 以 参 考 文 档
file:///E:/rearchStudent3/201501.15@MDP/MDP%E8%B5%84%E6%96%99/introduction%20of% 20MDP--Princeton.pdf 中的 3-10 部分。
上图的场景表征的是机器人导航任务,想象一个机器人生活在网格世界中,阴暗单元是 一个障碍。假设我希望机器人到达的目的地是右上角的格子(4,3),于是我用+1 奖励来 关联这个单元;我想让它避免格子(4,2),于是我用-1 奖励来关联该单元。现在让我们 来看看在该问题中,MDP 的五元组是什么: S:机器人可以在 11 个网格中的任何一个,那么一共有 11 个状态;集合 S 对应 11 个可 能到达的位置。 A={N S E W}。机器人可以做出的动作有 4 个:向东 向南 向西 向北。 Psa :假设机器人的行为核心设计并不是那么精准,机器人在受到相关指令后有可能会走偏 方向或者行走距离不那么精确,为简化分析,建立机器人随机动态模型如下:
P(3,1)N ((3, 2)) 0.8; P(3,1)N ((2,1)) 0.1; P(3,1)N ((4,1)) 0.1;P(3,1)N ((3,3)) 0;...
R:奖励函数可以设置为:
R((4,3)) 1 R((4, 2)) 1 R(s) 0.02对于其他状态s
去状态是条件独立的。在一些资料中将 Psa 写成矩阵形式,即状态转换矩阵。
[0,1) 表示的是 discount factor,具体含义稍后解释。
TextualEntailment(自然语言推理-文本蕴含)-AllenNLP

TextualEntailment(⾃然语⾔推理-⽂本蕴含)-AllenNLP⾃然语⾔推理是NLP⾼级别的任务之⼀,不过⾃然语⾔推理包含的内容⽐较多,机器阅读,问答系统和对话等本质上都属于⾃然语⾔推理。
最近在看AllenNLP包的时候,⾥⾯有个模块:⽂本蕴含任务(text entailment),它的任务形式是:给定⼀个前提⽂本(premise),根据这个前提去推断假说⽂本(hypothesis)与premise的关系,⼀般分为蕴含关系(entailment)和⽭盾关系(contradiction),蕴含关系(entailment)表⽰从premise中可以推断出hypothesis;⽭盾关系(contradiction)即hypothesis与premise⽭盾。
⽂本蕴含的结果就是这⼏个概率值。
Textual EntailmentTextual Entailment (TE) models take a pair of sentences and predict whether the facts in the first necessarily imply the facts in the second one. The AllenNLP TE model is a re-implementation of the decomposable attention model (Parikh et al, 2017), a widely used TE baseline that was state-of-the-art onthe SNLI dataset in late 2016. The AllenNLP TE model achieves an accuracy of 86.4% on the SNLI 1.0 test dataset, a 2% improvement on most publicly available implementations and a similar score as the original paper. Rather than pre-trained Glove vectors, this model uses ELMo embeddings, which are completely character based and account for the 2% improvement.AllenNLP集成了EMNLP2016中⾕歌作者们撰写的⼀篇⽂章:A Decomposable Attention Model for Natural Language Inference论⽂实践(1)测试例⼦⼀:前提:Two women are wandering along the shore drinking iced tea.假设:Two women are sitting on a blanket near some rocks talking about politics.其测试结果如下:可视化呈现结果如下:测试例⼦⼆:前提:If you help the needy, God will reward you.假设:Giving money to the poor has good consequences.测试结果如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Carlos Cotta and Jos´ e M. Troya Dept. Lenguajes y Ciencias de la Computaci´ on, University of M´ alaga ETSI Inform´ atica (3.2.49), Campus de Teatinos, 29071 - M´ alaga, SPAIN ccottap@lcc.uma.es
1
Introduction
Evolutionary Algorithms [1] are powerful heuristics for optimization based on the principles of natural evolution, namely adaptation and survival of the fittest. These techniques are based on the iterative generation of tentative solutions for a target problem: starting from a population (pool) of randomly created individuals (solutions), a basic cycle comprising selection (promising solutions are picked from the pool), reproduction (new solutions are created by modifying selected solutions), and replacement (the pool is updated by replacing some existing solutions by the newly created ones) is performed. A fitness function measuring the goodness of solutions is used to drive the whole process, especially during the selection stage. Evolutionary computation constitutes nowadays a state-of-the-art approach to tackle hard optimization problems for which classical techniques are inadequate. In spite of their boundaries becoming blurred nowadays, three main streams can be identified within the field of evolutionary computation: Evolutionary Programming [2], Genetic Algorithms [3], and Evolution Strategies [4]. Each of these families approaches evolutionary optimization by putting
Abstract A framework for hybridizing evolutionary algorithms with the branch-and-bound algorithm (B&B) is presented in this paper. This framework is based on using B&B as an operator embedded in the evolutionary algorithm. The resulting hybrid operator will intelligently explore the dynastic potential (possible children) of the solutions being recombined, providing the best combination of formae (generalized schemata) that can be constructed without introducing implicit mutation. As a basis for studying this operator, the general functioning of transmitting recombination is considered. Two important concepts are introduced, compatibility sets, and granularity of the representation. These concepts are studied in the context of different kinds of representation: orthogonal, non-orthogonal separable, and non-separable. The results of an extensive experimental evaluation are reported. It is shown that this model can be useful when problem knowledge is available in the form of an optimistic evaluation function. Scalability issues are also considered. A control mechanism is proposed to alleviate the increasing computational cost of the algorithm for highly multidimensional problems.
