解三角形 上课

合集下载

解三角形说课稿(1)

解三角形说课稿(1)

解三角形说课稿一、教材分析:1.本节课在教材中的地位和作用:解三角形这一章内容,是初中“解三角形”内容的拓展与延续,也是三角函数和平面向量在解三角形中的应用.初中阶段着重定性讨论三角形中线段与角之间的位置关系,本章主要是定量地揭示三角形边角之间的数量关系.“解三角形”具有以下教育功能(1)有助于领悟数学关系的对称与和谐:从正弦定理和余弦定理公式本身即能反映出其代数式结构上的对称与和谐,同时,他们都有广泛的应用性,即适应于任意一个三角形(2)有利于关注数学知识的来龙去脉:解三角形问题是现实的要求,数学本身和实际问题都在促进正弦定理和余弦定理的产生,而定理的优美形式和简洁特征又使得他们能广泛地应用于三角形的边角关系的度量,为学生今后实际工作储备了知识能力.2.本节的重点、难点重点:综合应用正弦定理、余弦定理分析问题和解决问题;难点:合理利用已知条件,寻求已知条件与要求的结论的联系,培养解题的优化意识.二、教学目标:(i)知识目标:①掌握正弦定理、余弦定理及面积公式,并能正确应用解三角形;②通过解三角形培养学生的方程思想、化归思想、函数思想,并培养学生解题的优化意识.(ii)能力目标:①通过对任意三角形边角关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;②能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题.(iii)德育目标:培养和发展学生数学应用意识,渗透励志教育.三、学情分析(1)学习这一节所具有的知识:学习了三角形内角和定理、正弦定理、余弦定理及面积公式;(2)学生在学习这一章存在的障碍:学生学习了正弦定理、余弦定理及面积公式后,如何建立方程,正确选用正弦定理、余弦定理及其变式解三角形方面存在障碍.四、教法分析本节课的重点是综合应用正弦定理、余弦定理,为了突破难点,采用对比研究和示错的方法,“启发、引导、类比”相结合,让学生经历一个“实验、探索、归纳”的科学教学过程,体现从特殊到一般的认识规律,通过学生“动手、动脑、讨论、演练”,增加学生的参与机会,增强参与意识,教给学生获取知识的途径,思考问题的方法,使学生真正成为教学主体.五、教具准备:多媒体.六、教学过程:回顾1.正弦定理:(R为△ABC的外接圆的半径).条件:(1)已知两角和任意一边,求其它两边及一角;(2)已知两边和其中一边的对角,求其它边角(可2sin sin sin a b c R A B C===能有两解). 一般变形:(1)a A b B=sin sin ; (2)222sin ,sin ,sin a R A b R B c R C ===;(3)2sin sin sin a b c R A B C++=++ 2.余弦定理:2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩(求边式) 或222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩(求角式) 条 件:(1)已知两边及其夹角,求第三边和其它两角.(2)已知三边求三角;一般变形:2222cos bc A b c a =+-3.面积公式:111111sin sin sin 222222a b c S ah bh ch ab C ac B bc A ∆====== 例题1.在ABC ∆中,3cos 5A =,5sin 13B =,则cos C 的值为 ( ) A. 5665或1665- B. 1665- C. 1665或6365 D. 5665 设计意图:① 培养方程思想:寻求已知条件与要求的结论的联系,建立方程;② 温故知新:应用初中学过的三角形内角和定理及正弦定理解释三角形中的“大边对大角”,以解决解三角形中的多解问题.2.在锐角ABC ∆中,1BC =,2B A =,则cos AC A的值等于 ,AC 的取值范围为 . 设计意图:① 培养方程思想:寻求已知条件与要求的结论的联系,建立方程;② 培养函数思想、化归思想:建立目标函数,应用函数性质,循序渐进,有机统一.3.在锐角ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c 2sin c A =. (Ⅰ)确定角C 的大小:(Ⅱ)若2c =,且sin 2sin B A =,求ABC ∆的面积.设计意图:① 培养公式变式应用能力:灵活应用公式是本节难点,通过加强练习; ② 举一反三:寻求解题多样性,优化解题意识;③ 巩固消元思想:应用正、余弦定理实现边角统一,体现了消元思想.4.已知ABC ∆的外接圆半径为1,角A 、B 、C 的对边分别为a 、b 、c ,向量),(cos ,)cos 4,(b A n B a m ==满足||||||m n m n ⋅=.(1)试判断ABC ∆的形状;(2) 求sin sin +A B 的取值范围.设计意图:① 培养方程思想:寻求已知条件与要求的结论的联系,建立方程;② 巩固消元思想:应用正、余弦定理实现边角统一,体现了消元思想. 练习1.ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且a =1b =,120A =,那么角B 等于 ( )A .30或150B .60C .45D .302.在ABC ∆中,角,,A B C 的对边边长分别为3,4,6a b c ===,则cos cos cos bc A ca B ab C ++ 的值为 .3.在ABC ∆中,60A =,12b =,ABC S ∆=,则sin sin sin a b c A B C++=++ . 4.如图,在ABC ∆中,3==AB AC ,2=BC ,角B 的平分线交过点A 且与BC 平行的线于D .求ABC ∆的面积.设计意图:学会应用方程思想,正确选用正弦定理、余弦定理及其变式解三角形.归纳(1)A B Cπ>⇔>⇔>;a b A B A B++=;(2)大边对大角: sin sin (3)边角转化;(4)公式变式应用.作业布置设计意图:巩固、提高,增强求知欲.。