1
பைடு நூலகம்
emphasis on different aspects of the common underlying model. A disparity in both methodological and conceptual aspects of the optimization process arises from these different views of the field. Among these methodological differences, the utilization of recombination operators (i.e., operators that create new solutions by combining information pieces taken from selected solutions) within the reproductive stage has always been a controversial issue. On one hand, many evolutionaryprogramming practitioners consider that recombination reduces in most cases to macromutation. On the other hand, recombination is assigned a paramount rˆ ole by genetic-algorithm researchers. In fact, extended recombination mechanisms have been defined in which more than two individuals contribute to create a new solution [5]. These opposed arguments have motivated a plethora of theoretical studies to determine when and how to recombine. As to the first question, the most classical answer is Goldberg’s building block hypothesis [6]. This hypothesis has been notably reformulated by Radcliffe [7], generalizing the concept of schema to abstract entities called formae, and defining representation-independent recombination operators with specific properties with respect to these formae [8]. The resulting framework (Forma Analysis) has provided very important insights on the functioning of genetic algorithms. It is both the strength and the weakness of these representation-independent operators that their application is blind, i.e., randomly guided. The underlying idea is not to introduce any bias in the evolution of the algorithm, thus preventing premature convergence to suboptimal solutions. This intuitive idea is questionable though. First, notice that the evolution of the algorithm is in fact biased by the choice of representation and the mechanics of the particular operators. Second, there exist widely known mechanisms (e.g., spatial isolation [9, 10]) to promote diversity in the population, thus precluding (or at least hindering) extremely fast convergence to suboptimal solutions. Finally, it can be better to quickly obtain a suboptimal solution and restart the algorithm than using blind operators for a long time in pursuit of an asymptotically optimal behaviour. This paper discusses the use of recombination operators that use problem knowledge to bias the generation of new solutions. To be precise, the problem knowledge is used to determine the best possible combination of the ancestors’ features, thus removing the blindness of the recombination process. The utilization of these knowledge-augmented operators (also known as hybrid operators) has an additional motivation. As initially stated in [11] and later popularized in the so-called No Free Lunch Theorem [12] (see also [13]), using problem knowledge is not an optional mechanism for improving the performance of the algorithm, but it is a strong requirement for ensuring a minimal quality of the results. In this sense, the framework proposed and described in this paper constitutes another tool that evolutionary-algorithm designers can put into their toolbox, to be considered when trying to adapt their algorithm for a specific problem [14, 15, 16]. The remainder of the paper is organized as follows: first, and in order to make this work selfcontained, the necessary concepts on forma analysis and notational details are given in Section 2. Then, the properties of different kinds of representation are studied in Section 3, introducing key concepts for the subsequent development. Next, the hybrid framework is presented in Section 4, describing its internal functioning, and analyzing factors with impact in the computational complexity