解三角形PPT演示课件

解三角形PPT演示课件

04 三角形在实际问 题中的应用
测量问题中的三角形解法
角度测量
通过测量三角形的两个角,利用 三角形内角和为180度的性质,可
以求出第三个角的大小。
距离测量
在无法直接测量两点间距离的情况 下,可以通过构造三角形,利用已 知边长和角度,通过三角函数求解 未知距离。
高程测量
在测量地形高度时,可以通过构造 三角形并测量相关角度和距离,利 用三角函数求解未知高程。
物理学中的三角形解法
01 02
力的合成与分解
在物理学中,力是矢量,可以通过构造三角形来表示力的合成与分解。 例如,已知两个分力的大小和方向,可以构造三角形求解合力的大小和 方向。
运动学问题
在解决匀变速直线运动等问题时,可以通过构造速度、加速度和时间等 物理量的三角形关系,利用三角函数求解未知量。
03
解等腰三角形的方法
通过已知的两边和夹角,利用余弦定 理或正弦定理求解第三边和其余两个 角。
等边三角形的解法
等边三角形的定义和性质
01
三边长度都相等的三角形,三个内角均为60度。
解等边三角形的方法
02
通过已知的一边长度,利用三角函数或特殊角度的三角函数值
求解其余两边和三个角。
典型例题解析
03
展示一道等边三角形的求解问题,并详细解析解题步骤和思路
几何图形中的三角形解法
01
02
03
三角形面积计算
通过已知三角形的底和高 ,或者通过海伦公式等方 法,可以计算三角形的面 积。
三角形边长求解
在已知三角形部分边长和 角度的情况下,可以利用 正弦定理、余弦定理等方 法求解未知边长。
三角形形状判断
通过已知三角形的边长或 角度,可以判断三角形的 形状,如等边、等腰、直 角等。

解三角形说课稿

解三角形说课稿

解三角形 说课稿一、说教材《解三角形》这一课是高中数学中的重要内容,它承接着初中阶段平面几何的知识,同时为后续学习立体几何、解析几何等内容打下基础。

本节课在教材中的作用和地位主要体现在以下几个方面:1. 知识体系:解三角形是平面几何中的一个重要组成部分,它涉及到三角形的基本性质、勾股定理、余弦定理等知识点,对于完善学生的几何知识体系具有重要意义。

2. 方法培养:解三角形的过程涉及到多种数学方法,如代数法、几何法、三角法等,有助于培养学生的解决问题的能力和逻辑思维能力。

3. 实际应用:解三角形在日常生活和工程实践中具有广泛的应用,如测量、制图、建筑设计等,有利于提高学生的实践操作能力。

主要内容:1. 三角形的分类:根据边长和角度关系,将三角形分为锐角三角形、直角三角形和钝角三角形。

2. 勾股定理:介绍勾股定理及其证明,掌握直角三角形的边长关系。

3. 余弦定理:推导余弦定理,并应用于任意三角形的边长和角度求解。

4. 解三角形的方法:代数法、几何法、三角法等。

二、说教学目标学习本课需要达到以下教学目标:1. 知识与技能:(1)理解三角形的分类,掌握勾股定理和余弦定理。

(2)能够运用代数法、几何法、三角法等方法解三角形。

2. 过程与方法:(1)通过自主探究、合作交流,培养解决问题的能力和逻辑思维能力。

(2)学会运用数学方法解决实际问题,提高实践操作能力。

3. 情感态度与价值观:(1)激发学生对几何学的兴趣,增强数学学习的自信心。

(2)培养学生严谨、踏实的科学态度,提高团队协作能力。

三、说教学重难点1. 教学重点:(1)三角形的分类及特点。

(2)勾股定理和余弦定理的推导和应用。

(3)解三角形的方法及其适用范围。

2. 教学难点:(1)余弦定理的推导过程。

(2)解三角形的方法在实际问题中的应用。

在教学过程中,要注意引导学生掌握重点,突破难点,提高课堂学习效果。

四、说教法在教学《解三角形》这一课时,我计划采用以下几种教学方法,旨在激发学生的兴趣,提高课堂参与度,以及促进学生的深度理解。

解三角形ppt课件

解三角形ppt课件

解三角形中的最值问题
01
总结词
02
详细描述
03
示例
利用三角形性质和函数性 质,解决三角形中的最值 问题。
在解三角形问题中,常常 会遇到需要求最值的问题 。这类问题通常涉及到三 角形的边长、角度等性质 ,需要利用三角形的基本 性质和函数的基本性质进 行推理和求解。
在三角形ABC中,已知a 、b、c分别为角A、B、C 所对的边,且a = 2, b = 3, C = 60度。求三角形 ABC的面积的最大值。
航海定位问题
经验积累
解决航海定位问题需要丰富的经验积累,因 为在实际航行中会遇到各种复杂的情况。只 有通过不断实践和经验积累,才能熟练掌握 解三角形的方法,提高定位精度和航行安全
性。
建筑结构设计问题
结构设计基础
建筑结构设计问题是建筑学中的基础问题之一,涉及 到建筑物的稳定性和安全性。解三角形的方法可以用 来确定建筑物的结构形式和受力情况,保证建筑物的 质量和安全性。
测量距离问题
实践性强
解决测量距离问题需要很强的实践能力,需要具备一定的测 量和计算能力。同时,还需要对实际环境有足够的了解,能 够根据实际情况选择合适的解三角形方法。
航海定位问题
重要应用
航海定位问题在航海学中非常重要,因为准确的定位是保 证航行安全的前提。解三角形的方法可以用来确定船只的 位置和航向,保证航行路线的准确性。
解三角形ppt课件
contents
目录
• 引言 • 三角形的基本性质 • 解三角形的方法 • 实际应用案例 • 解三角形的进阶技巧 • 总结与展望
01
引言
三角形的定义与性质
三角形是由三条边和三个角构成的二 维图形。
三角形的边和角之间存在一定的关系 ,如两边之和大于第三边、内角和为 180度等。

冀教版九年级数学 26.3 解直角三角形(学习、上课课件)

冀教版九年级数学  26.3 解直角三角形(学习、上课课件)

一直角边, 一锐角(如 a, ∠ A)
(1)∠ (2)由
(3)由
B=90°-∠ A;
tsainnAA==baca求求
b; c
知1-讲感悟新知活源自巧记 解直角三角形四原则:知1-讲
(1)有斜用弦:即已知或求解中有斜边时,用正弦或余弦来解
决问题;
(2)无斜用切:即已知或求解中无斜边时,用正切来解决问题;
知边),去找已知角的某一个锐角三角 函数; (2)求角时,利用直角三角形两锐角互余 .
感悟新知
知1-练
(1)在Rt△ABC中,∠C=90°,∠A=30°,b=12; 解:在Rt△ABC中,∠C=90°,∠A=30°, ∴∠B=90°-∠A=60°.
∵ tan A=ab,∴ 33=1a2, ∴ a=4 3, ∴ c=2a=8 3.
第二十六章 解直角三角形
26.3 解直角三角形
学习目标
1 课时讲解 解直角三角形
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 解直角三角形
知1-讲
1. 定义 在直角三角形中,除直角外,还有三条边和两个 锐角共五个元素 . 由这五个元素中的已知元素求出其余未 知元素的过程,叫做解直角三角形 .
感悟新知
(2)在Rt△ABC中,∠C=90°,∠A=60°,c=6. 知1-练 解:在Rt△ABC中,∠C=90°,∠A=60°, ∴∠ B=90° -∠A=30°.
∵ sin A=ac,∴ 23=a6 ,∴ a=3 3. 由勾股定理得b= c2-a2 = 36-27=3.
感悟新知
2-1.在 Rt △ ABC 中,∠ C=90°,∠ A,∠ B,∠ C知所1-练 对的边分别为 a,b, c. 根据下列条件解直角三角形:

解三角形(讲义)

解三角形(讲义)

解三角形(讲义)➢知识点睛1.解三角形(1)在三角形中,由已知的边、角出发,求未知边、角的过程叫做解三角形.已知边指已知该边的长度,已知角指已知该角的三角函数值.解三角形时,往往会通过作高的方式将三角形分割为2个直角三角形进行研究;作高时,一般要保留已知三角函数值的角.(2)常见的可解三角形①2边1角②2角1边③3边④1边1角表达AB=mACAB+BC=n➢精讲精练1.如图,在△ABC中,AB=BC=11,tan B=12,则AC=________,sin C=________.2.如图,在△ABC中,AC=ABC=150°,BC=8,则AB=______,sinA=________.3.如图,在钝角三角形ABC中,∠CAB>90°,AB=10,BC=14,∠C=45°,则AC=_______.4.如图,在△ABC中,tan B=12,∠C=45°,BC=12,则AB=_________.5.如图,在△ABC中,tan A=12,∠ABC=135°,BC=AB=___________.6.如图,在△ABC中,AB=5,BC=4,AC=6,则∠B的正切值为_________.7.如图,在△ABC中,BC∠C=45°,AB AC,则AC的长为_________.8.如图,在矩形ABCD中,AB=4,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tan∠BAF=12,则CE=_______.9. 如图,在△ABC 中,D 是AC 边上的中点,连接BD ,把△BDC 沿BD 翻折,得到△BDC′,DC′与AB 交于点E ,连接AC′,若AD =AC′=2,BD =3,则点D 到BC′的距离为()A .2B .7C D10. 如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB 的顶点A 在△ECD 的斜边DE 上,若AE ,AD ,则两个三角形重叠部分的面积为________.第10题图第11题图11. 如图,在△ABC 中,∠BAC =30°,AB =AC ,AD 是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F .若BC =2,则EF 的长为________.12. 如图,在Rt △ABC 中,∠A =90°,AB =23,点E ,点D 分别是边AB ,AC 上一点,AE =3,AD =4,过点E 作EF ⊥DE ,交BC 于点F .若EF =2ED ,则AC 的长为__________.13. 如图,在Rt △ABC 中,∠B =90°,AB =BC△ABC 绕点A 按逆时针方向旋转90°得到△AB′C′,连接B′C ,则sin ∠ACB′=________.14.如图,在△ABC中,∠B=90°,AB BC=4,点D是AB上一点,BD=2,点E是线段AC上一动点,将△ABE沿BE折叠,使点A的对应点A′落在线段CD上,此时tan∠A′BC=__________.15.在正方形ABCD中,AB=6,连接AC,BD,P是正方形对角线上一点,若PD=2AP,则AP的长为__________.16.如图,在矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的平分线上时,DE的长为__________.【参考答案】1.5;4 52.3.4.5. 26.7. 28.9. B10.311.112.23 213.4 514.1 1815.16.52或53。

高一数学教案解三角形5篇

高一数学教案解三角形5篇

高一数学教案解三角形5篇等腰三角形,看似简单平常,实则魅力无穷.许多关键问题三角问题与等腰三角形密切相关,形变解题中若能根据题意恰当构造,则可使一些三角问题别开生面地得以解决,更给人一种形象直观、流畅清晰、解法优美之感.今天在这里整理了一些,我们一起来呢吧!高一数学教案解三角形1[教学重、难点] 认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

[教学准备] 学生、老师剪下附页2中的图2。

[教学过程] 一、画一画,说一说1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。

2、教师巡查练习境况。

3、学生展示练习,说一说为什么是锐角、直角、钝角?二、分一分 1、小组活动;把附页2中的图2中的三角形需要进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分后?2、汇报:进行分类的标准和方法。

可以按角来分,可以按边来分。

二、按角分类: 1、观察观察具体来说三角形有什么共同的特点,从而归纳出来三个角都是锐角的'三角形是锐角三角形。

2、观察共同第三类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形3、观测观察第三类三角形有什么互助的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。

三、按边分类: 1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边,这样三角形的三角形叫等腰三角形,并透露各部分的名称。

2、引导学生发现有的菱形三角形三条边都相等,这样的矩形是等边三角形。

讨论等边三角形是等腰三角形吗?四、填一填:24、25页让学生辨认各种三角形。

五、练一练:第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能重新考虑是一个锐角三角形,必须三个角都是锐角总算是九个锐角三角形。

第2题:在点子图上画作三角形第3题:剪一剪。

六、完成26页实践活动。

[板书设计] 三角形的分类按角分类:按边分类:高一数学教案可解三角形2教学目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、了解三角形的高,并能在一般性的三角形中作出中均它们.教学重点:在具体的三角形中作出三角形的低.教学难点:画出钝角三角形的三条高.活动准备:学生预先剪好三种三角形,一副三角板.教学过程:过菱形的一个顶点A,你能画出它的对边BC的垂线吗?试试看,你准行!从而引出新课:1、三角形的高:三角形从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,线段AM是BC边上的高.∵AM是BC边上的高,∴AM⊥BC.做一做:每人准备一个锐角三角形纸片:(1)你能画出这个三角形的高吗?你能用折纸的方法得到它吗?(2)这三条高之间有怎样的位置关系呢?小组讨论交流.结论:锐角三角形的'三条高在正三角形的内部且交于一点.3、议一议:每人画出一个直角三角形和一个钝角三角形.(1)画出直角三角形的三条高,并观察它们有怎样的位置关系?(2)你能折出高德帕伦三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于假脉一点吗?它们所在的直线交于一点吗?小组讨论交流.结论:1、直角三角形的等腰三条高交于直角顶点处.2、钝角三角形的三条高所在直线交于一点,此点在四边形的外部.4、练习:如图,(1)共有___________个直角三角形;(2)高AD、BE、CF相对应的底分别是_______,_____,____;(3)AD=3,BC=6,AB=5,BE=4.则S△ABC=___________,CF=_________,AC=_____________.5、小结:(1)锐角三角形的三条高在三角形的内部且交于一点.(2)直角三角形的三条高交于直角顶点处.(3)钝角三角形的三条高所在直线交于一点,此点在三角形的中间层.作业:P127 1、2、3高一数学教案可解三角形3《三角形中位线》教案一、教学目标:1.使学生掌握三角形中位线概念,理解中位线定理,会运用它进行有关论证和计算2.掌握添加辅助线解题的技巧.3.提高中学生分析问题,解决问题的能力,增强学习兴趣.二、教学方法探究式自主学习:以学生的自主探究为主,教职员加以引导启发,在师生的共同探究活动中,完成本课的教学目标,提高学生的能力,使学生更好的适应新课程标准三、教学内容﹑教材重、难点分析:三角形中位线定理的学习是继学习-平行四边形与平行线等分线段定理后的一个新内容,教材首先给出了三角形中位线的定义,并与三角形中线加以区分,接着以同一法的思想探索出三角形中所位线定理,最后是利用中位线定理解答例一所给的环境问题.在今后的学习中要经常运用这个定理解决有关直线平行和也常线段倍分等问题.本节课的重点是三角形中位线定理,难点是定理的证明,关键在于如何添加辅助线,在今后的学习中要经常运用这个定理解决有关直线平行和也常线段倍分等问题.四、教学内容媒体的选择和设计通过多媒体课件,打开学生的思路,增加课堂的容量,提高课堂效率。

解三角形教案1

解三角形教案1

解三角形(一)教学目标1.知识与技能:(1) 掌握正、余弦定理、重要不等式、基本不等式、函数值域等相关的知识。

(2) 掌握解决三角形问题中最值问题的常规方法:不等式法和函数法。

2.过程与方法:进一步体会函数,不等式,平面几何等知识的交汇融合;通过周长、面积最值得求解培养学生分析、归纳能力及知识迁移的能力。

3.情感、态度与价值观:(1) 学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题。

(2) 培养学生数学素养和逻辑思维能力。

(二)教学重点与难点重点:理解并掌握正弦定理、余弦定理、重要不等式、基本不等式及平面几何知识等的应用。

难点:三角形最值问题中通法通解的形成及贯彻;数形结合思想,函数思想的培养。

(三)教学过程设计一、知识回顾、归纳总结:三角形性质:1.角的关系:A B C π++=,外角等于不相邻两个内角和。

2.边的关系:两边之和大于第三边,两边之差小于第三边。

3.角与边的关系:①大角对大边,等角对等边 ②正弦定理及变形: 变形:③余项定理及变形: 2()sin sin sin a b c R R ABC A B C===∆为外接圆半径2sin 2sin 2sin a R A b R B c R C=== sin sin sin 222a b c A B C R R R=== ::sin :sin :sin a b c A B C =2222cos a b c bc A=+-222cos 2b c a A bc+-=ABC C a b c ∆=++4.周长与面积:重要不等式、均值不等式:重要不等式: 均值不等式: 变形:二、例题讲解、规范解答:注意:分析周长或面积取到最大值的条件。

12ABC S ∆=⨯底高111sin sin sin 222ABC S ab C ac B bc A ∆===时取等)当且仅当b a R b a ab b a =∈≥+,,(222时取等)当且仅当b a b a abb a =>>≥+,0,0(22()2a b ab +≤cos _______ABC A B C a b c a b c B ∆的内角、、所对的边分别为、例1:(2014陕西、;若、、成等比数列求的最小值)2cos(),cos a b A C ABC A B C a b c c C C c ABC c ABC ++∆==∆=∆的内角、、所对的边分别为、、;若(1)求的大小(2)若求面积的最大值(例2:(2016吉林白山一模改编)3)若求周长的最大值12c a b =+变式:(1)求若求的最大值a b c 解:、、称等比数列2b ac ∴=222cos 2a c b B ac +-=222a c ac ac+-=22ac ac ac -≥12=a c ==当且仅当,""成立小结:小结:“知二求最值”知二:角及其所对的边,求三角形周长、面积最值,一般在等腰时候取到最值,如是“类周长面积”不一定是在等腰的时候取到最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SOS
----解三角形应用举例
【三维目标】
1、让学生根据题意能准确的画出平面示意图,灵活运用正弦定理和余弦定理理解关于角度的问题。

2、在教法上,加强如何从实际问题情境中寻求解决问题的方案的探究,注重能力的培养,逐步让学生自主发现规律。

通过师生互动给学生带来知识上、方法上、思想上和情感上的提升。

3、通过相关问题的探究,让学生善于从数学的角度去分析和解决生活中遇到的实际问题,切身体会日常生活中处处存在数学,感悟到数学的本身是生动的,美丽的。

【重点】能根据正弦定理,余弦定理的特点找到已知条件和所求问题的关系。

弄清方向角的概念,将实际问题转化为数学问题。

【难点】根据题意准确画出平面示意图,灵活运用正弦定理和余弦定理解决问题。

正北或正南方向线与目标方向线所成的
锐角,通常表达为北(南)偏东(西)××度.
例:位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cosθ的值.
小结:
解三角形应用题的一般步骤:
(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.
(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.
(3)根据题意选择正弦定理或余弦定理求解.
(4)将三角形问题还原为实际问题。

作业:一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8 2
n mile.此船的航速是________ n mile/h.。

相关文档
最新文档